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 Non-traditional machining (NTM) refers to a variety of thermal, chemical, electrical and 
mechanical material removal processes, developed to generate complex and intricate shapes in 
advanced engineering materials with high strength-to-weight ratio. Selection of the optimal 
NTM process for generating a desired feature on a given material requires the consideration of 
several factors among which the type of the work material and shape to be machined are the 
most significant ones. Presence of a large number of NTM processes along with their complex 
characteristics and capabilities, and lack of experts in NTM process selection domain compel 
for development of a structured approach for NTM process selection for a given machining 
application. Thus, the objective of this paper is set to develop a decision-making model in 
Visual BASIC 6.0 to automate the NTM process selection procedure with the help of graphical 
user interface and visual decision aids. It is also integrated with quality function deployment 
technique to correlate the customers’ requirements (product characteristics) with technical 
requirements (process characteristics). Four illustrative examples are also provided to 
demonstrate the potentiality of the developed model in solving NTM process selection 
problems. 

  © 2014 Growing Science Ltd.  All rights reserved. 
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1. Introduction 

 

Non-traditional machining (NTM) processes are defined as a group of processes that remove excess 
material from the workpiece surface by various techniques, involving mechanical, thermal, electrical 
or chemical energy or combinations of these energies (Pandey & Shan, 1981). They do not use sharp 
cutting tools, as it needs to be used for conventional machining processes. Material removal rate of 
the conventional processes is constrained by the mechanical properties of the workpiece material. In 
conventional machining processes, the relative motion between the tool and workpiece is typically 
rotary or reciprocating. Thus, the shape of the work surfaces is limited to circular or flat shapes, and 
except in CNC systems, machining of three-dimensional surfaces is still a difficult task. In contrast, 
NTM processes harness energy sources, and material removal is basically accomplished with 
electrochemical reaction, high temperature plasma, and high velocity jets of liquids and abrasives. In 
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these processes, as there is no physical contact between the tool and workpiece, they can easily deal 
with the present day difficult-to-cut materials, like ceramics and ceramic-based tool materials, fiber 
reinforced materials, tungsten carbides, stainless steels, high speed steels, carbides, titanium-based 
alloys etc. for generating small cavities, slots, slits, blind or through holes at micro- and even at nano-
level (Jain, 2005). Now the conventional machining processes are being substituted by these NTM 
processes in response to increased demands in industry for better, more consistent workpiece quality; 
higher production efficiency in processing of hard, tough materials, workpieces with unusual 
finishing requirements; and capability of machining of parts with complex shapes that require 
processing beyond the normal capabilities of the conventional machining processes. 
 
In order to exploit the full potential of the NTM processes to generate complex and intricate shape 
features with the required dimensional accuracy, tolerance and surface finish on the difficult-to-
machine materials, it is always recommended that the best NTM is to be selected for the given 
machining application. Selecting the most appropriate NTM process for a given shape feature and 
work material combination is often a time consuming and challenging task as it requires 
consideration of several conflicting criteria (like maximization of material removal rate and 
minimization of surface finish, maximization of efficiency and minimization of power requirement, 
etc.), and a vast array of machining capabilities and characteristics of NTM processes. A particular 
NTM process found suitable under the given conditions may not be equally efficient under other 
conditions. Therefore, a careful selection of NTM process for a given machining problem is essential 
while considering the following important attributes: 
 

a) physical and operational characteristics of NTM processes, 
b) capability of machining different shapes of work material, 
c) applicability of different processes to various types of materials, and 
d) economics of various NTM processes. 

 
Thus, the selection procedure involves identifying the relevant possible alternatives among the NTM 
processes and grading them according to their performance. As the NTM process selection is quite 
difficult requiring human expertise and being affected by several criteria, there is always a need for a 
structured approach for appropriate NTM process selection for a given machining application. In this 
paper, a decision-making model is framed and developed in Visual BASIC 6.0 to automate the NTM 
process selection procedure for a specified work material and shape feature combination. It is also 
integrated with quality function deployment (QFD) technique to take into account the customers’ 
requirements (product characteristics) as well as technical requirements (process characteristics) for a 
given NTM process selection problem. 
 
2. Literature review on NTM process selection 
 
Coğun (1993) used an interactively generated 16-digits classification code to eliminate unsuitable 
NTM processes from consideration and rank the remaining efficient processes. Yurdakul and Coğun 
(2003) presented a multi-attribute selection procedure integrating technique for order performance by 
similarity to ideal solution (TOPSIS) and analytic hierarchy process (AHP) to help the manufacturing 
personnel in determining suitable NTM processes for given application requirements. Chakraborty 
and Dey (2006) designed an AHP-based expert system with a graphical user interface for NTM 
process selection. It would depend on the logic table to discover the NTM processes lying in the 
acceptability zone, and then select the best process having the highest acceptability index. 
Chakraborty and Dey (2007) proposed the use of a QFD-based methodology to ease out the optimal 
NTM process selection procedure. Das Chakladar and Chakraborty (2008) developed an expert 
system while combining TOPSIS and AHP methods for selecting the most appropriate NTM process 
for a specific work material and shape feature combination.  
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Edison Chandrasselan et al. (2008) developed a web-based knowledge base system for identifying the 
most appropriate NTM process to suit specific circumstances based on the input parameter 
requirements, like material type, shape applications, process economy and some of the process 
capabilities, e.g. surface finish, corner radii, width of cut, length-to-diameter ratio, tolerance etc. Das 
Chakladar et al. (2009) presented a digraph-based approach to solve the NTM process selection 
problems with the help of graphical user interface and visual aids. Das and Chakraborty (2011) 
developed an analytic network process (ANP)-based approach to select the most appropriate NTM 
process for a given machining application taking into account the interdependency and feedback 
relationships among various criteria affecting the NTM process selection decision. An ANP solver 
was also developed to automate the entire NTM process selection decision procedure. Sadhu and 
Chakraborty (2011) applied the input-minimized-based Charnes, Cooper and Rhodes (CCR) model of 
data envelopment analysis to shortlist the efficient NTM processes for a given application, and then 
employed a weighted-overall efficiency ranking method to rank those efficient processes. 
Chakraborty (2011) employed multi-objective optimization on the basis of ratio analysis (MOORA) 
method to select the most suitable NTM process for a given work material and shape feature 
combination.  
 
Karande and Chakraborty (2012a) integrated PROMETHEE (preference ranking organization method 
for enrichment evaluation) and GAIA (geometrical analysis for interactive aid) methods for NTM 
process selection for a specific machining application. Karande and Chakraborty (2012b) applied 
reference point approach for choosing the most suitable NTM processes for generating cylindrical 
through holes on titanium and through cavities on ceramics. Chatterjee and Chakraborty (2013) 
explored the applicability of evaluation of mixed data (EVAMIX) method for solving the NTM 
process selection problems with the help of three demonstrative examples. Temuçin et al. (2014) 
proposed a decision support model to assess potentials of seven distinct NTM processes in the cutting 
process of carbon structural steel with the width of plate of 10 mm. Although the past researchers 
have designed and augmented different expert system models/decision support systems for selecting 
the best NTM processes for varying machining applications, but no attempt has been put till date to 
identify the most desirable characteristics of the selected NTM processes and guide the process 
engineers while providing the possible parametric settings of those processes. In this paper, a 
decision-making model is thus developed to reduce the gap between the prediction of the best NTM 
processes and real time machining requirements. 
 
3. Development of a QFD-based NTM process selection framework  
 
QFD is a ‘method to transform user demands into design quality, to deploy the functions forming 
quality, and to deploy methods for achieving the design quality into subsystems and component parts, 
and ultimately to specific elements of the manufacturing process’, as described by Akao (1990). QFD 
is thus a way to assure the design quality while the product is still in the design stage. From this 
definition, QFD can be seen as a process where the consumer’s voice is valued to carry through the 
whole process of production and services in order to achieve the highest customer satisfaction. Thus, 
QFD helps in bringing the customer’s voice into the production process to reduce the unnecessary 
cost and time by designing the product right at the first time itself. Customers’ requirements and their 
relationships with technical requirements are the driving force for the QFD-based methodology. It 
enables an organization to build quality in a product or service. The primary tool used in QFD is the 
House of Quality (HOQ), because of its ability to be adapted to the requirements of a particular 
product. HOQ employs a series of matrices to quantify customer requirements, product ratings and 
technical requirements. HOQ looks like a house, made up of six major components. These include 
customers’ requirements - what do customers want, phrases customers use to describe products and 
product characteristics; technical requirements - how customers’ needs can be achieved; a planning 
matrix - shows the weighted importance of each requirement that the organization attempts to fulfill; 
an interrelationship matrix - establishes a connection between the customer’s requirements and 
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technical requirements of a product; a technical correlation matrix - referred as roof of the matrix, 
depicts relationship among technical requirements; and a technical priority matrix - shows the 
priorities assigned to technical requirements (Hauser & Clausing, 1988; Govers, 1996). The 
importance weight of each technical requirement can be calculated through simple mathematical 
expression, while identifying the correlation among all these factors (Chan & Wu, 2005). An 
excellent overview on the applications of QFD technique in diverse fields of engineering and 
management can be available in (Chan & Wu, 2002). Although the HOQ matrix may take different 
forms depending on the type and complexity of the problem, a simplified form of HOQ matrix is 
considered here taking into account only the prioritized technical requirements at the base of the 
matrix. 
 
The opening window of the developed decision-making model is shown in Fig. 1 to guide the process 
engineers selecting the most suitable NTM process for a given work material and shape feature 
combination. In the HOQ matrix, as shown in Fig. 2, type of the work material, machining cost, 
toxicity/contamination, machining time, shape feature, accuracy, aesthetics, power consumption, 
easiness of use, availability of the consumables and tool wear are shortlisted to be the major 
customers’ requirements (product characteristics). These customers’ requirements are placed along 
the rows of the HOQ matrix. On the other hand, along the columns of the same HOQ matrix, 
tolerance (in mm), surface finish (in μm), surface damage (in μm), corner radii (in mm), taper (in 
mm/mm), power requirement (in kW), material removal rate (mm3/min), work material, safety and 
cost are considered as the technical requirements (process characteristics). These product 
characteristics and process characteristics for the developed HOQ matrix for NTM process selection 
are shortlisted only after considering the valuable opinions of the process experts and after a detailed 
review of the past research works. Among these process characteristics, work material (1-3), safety 
(1-5) and cost (1-9) are expressed using qualitative scales, and the remaining has absolute numerical 
values.  
 
In the HOQ matrix, the beneficial or non-beneficial characteristic of the customers’ requirements is 
identified by the corresponding improvement driver value (+1 for beneficial criteria and –1 for non-
beneficial criteria). Thus, among the considered product characteristics, machining cost, power 
consumption and tool wear, being non-beneficial attributes, always require minimum values for the 
selection of the NTM process. On the other hand, in the HOQ matrix, power requirement and cost are 
identified as the non-beneficial process characteristics. In this HOQ matrix, the relative importance 
(priority) of the product characteristics can be evaluated using a fuzzy priority scale having triangular 
membership function with scale values set as 1 - not important, 2 - important, 3 - much more 
important, 4 - very important and 5 - most important. For filling up the HOQ matrix and developing 
the interrelationship matrix between product characteristics and process characteristics, again a fuzzy 
priority scale is proposed as 1 - very very weak relation, 2 - very weak relation, 3 - weaker relation, 4 
- weak relation, 5 - moderate relation, 6 - strong relation, 7 - stronger relation, 8 - very strong relation 
and 9 - very very strong relation. These triangular fuzzy numbers for providing the relative 
importance of product characteristics and process characteristics are later defuzzified using the 
centroid method. Once the HOQ matrix is filled up with the necessary information, the weight for 
each process characteristic is computed using the following equation: 

wj = 


n

i 1

 Pri x IDi x correlation index, 
 

(1) 

where wj is the weight for jth process characteristic, n is the number of product characteristics, Pri is 
the defuzzified priority assigned to ith product characteristic, IDi is the improvement driver value for 
ith product characteristic and correlation index is the defuzzified value obtained from the HOQ matrix 
with respect to jth process characteristic for ith product characteristic. Instead of setting the priorities 
of the product characteristics, and inputting the relative associationship between product 
characteristics and process characteristics in terms of triangular fuzzy numbers, the developed QFD-
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based decision-making model can also be used under a group decision-making environment involving 
the opinions of three process engineers. In that case, the aggregated preferences can be obtained using 
a simple arithmetic averaging technique. 
 
In this NTM process selection model, the following NTM processes, work materials and shape 
features are considered based on which the best NTM process is to be chosen for a given machining 
application.  
 
NTM process: a) abrasive jet machining (AJM), b) chemical machining (CHM), c) electron beam 
machining (EBM), d) electrochemical machining (ECM), e) electro discharge machining (EDM), f) 
laser beam machining (LBM), g) plasma arc machining (PAM), h) ultrasonic machining (USM), and 
i) water jet machining (WJM). 
 
Work material: a) aluminium, b) steel, c) super alloys, d) titanium, e) refractories, f) plastics, g) 
ceramics, and h) glass. 
 
Shape feature: a) deep through cutting, b) shallow through cutting, c) double contouring, d) surface of 
revolution, e) precision small holes (diameter ≤ 0.025 mm), f) precision small holes (diameter > 0.025 
mm), g) standard holes with L/D ratio ≤ 20 (L/D = slenderness ratio), h) standard holes with L/D ratio 
> 20, i) precision through cavities, and j) standard through cavities. 
 
4. Demonstrative examples 
 
In order to demonstrate the application modality of the QFD-based decision-making model, 
developed in Visual BASIC 6.0 in an Intel® Core™ i5-2450M CPU @ 2.50 GHz, 4.00 GB RAM 
operating platform, the following four NTM process selection examples are cited. 
 
4.1 Example 1: standard holes on super alloys  
 
In this example, where standard holes are to be generated on super alloys, the process engineer needs 
to first fill up the HOQ matrix taking into account the interrelations between various product 
characteristics and process characteristics using the adopted fuzzy scale, as exhibited in Fig. 2. Now, 
when the user clicks the ‘Weight’ functional key, the priority weights of all the process characteristics 
are automatically calculated, based on Eq. (1). These priority weights are subsequently used for the 
final ranking and selection of the feasible NTM processes. This selection procedure is based on the 
computation of the performance scores of the feasible NTM processes, while applying the following 
expression: 

Performance score (PSi) = 


n

j
jw

1

× (Normalized value)ij (i = 1,2,…,m; j = 1,2,…,n) 
 

(2) 

where m is the number of the feasible NTM processes and n is the number of process characteristics. 
The normalized values are obtained from the decision matrix of a given NTM process selection 
problem. 
 
In Fig. 3, the work materials are chosen as super alloys and generation of standard holes (diameter = 
0.9 mm and depth = 1.1 mm) is the required machining operation. Now, when the ‘Feasible NTM 
process(es)’ functional key is pressed, AJM, CHM, EBM, ECM, EDM, LBM and USM are selected 
as the candidate NTM processes that can generate standard holes on super alloys. In this window, the 
user also needs to choose a list of criteria from the drop-down menu for the final selection of the 
NTM process for the specified application. In this example, cost, material removal rate, taper, surface 
damage, surface finish and work material are identified as the six influencing criteria affecting the 
NTM process selection decision. Now, on pressing of the ‘Next’ key, the final NTM process selection 
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window of Fig. 4 is displayed along with the corresponding decision matrix showing the relevant 
characteristics of the shortlisted NTM processes. In this figure, the performance scores and ranks of 
the feasible NTM processes, as computed using the QFD methodology, are also provided. It is 
observed that for generating standard holes of the specified dimensions on super alloys, EBM is the 
most appropriate NTM process, followed by ECM. AJM and USM processes have limited 
capabilities for this machining application. For the same machining operation, using an integrated 
TOPSIS and AHP method, Yurdakul and Coğun (2003) derived the ranking of the feasible NTM 
processes as ECM-LBM-EBM-CHM-AJM-USM-EDM. On the other hand, using the developed 
QFD-based model, a ranking of the feasible NTM processes is achieved as EBM-ECM-CHM-LBM-
EDM-AJM-USM. In Fig. 4, it is observed that there is a negligible difference in the performance 
scores between EBM and ECM processes, and thus, these two NTM processes can be treated to have 
almost the same capability to generate standard holes on super alloys. 
 
Now, when the ‘Display’ functional key is pressed, the feasible NTM processes are graphically 
ranked, the detailed characteristics of the finally chosen NTM process (EBM) are shown, a typical 
EBM setup is displayed, and the parametric settings of the EBM process are provided to guide the 
concerned process engineer. In this example, it is found that the finally selected EBM process has the 
characteristic values as cost = 1 (minimum), material removal rate = 2 mm3/min, taper = 0.02 
mm/mm, surface damage = 100 μm, surface finish = 3 μm and work material = 2 (moderate). The 
output of the developed model also guides the process engineers to set values of different EBM 
process parameters as pulse duration = 0.05-15 ms, beam current = 0.02-1 A, accelerating voltage = 
150-200 kV and energy per pulse = 50-150 J. These process parameter values are only the tentative 
settings of the EBM process, the final parametric combinations would entirely depend on the 
requirements of the process engineers and technical specifications of the EBM setup. Finally, the 
process engineer has to be fine tune all these settings to attain the optimal machining performance of 
the EBM process.  
          

 
Fig. 1. Opening window of QFD-based NTM process selection model 
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Fig. 2. Developed HOQ matrix for example 1 Fig. 3. Selection of work material and 

shape feature combination for example 1 

 

Fig. 4. Output for example 1 

4.2 Example 2: standard through cavities on ceramics 

Here, the process engineer wants to select the most suitable NTM process in order to generate 
standard through cavities (with t/w < 10, where t = through cavity depth and w = through cavity 
width) on ceramic work materials. The corresponding HOQ matrix is exhibited in Fig. 5, from which 
the priority weights of all the technical requirements (process characteristics) of NTM processes are 
obtained. Negative priority weights for power requirement and cost criteria signify that amongst the 
ten process characteristics, these two are of non-beneficial type, always requiring lower values. In the 
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next window, as shown in Fig. 6, the user needs to input the type of the work material (ceramics) and 
sub-shape feature (standard through cavity) combination. Now, the developed model automatically 
identifies AJM, CHM, EBM, LBM, USM and WJM as the feasible NTM processes for generating 
standard through cavities on ceramics.  

 

 Fig. 5. Developed HOQ matrix for example 2 

 

 

 

 

 

Fig. 6. Selection of work material and shape 
feature combination for example 2 

Fig. 7. Output for example 2 
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In Fig. 6, the user then selects corner radii, cost, tolerance, material removal rate, surface finish and 
work material as the final set of criteria based on which the most suitable NTM process would be 
identified from the set of six feasible processes. In Fig. 7, the final decision matrix for this NTM 
process selection problem is exhibited, as developed from the database of the model. It is shown that 
USM is the best NTM process, followed by AJM for the generation of standard through cavities on 
ceramics. Among the six feasible processes for the given application, CHM is the least preferred 
choice. For the same machining application, Karande and Chakraborty (2012b) observed the ranking 
of the feasible NTM processes as USM-AJM-WJM-LBM-EBM-CHM while employing a reference 
point-based approach. On the other hand, this QFD-based model provides a rank ordering of the 
NTM processes as USM-AJM-EBM-LBM-WJM-CHM. It is interesting to note that in both the cases, 
the best and the worst choices of NTM process exactly match.  

A photograph of an USM setup along with the values of its various process parameters as grit size = 
10-70 μm, slurry concentration = 25-50 %, power rating = 40-60 % and feed rate = 0.75-1.5 mm/min 
are also provided in Fig. 7. These are the tentative settings of the USM process parameters only to 
guide the process engineers. For attaining the desired machining performance, the identified USM 
process parameter settings need to be more preciously chosen. The list of the identified process 
parameters may also vary with the specifications and make of the USM setup.  

4.3 Example 3: deep through cutting on titanium 

In this example, deep through cutting operation on titanium material needs to be performed.  

 

 

 

Fig. 8. Selection of material type and sub-shape 
feature for example 3 

Fig. 9. Output for example 3 
 

In Fig. 8, when the process engineer selects the material type as titanium, and shape and sub-shape 
feature combination as deep through cutting operation, the developed model automatically shortlists 
AJM, CHM, EBM, ECM, EDM, LBM, PAM and USM as the feasible NTM processes for the 
specified machining application. Then based on the capabilities of those NTM processes and end 
requirements of the final product, the desired process characteristics are chosen from the technical 
requirements list as cost, material removal rate, power requirement, surface finish, tolerance and work 
material which would ultimately drive towards the selection of the most appropriate NTM process. In 
Fig. 9, the corresponding decision matrix along with performance scores and ranks of the shortlisted 
NTM processes are automatically generated. In this case, cost and power requirement are the non-
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beneficial attributes having negative priority weights. It is observed that for performing deep through 
cutting operation on titanium, PAM is the most suitable NTM process, followed by EDM process. 
The capabilities of PAM process are also extracted as cost = 2 (low), material removal rate = 7500 
mm3/min, tolerance = 1.3 mm, power requirement = 50 kW, surface finish = 100 μm and work 
material = 2 (moderate). This output from the developed model would also guide the process 
engineers in selecting the related PAM process parameters as plasma velocity = 250-750 m/s, nozzle 
diameter = 0.5-10 mm, electrode gap = 1-5 mm and gas flow rate = 5-20 l/min, although fine tuning 
of those displayed process parameters is necessary to obtain the enhanced machining performance. 

4.4 Example 4: double contouring on duralumin 

Here, double contouring operation on duralumin (an aluminium alloy) needs to be performed using a 
suitable NTM process. Double contouring is a sub-feature of surfacing operation.  

 

 

 

 

Fig. 10. Material type and sub-shape feature 
selection for example 4 

Fig. 11. Output for example 4 

In Fig. 10, after selecting the suitable work material and shape feature combination for the given 
machining application, when the user presses the ‘Feasible NTM process(es)’ functional key, ECM, 
EDM and USM get shortlisted as the feasible NTM processes being capable to perform the specified 
machining operation. Now the performances of these three NTM processes are evaluated based on 
cost, material removal rate, surface damage, surface finish, tolerance and work material criteria as set 
by the user in Fig. 10. Pressing of the ‘Next’ key helps the user to jump to the final NTM process 
selection window, as provided in Fig. 11. The priority weights of the identified criteria would 
automatically be supplied from the corresponding HOQ matrix. A negative priority weight for cost 
criterion identifies it as a non-beneficial attribute for the given problem. The original decision matrix, 
extracted from the database, is also shown in Fig. 11 along with the calculated performance scores 
and ranks of the three feasible NTM processes. It is observed that ECM is the best method, amongst 
the three NTM processes, for double contouring operation on duralumin alloy. The photograph of a 



K. Prasad and S. Chakraborty / Decision Science Letters 3 (2014) 
 

477  

typical ECM setup is also provided in Fig. 11. Now, the process engineer may select the ECM 
process along with its various machining parameters suggested as electrolyte concentration = 10-75 
g/l, electrolyte flow rate = 5-15 l/min, inter-electrode gap = 0.1-1 mm, applied current = 200-300 A 
and applied voltage = 5-35 V. However, a fine tuning of all these ECM process parameters is finally 
required for achieving the desired machining performance.  

5. Conclusions 

In this paper, a decision-making model is developed while integrating quality function deployment 
for selecting the most suitable NTM process from a large number of available alternatives for 
generating a desired shape feature on a given work material. It also acts like an expert system to ease 
out and automate the NTM process selection procedure. It not only helps in selecting the best NTM 
process but also provides a comparative study among the alternative processes. Its main advantage is 
that it does not require, from the point of view of the process engineers, to have any in-depth 
technological knowledge regarding the applicability of various NTM processes. Moreover, it relieves 
the process engineers from committing errors in the decision-making procedure while considering the 
process and product characteristics related to the selection of the optimal NTM process. It can also be 
implemented in a group decision-making environment involving the opinions of three process 
engineers/decision makers. It can be made more dynamic and versatile by including the hybrid NTM 
processes, shape features and materials yet to come in near future. 
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