Decision Science Letters 3 (2014) 275-284

Contents lists available at GrowingScience

Decision Science Letters

homepage: www.GrowingScience.com/dsl

An application of TOPSIS method for task scheduling algorithm in grid computing

environment

Sasan Kohzadian®, Ali Harounabadi® and Mehdi Sadeghzadeh®

2Department of Computer Engineering, Science and Research branch, Islamic Azad University, llam, Iran
PFaculty Member, Department of Computer Science, Central Branch, Islamic Azad University, Tehran, Iran
°Faculty member, Department of Computer Science, Mahshahr Branch, Islamic Azad university, Mahshahr, Iran

CHRONICLE

ABSTRACT

Article history:

Received October 15,2013
Received in revised format
March 2 2014

Accepted April 17,2014
Available online

April 23 2014

Keywords:

Grid System

Grid Scheduling

Multi Criteria Decision Making
Run Time

Load Balancing

Today, the world facing with huge flood of data and the recent advances in computer
technology have provided the capability to process significant amount of data. On the other
hand, analyzing the information requires resources that most institutions do not have,
independently. To handle such circumstances, grid computing has emerged as an important
research area where the calculation of distributed computing and clustering are different. In this
study, we propose a grid computing architecture as a set of protocols that use the cumulative
knowledge of computers, networks, databases and scientific instruments based on the
implementation of Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
technique. The results of the implementation of the proposed algorithm on grid systems indicate
the superiority of the proposed approach in terms of validation criteria scheduling algorithms,
such as task completion time and the performance compared with some alternative method.

© 2014 Growing Science Ltd. All rights reserved.

1. Introduction

In the past, one of the biggest problems associated with complex calculations is associated with lack
of appropriate hardware and software to perform the calculations in a reasonable amount of time. In
many cases, it is possible that the code would not yield proper results because of existing bugs in
codes. Applying supercomputers may reduce the burden of the computations but it cannot handle
many scheduling problems. Therefore, one alternative is to handle the problem using the grid
computing networks (Xueguang & Haigang, 2004; Plestys et al., 2007). In grid computing, many
computational resources are shared by various networks of computers, geographically. Today, there is
an increasing trend in solving problems using computing resources distributed strict geographical
terms, called grid computing (Lan & Li, 2006; Wang et al., 2010; Yousif et al., 2011). The

* Corresponding author. Tel:+989183402029

E-mail addresses: s.kohzadian@yahoo.com (S. Kohzadian)

© 2014 Growing Science Ltd. All rights reserved.

doi: 10.5267/j.ds1.2014.5.001



276

computational grid is a hardware and software infrastructure, which utilizes local resources. They
provide the capability to enable the virtual enterprise to share and to integrate millions of
geographically places. Grades are formed based on a set of heterogeneous resources, management
systems, policies and requirements of various applications. Grid resources are heterogeneous and they
are distributed, jointly. Thus, scheduling algorithms need changing workload and resources’
availability to adapt the grid to achieve acceptable performance at the same time to observe the time
limit. Scheduling various tasks on different servers is also considered as an interesting research work
(Bouyer et al., 2008; Zhai, 2010).

According to Sarhadi and Meybodi (2009) and Shih et al. (2008), one of the main challenges in Grid
computing is to select resources such as CPU-hours, network bandwidth, etc. appropriately for jobs in
resource discovery phase. Since there is normally no centralized control and the dynamic/stochastic
nature of resource availability, an appropriate selection mechanism needs to be highly distributed
against the changes in the Grid environment. In addition, it is desirable to have a selection
mechanism, which would not depend on the availability of coherent global information.

Sarhadi and Meybodi (2009) studied a minimalist decentralized method for resource selection in a
simplified Grid-like environment. They considered a system consisting of large numbers of
heterogeneous learning automata connected to tasks that choose the best resources for their
computational requirements. In their approach, there was no communication between the learning
automata. They reported that reinforcement learning could be implemented to improve the quality of
resource selection in large-scale heterogeneous system.

Hamscher et al. (2000) discussed typical scheduling structures, which happen in computational grids
and applied simulation techniques to make assessment on these characteristics based on combinations
of various Job and Machine Models.

Dai and Levitin (2007) studied a grid computing systems in which the resource management systems
(RMS) could divide service tasks into execution blocks (EB), and send these blocks to various
resources. The RMS is capable of assigning the same EB to various independent resources for
parallel (redundant) execution to reach a desired level of service reliability. Based on the optimal
schedule for service task partition, and distribution among resources, it is possible to reach the highest
possible expected service performance or reliability. Dai and Levitin (2007) presented an algorithm,
which was based on graph theory, Bayesian approach, and the evolutionary optimization approach.

Plestys et al. (2007) emphasized on the relative importance of Grid quality of service (QoS) along
with the development of GRID technology because of the concept of GRID service, the multiplicity
of users' demands, and the heterogeneity of Grid resources. Sun and Wu (2007) conducted a
comprehensive study of QoS (Wang & Luo, 2004) of distributed computing, specifically on grid
computing where the necessity of distributed sharing and coordination tends to the extreme. They
started at QoS policies, and then concentrated on technical characteristics of the enforcement of the
policies and performance optimization under each policy. They also provided a classification of
existing software system based on their underlying policies, a systematic understanding of QoS, and a
framework for QoS of grid computing.

2. The proposed method

In this part, we present the proposed method and the definition of the problem along with its
assumptions. In this paper, we consider Grid environment, and consequently, we assume a star
topology grid management. Therefore, the users and their tasks are considered into independent sub-
tasks and sub-tasks, which allocate the available resources. Redundancy techniques are normally used
in order to increase reliability and better performance tasks such that a task can be processed by two



S. Kohzadian et al. / Decision Science Letters 3 (2014) 277

or more sources although each source needs only one sub-task processing. Let m be the number of
sources and N be the number of sub-tasks with n <m.

3.1. Run time calculation

For the proposed method, to run things, redundancy techniques are used. The functions presented in
Fig. 1 demonstrate the most appropriate sources for the proposed method, based on the data required
for the execution of the task and its computational complexity, and bandwidth resources as well as the
processing speed of each resource.

Fig. 1. The proposed model

To calculate the run time, we act as follows: The data required to run the task S; should be sent to R;
RMS power, with such scoring rd; is shown and the results are sent to RMS resource R;, which is
defined by I;. Then all data transferred between the RMS and the power to carry out the task S; R; can
be shown as A;, which is calculated as follows:

A=rdi+] (D)

If bandwidth communication lines between RMS and bw; represented by R; source, the data transfer
time is calculated as follows:

a;

U bw, )
Top relationship between RMS and power transmission is shown as Ry when we pass through tick
trackers pair (t_Ij, q_ij), which is added to them. Let C be the imported duty with the computational

complexity, the computational complexity of each task is calculated as follows,

3)
Ci =C

n
i=1



278

where n represents the number of sub-tasks belonging to a specific task, Cj is the computational
complexity of each task S;. Let Ps; be the processing speed for R; source, then the processing time of
task S; is obtained as follows,

_ G 4
ps;
As we can observe from Fig. 1, the transition J, K, I, m, n, 0 is associated with the task of processing
time (Tjj) and data transfer (tjj) and the resulting sum is added to the token. The probability of failures
encountered during the processing of a task (pjj) and the probability of failure encountered during data
transfer (¢j;) are multiplied and added to the token. So that the transfer token T (execute) their
transition-pair (t; * Tj), (pij, qij), which indicates successful execution times to carry. When the
redundancy technique is used to improve, the reliability of the simulation was carried out for each
sub-task is processed by several sources. Therefore, T;, Ry, Si represent the minimum execution time
following a task in the resources, which is calculated as follows,

Ti,RT‘i = mln(tl] + TU)' ke er' (5)

According Eq. (5) and the pair (tj x Tj), (pij, 0;), perform the following task in less time and
probability S; (P;, Rrj), after passing through the transmission T (min) located on the token in place P
(coll ) is placed. In order for a task to be completed, the following tasks must be performed.

- (6)
T = Z Ti

i=1
where n represents the number of sub-tasks. In other words, to perform a task, the task is divided into
a number of sub-tasks. Then for all the sub-tasks, completion time on a single source is calculated.
For each sub-task, the minimum completion time is determined based on resources. After doing this
for all the tasks, we had little time to complete all the tasks, and it will choose the least resources to
run to the side send. After passing through the transmission T (max) and get a token in place P
(RMS2) entered into operation duty ends with fire T (return), other tasks can be logged. In order to
run the proposed method in CPNTOOLS we need to repeat our proposed algorithm and enormous

tasks should be logged. For this reason, we assume that the task arrival rate is uniformly distributed
between 0 and 1.

3.2. Calculation of Load Balancing

To achieve the maximum balance time between resources, utilization rates must be equal. To
calculate the amount of load balancing, we compute the sum of the standard deviation of productivity.
As a result, we first calculate resource utilization. Utilization rate is calculated as follows:

The largest run-time gain:

E = MAX{T;j, 7} (7)

To calculate the value of e at the top of the track, the two places, ag), as), respectively RMS data
transmission times and processing times are kept by resource-use. The efficiency of resources I and |
have the following implementation tasks,

_ Tyt (8)

125 e



S. Kohzadian et al. / Decision Science Letters 3 (2014) 279

According to Eq. (8), the amount of each resource utilization is calculated and it should be noted at
this point that efficiency rate based on the proposed model Azgomy for additional resources
(resources that have a running time of more than a source) is equal to zero. To obtain the standard
deviation, we first calculate the average productivity:

Xy %)
-

and the standard deviation is calculated as follows,

o; = | — ul. (10)

and the load balancing (Ib) is computed as follows,

m
b = E o; (11)
i=1

Finally, to calculate the load balancing system, the transaction W is used. In other words, all values of
W imported transaction efficiency, and then the final amount of the transaction will bring balance to
the system load. So if Ib = 0, the maximum load balancing will happen. If we assume that we have
several different versions for all kinds of reliabilities and load balancing calculated by Eq. (11), we
may use some multiple criteria decision making such as Technique for Order Preference by Similarity
to Ideal Solution (TOPSIS) (Hwang & Yoon, 1981). The idea of TOPSIS is that the chosen
alternative maintains the shortest distance from the ideal solution and the farthest from the negative-
ideal solution. The following summarizes the implementation of the TOPSIS method.

First step: The decision matrix is transformed into an amorphous matrix scale as follows,
; (12)

1 m 5
Zi:l rij

Second step: Creation Matrix Scale weight vector w is given as input to the algorithm. Namely:

W={w,Wa,...,Wn}

Vig eee o Vijownr Vig (13)
V=NyWyp,=| 5 5
Vit ooee Vinj e ve Vi

where Ny a matrix so that it points in the Scale and comparable indicators and w, « , is a diagonal
matrix whose only non-zero elements of its original diameter.

Step Three: Determine the ideal solution and negative ideal solution.

A" :{Vf,---,vrf}, where v :{max(vij) if j € J;min(v;) if j J’} (14)

]
A ={v; .V, where V) ={min(v) if j € J;max(v,) if j € J'}

n

Step Four: Calculate the size of the separation (distance).

n 15
di+ = {Z(Vij _VJ+)2}O.5; i= 1729""m ( )
j=1



280

n 16
d_= {Z(Vij _Vji)z}oj; j=L2,...m 1o
j=1
Step Five: Calculate the relative closeness to the ideal solution Ai. The relative closeness can be
defined as follows:
d. ] (17)

|, =—"=——; 0<cl, <0; i=12,...,m
(di+ +di—)

Note that if A;= A ", then d,, =0 and we have cl, =1 if A;= A_is and then d,_= 0 and willcl., = 0.

Step Six: Ranking of options. Descending order based on the issue of cli options available can be
ranked.

4. Case study

In this section, we consider the implementation of a system on its own and load balancing, and
response times. The algorithm is based on TOPSIS and selects the best scenario among possible
scenarios. We consider several case studies and comprehensive examples. For instance, a bank ATM
systems is considered because of its complexity and the lack of possibility of duplicate system. In an
ATM bank system, a customer (User) and Bank (Bank) are interacting. In practice, users take the
money and this is accomplished when the client enters card inside the ATM system and the
information is entered into a database.

The bank then examines the validity of the card and ATM systems, the password request is issued by
the bank and the customer enters the password. If the card is invalid, the system returns the
customer's bank ATM card, otherwise the customer needs to investigate the validity password. If the
password is invalid, the card system for is returned to customer, otherwise, customer can view the
different options such as cash withdrawals and transfers. When customer selects “taking the money
from the account”, the system will issue the requested withdrawal amount. The system first tries to
see whether there are sufficient funds to be given to client. When there is insufficient fund, the
customer receives a warning. Otherwise, the system allows the users to withdraw money. We assume
that the input task arrival rate is uniformly distributed between 0 and 1. Now, according to the
proposed model, we have simulated ATM systems shown in the previous section do. According to the
description provided in the proposed algorithm, we first need to specify the initial system
specification. These characteristics, system bandwidth, computational complexity of each task are
entered into the system. After specifying the above, the present system can be simulated. Fig. 3 shows
details of our results.

— 'F!,Er:.'. —

DT,

®e3
=
Input (b1,62,b3,b4);
out s
a s Lop
{ 3 )
a1 5
#1 =

#1ba,u2 baj) b}i E

rand1(}

Fig. 2. The high level diagram of the proposed system



S. Kohzadian et al. / Decision Science Letters 3 (2014) 281

Similarly Fig. 3 shows sub-systems to obtain run-time and load balancing for each route.

input laLazy 01
output (b1);

ot (a1,
| output (B2

| action
ingut (b1 0203 b4 | tlarazy;
cutput (a1];
acticn

{sum{#1b1,#1 bAe1 b3,e1 ball

4
)
|

al

al 1
= “e(—
a0
w by
output (a1); 1
fetattes b1.71) Ez] -
1
inpat (al.a3)
A3

et
2 aZ_actibn
tmindal,az));

Fig. 3. A diagram of the proposed runtime load balancing

After the execution time and balance the load for each of the routes proposed, we see there are four
scenarios and the proposed TOPSIS method needs to find the efficient solution.

Fig. 4. The results of sub-ideal and non-ideal solutions

Next, we present subsystem integral to obtain the size of each scenario in Fig. 5 as follows,

01 g3 01)

\

\
N twe a1ez a1

"
(01 akeadhn)

i
e T
]

Fig. 5. Subsystem integral to obtain the size of each scenario

After obtaining separate measurements for each scenario, we need to measure the relative closeness
to the ideal solution for any scenario, to measure. Fig. 6 shows the process as follows,



282

GO = | eGo) - |

o 2 a5 ] transtar

A o o1
input (d1): 3 input (al.a2.a3.a%);

output (al); output (@1);

action action

(ff{e1 d1,.82 d1)); ((al.a2.a3.a4))

s

GO o G2
= InpuE (d1); ‘
output (al);:

action
ffles dl.aa d1));

d1 d1 a1 a3
1 =S Gay—==a] ] D,
s INPUE (d1); 1
output (al);

action
(M{eS d1,46 d1));

a1 —
as

Input (d1);
output (al):

action
(ff(e7 di.#8 d1));

Fig. 6. Subsystem get close enough to the ideal solution for every scenario

Finally Fig. 7 shows the process of selecting the best-case scenario:

el
."' 314]
Outh—r,

input (e1);

output (b1);

action

(ifi(#1 e1>(#2 1)) andalso (#1 el1>(#3 el)) andalso (#1 e1>(#4 a1))) then (#1 e1,1) alse
if((#2 el>(#1 e1)) andalso (#2 e1>(#3 a1)) andalso (#2 al>(#4 e1))) then (£2 21,2) else
if((#3 el>(#1 e1)) andalso (#3 e1>(#2 =1)) andalso (#3 el>(#4 al))) then (#3 21,3) else
(#4 21,4));

Fig. 7. Subsystem get the best possible scenario for the given scenario

In order to demonstrate the performance of the proposed method, we have compared the results with
an alternative method, Azgomi, and Fig. 8 and Fig. 9 show the summary of our findings.

I I
response time for azgomi n
responge tinje for propased m

Fig. 8. The comparison of the runtime of the proposed algorithm versus Azgomy model



S. Kohzadian et al. / Decision Science Letters 3 (2014) 283

I I
load|palancing for azgomi
loadybalgncirfy for propgsed m

Fig. 9. Comparison for load balancing algorithm of the proposed method versus Azgomy model

According to the results of Fig. 8 and Fig. 9, we can see that the proposed model performed better
than the Azgomy model in terms of run-time and load balancing.

5. Conclusion

In this paper, we have evaluated the performance of an algorithm for scheduling tasks and tasks in
Grid environment. In this algorithm, the concept of the multi criteria decision-making has been
implemented to find the best possible solution in terms of run-time and load balancing system. A
significant point in our proposed algorithm is that it can distinguish earlier, taking into account both
runtime and load balancing with two parameters for scheduling tasks on the grid. The results obtained
from implementing the proposed algorithm on a case study shows the superiority of the proposed
method compared with other existing methods such as Mr. Azgomy.

References

Bouyer, A., Karimi, M., Jalali, M., Sap, M., & Noor, M. (2008). A new approach for selecting best
resources nodes by using fuzzy decision tree in grid resource broker. International Journal of Grid
and Distributed Computing, 1(1), 49-62.

Dai, Y. S., & Levitin, G. (2007). Optimal resource allocation for maximizing performance and
reliability in tree-structured grid services. Reliability, IEEE Transactions on, 56(3), 444-453.

Lan, Z., & Li, Y. (2006, June). Failure-aware resource selection for grid computing. In International
Conference on Dependable Systems and Networks (DSN), Philadelphia (pp. 186-187).

Hamscher, V., Schwiegelshohn, U., Streit, A., & Yahyapour, R. (2000). Evaluation of job-scheduling
strategies for grid computing. In Grid Computing—GRID 2000 (pp. 191-202). Springer Berlin
Heidelberg.

Hwang, C.L. and Yoon, K. (1981). Multiple attribute decision making: Methods and applications,
Springer-Verlag, Berlin.

Plestys, R., Vilutis, G., Sandonavicius, D., Vaskeviciute, R., & Kavaliunas, R. (2007, June). The
measurement of grid QoS parameters. In Information Technology Interfaces, 2007. ITI 2007. 29th
International Conference on (pp. 703-707). IEEE.



284

Sarhadi, A., & Meybodi, M. R. (2009). New algorithm to resource selection in computational grid
using learning automata. International journal of Intelligent Information Technology
Application, 2(5), 204-208.

Shih, P. C., Chen, H. M., Chung, Y. C., Wang, C. M., Chang, R. S., Hsu, C. H., ... & Yang, C. T.
(2008, March). Middleware of Taiwan UniGrid. In Proceedings of the 2008 ACM symposium on
Applied computing (pp. 489-493). ACM.

Sun, X. H., & Wu, M. (2007, August). Quality of service of grid computing: resource sharing.
In Grid and Cooperative Computing, 2007. GCC 2007. Sixth International Conference on (pp.
395-402). IEEE.

Wang, X., & Luo J. (2004). Architecture of grid resource allocation management based on QoS,
Book chapter of “Grid and Cooperative Computing”, Springer Berlin / Heidelberg.

Wang, C. M., Chen, H. M., Hsu, C. C., & Lee, J. (2010). Dynamic resource selection heuristics for a
non-reserved bidding-based Grid environment. Future Generation Computer Systems, 26(2), 183-
197.

Xueguang, C., & Haigang, S. (2004, March). Further extensions of FIPA contract net protocol:
threshold plus DoA. In Proceedings of the 2004 ACM symposium on Applied computing (pp. 45-
51). ACM.

Yousif, A., Abdullah, A. H., & Ahmed, A. A. (2011). A bidding-based grid resource selection
algorithm using single reservation mechanism. International Journal of Computer
Applications, 16(4), 39-43.

Zhai, Z. (2010, October). Grid resource selection based on reinforcement learning. In Computer
Application and System Modeling (ICCASM), 2010 International Conference on (Vol. 12, pp.
V12-644). IEEE.



