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 Performance measurement plays essential role on improving the performance of business units 
and their efficiencies. During the past few years, there have been tremendous development in 
banking systems and the primary focus of many managers is to improve the quality of services 
for market retention. Performance measurement in banking industry is normally involved with 
various qualitative as well as quantitative criteria, which leads to the implementation of 
multiple criteria decision making techniques. This paper presents a hybrid grey relational 
analysis and K-means to cluster and measure the performance of banking system. The proposed 
study uses different criteria, clusters banks into various segments and ranks 43 different banks 
in city of Semnan, Iran.  
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1. Introduction 
 

 
Performance measurement plays essential role on improving business units’ performance and their 
efficiencies. During the past few years, there have been tremendous development in banking systems 
and the primary focus is to improve the quality of services as an objective for market retention. 
Performance measurement in banking industry is normally involved with various qualitative as well 
as quantitative criteria, which leads to the implementation of multiple criteria decision making 
techniques. Data mining is the result of applying sophisticated modeling techniques from the diverse 
fields of statistics, artificial intelligence, and database management (Yuantao &  Siqin, 2008; Han & 
Kambert, 2001). Data mining has been widely used to determine marketing trend (Kaefer et al., 2005), 
customer detection (Kim & Nick Street, 2004), fraud detection (Farvares &  Sepehri, 2010), etc.   
 
Today, the ability to detect the profitable customers, building a long-term loyalty in them and 
expanding the existing relationships is the primary key and competitive factors for a customer-
oriented organization. The prerequisite for having such competitive factors is the existence of a very 
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powerful customer relationship management (CRM). The precise evaluation of customers’ 
profitability is one of the most important reasons that lead to a successful CRM programs. RFM is a 
technique, which scrutinizes three properties, namely recency, frequency and monetary for each 
customer and scores customers based on these properties. Zalaghi and Abbasnejad Varzi (2014) 
presented a method, which obtains the behavioral traits of customers using the extended RFM 
approach and having the information associated with the customers of a firm. It then classifies the 
customers based on K-means algorithm and finally scores the customers in terms of their loyalty in 
each cluster. In their method, first the customers’ records are clustered and then the RFM model items 
are specified through selecting the effective properties on the customers’ loyalty rate based on the 
multipurpose genetic algorithm. Next, they are scored in each cluster based on the effect that they 
have on the loyalty rate.         
 
2. The proposed study  
 
2.1 K-means clustering 

K-means clustering is a popular data mining clustering method, which aims to partition N 
observations into K clusters in which each observation belongs to the cluster with the nearest mean. 
Normal assessment of a proper K is accomplished by minimizing the inner-cluster variation and 
maximizing the among-cluster variation, simultaneously. K-means clustering is normally sensitive to 
outliers, so, outliers must be removed before completing clustering (Ying  &  Feng, 2008; Cheng & 
Chen, 2008; Farvaresh & Sepehri, 2010). According to Edwards (2003) and Kantardzic (2011), the 
K-means method used in this paper has the following steps, 
 
1. Choose a primary part of K categories including samples that were randomly selected and calculate 

the mean of each pair, 
2. Create a new section of each part by determining the nearest center core, 
3. Calculate the new batches as the main centers, 
4. Repeat step 2 and step 3 until the algorithm reaches termination criteria.  
 
2.2. Grey Relational Analysis 
 
Grey relation analysis proposed in this paper has the following steps (Deng, 1989; Hsia et al., 2004; 
Huang et al., 2008; Razi et al., 2013): 
 
Consider X0 as reference and N alternatives with k criteria as follows, 
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Grey relational coefficient are calculated as follows, 
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where 0iX is the absolute difference between X0 and Xi in kth criterion, 0iX = 0| ( ) ( ) |iX k X k . In 

addition, max =maximaxj 0iX and min = min mini k 0iX . Finally, grey relational degree is 

calculated as follows, 
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where wj is the weight of criterion j and we may use 
1

jW
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 . Finally, all relationships must be 

normalized as follows, 
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Grey relational analysis has been widely used in various industries. Gupta and Kumar (2013), for 
instance, presented optimization of performance characteristics in unidirectional glass fiber reinforced 
plastic composites using Taguchi method and Grey relational analysis. Performance characteristics 
such as surface roughness and material removal rate in this paper were optimized during rough 
cutting operation. Salardini (2013) applied AHP and grey relational analysis to offer a method for 
portfolio management. They used a statistical sample consists of 16 firms whose shares were trading 
during the fiscal year of 2010 on Tehran Stock Exchange and used AHP and gray relational analysis 
to assign weight to each firm.  
 
The proposed study of this paper uses a hybrid of Grey relational analysis as well as K-means for 
clustering 43 banks in city of Semnan, Iran based on 24 criteria. 
 
3. The results 
 
In this section, we present details of our findings on clustering 43 banks based on 24 different criteria 
defined in Table 1 as follows, 
 
Table 1 
The criteria used for clustering banks 
Item Description Item Description 
1 Number of saving accounts (Type 1) 13 Number of cheques cached by banks 
2 Number of saving accounts (Type 2) 14 Other types of loans excluded read state 
3 Number of short term investment account 15 All Islamic contracts 
4 Number of transactions between banks 16 The number of returned checks issued by a branch 
5 Number of active point of sales 17 Short term investments 
6 The amount of investments 18 Temporary creditors 
7 Amount of investments on decentralized systems 19 Number cheques sold to customers 
8 Long term investments 20 Other liabilities 
9 Bills paid by system 21 Number of ATM card issues 
10 Interest free loans excluding real-state 22 Other investments 
11 Interest based loans  23 Other loans given to customers 
12 Loans paid for real-state 24 Number of long term accounts created 
 
As we can observe from the results of Table 1, there are relatively large numbers of criteria and we 
use feature selection to reduce the number of criteria from 24 to 15. Table 2 shows the input data for 
the reduced numbers of criteria. 
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Table 2 
The input data 

P15  P14  P13  P12  P11  P10  P9  P8  P7  P6  P5  P4  P3  P2  P1  Branch 
-0.95 -1.06 -1.24 -1.00 -1.07 -1.27 -1.04 -0.64 -1.25 -0.29 -0.41 -0.42 -0.80 -0.70 -0.47 1 
0.39 0.52 -0.54 -0.63 -0.49 1.19 0.23 -0.31 0.50 -0.27 -0.33 1.03 -0.74 2.04 -0.34 2 
1.31 3.21 -0.37 0.54 1.07 0.23 -0.40 -0.16 2.07 -0.23 -0.11 0.69 -0.47 0.65 -0.15 3 
1.03 0.83 1.72 0.83 2.13 2.19 1.59 0.51 1.44 -0.05 0.51 0.30 1.44 1.74 -0.06 4 
-0.55 -0.29 -0.07 -0.31 0.35 0.18 -0.02 -0.20 -0.42 -0.11 0.11 -0.25 0.04 0.09 -0.11 5 
0.04 -0.35 -0.28 -0.68 -0.31 -0.36 -0.51 -0.44 -0.32 -0.24 -0.20 -0.34 0.24 -0.39 -0.14 6 
-0.27 -0.61 -0.66 -0.49 0.33 -0.63 -0.43 -0.38 -0.68 -0.26 -0.18 -0.33 -0.62 -0.57 -0.31 7 
-0.54 -0.82 -0.76 -0.60 -0.56 -0.63 -0.63 -0.51 -0.93 -0.28 -0.36 -0.34 -0.69 -0.62 -0.43 8 
0.02 -0.18 -0.30 0.04 2.00 0.26 -0.24 -0.11 -0.02 -0.20 0.06 0.37 -0.71 -0.43 -0.32 9 
-0.08 0.70 -0.09 0.13 -0.42 -0.43 -0.74 -0.48 0.18 -0.26 -0.30 -0.40 -0.45 -0.40 0.30 10 
0.24 -0.78 -0.53 -0.13 -0.46 -0.45 -0.30 -0.39 -0.68 -0.14 -0.30 -0.38 -0.56 -0.41 -0.34 11 
1.86 2.19 3.38 3.40 3.63 3.01 4.29 5.28 2.64 6.42 0.54 5.88 2.92 5.10 6.17 12 
-0.41 -0.25 0.35 -0.17 -0.21 -0.66 0.03 -0.23 -0.54 -0.18 -0.29 -0.40 0.29 -0.45 -0.27 13 
-0.13 0.27 0.17 0.60 -0.10 -0.37 -0.12 0.00 -0.02 0.17 -0.24 0.44 0.93 -0.09 -0.19 14 
-0.32 -0.41 0.12 0.20 -0.58 -0.35 -0.26 0.03 -0.40 -0.13 -0.17 -0.39 2.26 0.02 -0.06 15 
-0.31 -0.29 -0.14 0.10 0.29 -0.02 0.35 0.05 -0.22 -0.16 0.52 -0.40 0.09 -0.21 -0.20 16 
0.36 0.03 0.28 1.12 -0.01 -0.32 0.23 0.01 0.06 -0.14 -0.22 -0.38 0.21 -0.22 -0.32 17 
-0.67 -0.44 0.16 0.05 -0.24 -0.39 0.30 -0.16 -0.38 -0.14 0.97 0.71 0.04 0.24 -0.21 18 
-0.01 0.23 0.30 0.27 0.11 0.33 1.58 0.58 0.43 -0.06 -0.05 -0.36 2.14 0.38 -0.09 19 
2.26 -0.10 -0.11 -0.05 -0.03 0.19 1.25 0.16 0.96 0.09 -0.32 1.18 2.47 0.63 0.59 20 
-0.47 -0.66 -0.26 -0.34 -0.53 -0.70 -0.22 -0.37 -0.83 -0.22 -0.14 -0.33 -0.42 -0.33 -0.35 21 
-0.43 -0.64 1.30 -0.14 -0.41 -0.91 -0.74 -0.45 -0.46 -0.18 -0.34 -0.36 0.26 -0.54 -0.36 22 
-0.45 -0.52 -0.29 -0.38 -0.72 -0.36 -0.38 -0.32 -0.69 -0.20 -0.30 -0.32 -0.07 -0.42 -0.22 23 
0.39 0.08 0.15 0.13 0.85 0.65 0.25 -0.11 0.56 0.02 0.34 0.35 -0.12 0.39 0.17 24 
-0.50 -0.51 -0.36 -0.06 -0.49 -0.34 1.26 -0.01 -0.48 -0.18 6.17 0.34 -0.42 0.08 -0.15 25 
-0.10 2.23 1.83 0.98 2.41 2.23 1.59 1.41 2.40 0.39 -0.31 0.04 2.06 0.00 0.52 26 
-0.60 -0.53 -0.71 -0.72 -0.55 -0.68 -0.59 -0.41 -0.58 -0.24 -0.36 -0.42 -0.74 -0.57 -0.33 27 
0.12 -0.54 -0.54 -0.86 -0.75 -0.71 -0.71 -0.47 -0.40 -0.21 -0.40 -0.42 -0.72 -0.55 -0.22 28 
-0.71 -0.90 -0.94 -0.82 -0.98 -0.93 -0.80 -0.56 -1.08 -0.26 -0.36 -0.39 -0.75 -0.65 -0.42 29 
-0.54 -0.48 -0.54 -0.70 -0.21 0.09 -0.68 -0.39 -0.65 -0.24 -0.25 -0.40 -0.75 -0.50 -0.19 30 
4.91 -0.93 -1.05 -0.99 -0.53 -0.69 -0.70 -0.57 0.05 -0.26 -0.39 -0.37 0.39 -0.14 -0.20 31 
0.21 3.52 3.43 4.39 1.91 3.32 2.07 2.84 3.46 0.20 0.34 0.13 0.62 1.30 0.79 32 
-0.52 -0.43 -0.63 -0.49 -0.47 -0.26 -0.42 -0.30 -0.50 -0.23 -0.16 -0.39 -0.69 -0.45 -0.19 33 
-0.57 -0.33 -0.37 -0.08 -0.47 -0.35 -0.16 -0.23 -0.71 -0.22 -0.30 -0.36 -0.68 -0.48 -0.27 34 
-0.52 -0.02 0.02 -0.34 -0.13 -0.27 -0.23 -0.11 0.07 -0.20 -0.18 -0.41 -0.45 -0.39 -0.32 35 
-0.69 -0.59 -0.75 -0.45 0.37 1.14 -0.52 -0.35 -0.73 -0.22 -0.34 -0.42 -0.67 -0.57 -0.20 36 
-0.07 -0.04 0.76 0.33 -0.27 0.02 -0.05 0.03 0.09 -0.17 -0.06 -0.31 -0.73 -0.14 -0.30 37 
-0.20 -0.21 -0.43 -0.59 -0.62 -0.49 -0.74 -0.44 -0.23 -0.24 -0.31 -0.40 -0.15 -0.48 -0.40 38 
-0.25 -0.30 0.63 -0.31 -0.53 -0.18 -0.38 -0.33 -0.27 -0.16 -0.24 -0.42 -0.54 -0.41 -0.33 39 
-0.36 -0.52 -0.70 -0.47 -0.56 -0.70 -0.33 -0.06 -0.63 -0.24 -0.34 -0.39 -0.74 -0.58 0.12 40 
-0.47 0.58 -0.36 0.18 -0.71 -0.05 -0.49 -0.16 0.17 -0.02 -0.31 -0.33 -0.65 -0.45 -0.29 41 
-0.27 -0.10 -0.85 -0.38 -0.47 -0.44 -0.63 -0.40 -0.16 -0.26 -0.30 0.09 -0.60 0.60 0.83 42 
-0.50 -0.16 0.27 -0.43 -0.66 -0.28 -0.75 -0.37 -0.18 -0.07 -0.35 -0.30 -0.67 -0.58 -0.31 43 

 
 
All computations have been accomplished on Clementine®12 and the results of clustering are 
summarized in Fig. 1. In order to have an efficient clustering, we also calculated the average 
silhouette coefficients for various clusters and Table 3 demonstrates the results of our survey. 
 
 

Table 3 
The summary of the average silhouette coefficient 
Cluster 2 3 4 5 6 7 8 9 10 
Rank 0.3124 0.4067 0.2466 0.1979 0.2158 0.2704 0.1384 0.3085 0.3208 
 
As we can observe from the results of Table 3, the highest value belongs to third cluster and based on 
this cluster, we rank different banks and the results are summarized in Table 4-6 as follows, 
 
Table 4 
The results of ranking different banks 

15 14 13  12  11 10 9 8 7 65  4  3  2  1  Branc
1 1 1  2  1 1 3 1 1 1 1  3  3  1  1  Cluste

0.520.520.470.820.450.480.460.430.450.460.480.730.590.570.41Rank  
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Table 5 
The results of ranking different banks 

30  29  28  27  26  25  24  23  22 21 20  19  18  17  16  Branch  

1  1  1  1  3  1  3  1  1  1  3  3  1  1  1  Cluster  

0.448 0.423 0.443 0.436 0.820 0.647 0.489 0.455 0.480 0.452 0.621 0.538 0.509 0.517 0.497 Rank  

 
Table 6 
The results of ranking different banks 

43 42  41  40  39  38  37  36  35  34  33  32  31  43 42  Branch  

1  1  1  1  1  1  1  1  1  1  1  2  1  1  1  Cluster  

0.457 0.486 0.475 0.447 0.470 0.453 0.496 0.470 0.468 0.454 0.449 0.588  0.567 0.457 0.486 Rank  

 
As we can observe from the results of ranking, out of 43 banks, 34 has been located in the first cluster 
while the second cluster only includes two banks.  
 
 

 
2-Cluster 3-Cluster 4-Cluster 5-Cluster 

 
6-Cluster 7-Cluster 8-Cluster 9-Cluster 

 

10-Cluster 11-Cluster 12-Cluster  
 

Fig. 1. The results of clustering 
 
4. Conclusion 
 
In this paper, we have investigated the relative efficiencies of banks in one of Iranian cities called 
Semnan. The proposed study has applied K-means clustering for ranking various banks based on 15 
criteria. The results of ranking can be compared with some other alternative performance 
measurement methods and we leave it for interested researchers as future studies.  
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