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 The problem of portfolio optimization is a standard problem in financial world and it has 
received tremendous attentions. Portfolio optimization plays essential role in determining 
portfolio strategies for investors. Portfolio optimization is intrinsically a discrete optimization 
problem whose decision criteria are in conflict and the proposed study of this paper considers a 
portfolio optimization problem involving fuzzy random variables. To solve the proposed model, 
we first present the possibility and necessity-based model to reformulate the fuzzy random 
portfolio selection model into linear programming models and using the resulted linear 
programs, a multi-objective problem is constructed.  To solve the multi-objective problem we 
propose some methods to consider decision makers’ optimistic and pessimistic views. A 
numerical example illustrates the whole idea on multiobjective fuzzy random portfolio 
optimization by possibility and necessity-based model.  
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1. Introduction 
 

 
Portfolio selection discusses the problem of how to choose appropriate combinations of assets among 
available ones so that the investment can bring the maximum investment return. In other words, 
portfolio selection helps managers concentrate between product and customer to invest resources in 
the best effective way. The investment return and risk always appear, simultaneously, in other words, 
portfolio optimization consists of the portfolio selection problem to determine the optimum approach 
of investment on a particular amount of money in a given set of securities or assets (Markowitz,  
1952). Markowitz (1952) proposed mean-variance models for the portfolio selection problem and he 
formulated them mathematically in different ways such as minimizing variance for a given expected 
value, or maximizing expected value for a given variance. Since then, the mean–variance models 
have been well developed in both theory and algorithm (Crama & Schyns 2003; Xia et al. 2000). The 
mean-variance models for the portfolio selection problem has been central to research activities of 
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this area and it has served as a basis for the development of modern financial theory for many years 
(Hao & Liu 2008). In the term of development of modern financial theory, two examples are 
collected here: Yu & Lee (2011) considered transaction cost, short selling and higher moments to 
achieve bigger flexibility in portfolio selection. They considered five portfolio rebalancing models, 
by considering transaction cost and by considering criteria such as including risk, return, short selling, 
skewness, and kurtosis to determine the important design criteria for a portfolio model. Woodside-
Oriakhi et al. (2013) considered the problem of rebalancing an existing financial portfolio, where 
transaction costs have to be paid if there is change in amount held of any asset and they modeled the 
problem as a mixed integer quadratic with an explicit on the amount that can be paid in transaction 
cost. Markowitz (1959) defined a semi-variance for as symmetric random returns since researchers 
pointed out that the asymmetric returns is not an appropriate method for  measuring the risk. Many 
researchers  studied the properties and computation problem about semi-variance (Grootveld & 
Hallerbach, 1999; Markowitz, 1993) and developed the mean–semivariance models (Chow & 
Denning, 1994). 

Konno and Yamazaki (1991) introduced an advanced model in which a mean-absolute deviation 
(MAD) model and absolute deviation were utilized as a measure of risk. Since Markowitz (1952), 
portfolio theory has been greatly improved. The researches mainly focused on two aspects. On one 
hand, portfolio selection was investigated under stochastic environment, (see e.g. Harlow & Rao, 
1989. Plat (2009) proposed stochastic model for portfolio specific mortality experience, where the 
proposed stochastic process was applied to two insurance portfolios, and the impact on the Value at 
Risk for longevity risk was quantified. On the other hand, the portfolio problem was handled in fuzzy 
environment (e.g. Parra & Terol, 2001). During the last few years, fuzzy portfolio selection have 
emerged and received a great deal of researchers (Sadjadi et al., 2011; Gharakhani & Sadjadi, 2013; 
Dastkhan et al., 2013). Sadjadi et al. (2011) proposed a method in a form of fuzzy linear 
programming, which was capable of determining the amount of investment in different time cycles 
when determining of investment in different planning areas was primary concern and they considered 
return and borrowing/leading rate as fuzzy triangular numbers instead of crisp representations. 
Gharakhani and Sadjadi (2013) examined advanced optimization approach for portfolio problem 
introduced by Black and Litterman (1991) which proposed a new approach to estimate asset return to 
consider the shortcomings of Markowitz standard Mean-Variance optimization and they represented 
investor’s view about future asset return by using fuzzy numbers. In addition, Dastkhan et al. (2013) 
dealt with application of three different operators of fuzzy mathematical programming in a mean-
absolute deviation portfolio selection problem with real features of minimum transaction lots, fixed 
and proportional transaction cost, cardinality constraint and bounds on holding constraint. 

Traditionally, returns of individual securities were considered as random variables under the 
assumptions that investors have enough historical data about security returns and the situation of 
asset markets in future can be correctly reflected by asset data in the past. However, these 
assumptions will be violated when new securities are listed in the market, or the real asset market is 
changed. To deal with this problem, researchers have made use of fuzzy set theory (Zadeh, 
1965). In real world, the possibility distribution functions of security returns may be partially known. 
Then, fuzzy returns with random information appear. In fact, for an investor, the fuzziness and 
randomness of security returns are often mixed up with each other. Thus, the investor will be faced 
with fuzzy returns with random parameters. In such situations, we may employ fuzzy random theory 
(Liu, 2009) to deal with this twofold uncertainty of fuzziness and randomness. Random and fuzzy 
optimization models provide useful methods for investors to handle uncertainty. According to 
Sadjadi et al. (2012), portfolio problem becomes more complicated when the return of all risky assets 
are subject to uncertainty. They proposed a new portfolio modeling approach with uncertain data and 
it was also analyzed using different robust optimization techniques and Zhang et al. (2013) 
considered a multi-period portfolio selection problem imposed by return demand and risk control in a 
fuzzy investment environment, in which the returns of assets are characterized by fuzzy numbers. Liu 
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et al.  (2012) dealt with multi-period portfolio selection problems in fuzzy environment by 
considering some or all criteria, including return, transaction cost, risk and skewness of portfolio.  

In reality, however, sometimes investors have to deal with the uncertainty of both randomness and 
fuzziness simultaneously. For example, security returns are usually regarded to be normally 
distributed random variables, but the expected values may be fuzzy. Hao and Liu (2009) developed 
two novel types of mean-variance models for portfolio selection problems, in which the security 
returns are assumed to be characterized by fuzzy random variables with known possibility and 
probability distributions. In their proposed models, expected return of a portfolio was as the 
investment return and the variance of the expected return of a portfolio was as the investment risk. In 
fact, from a practical viewpoint the fuzziness and randomness of security returns are often mixed up 
with each other, so fuzzy random variable can be a new useful approach to solve this kind of problem 
(Li & Xu, 2009). 

A fuzzy random variable was first introduced by Kwakernaak (1978), and its mathematical basis was 
constructed by Puri and Ralescu (1986). An overview of the developments of fuzzy random variables 
was found in the recent article of Gil et al. (2006). Shapiro (2009) implies that “Randomness models 
the stochastic variability of all possible outcomes of a situation, and fuzziness relates to the unsharp 
boundaries of the parameters of the model”. In this paper, the assets return in portfolio selection 
problem are fuzzy random variables  and we use the concept of possibility and  necessity-based 
model to develop a solution method for the fuzzy random portfolio optimization problem and 
reformulate the portfolio optimization problem to the linear programming (Sadati & Nematian, 2013). 
We construct multiobjective programming model by using these two types of linear programming to 
find the objective function value.  

The rest of the paper is organized as follow: Section 2 includes basic concept on fuzzy and fuzzy 
random theory. In Section 3, the problem formulation is presented. In section 4, a numerical example 
is solved to show how our new method works. Finally, conclusion and future work will present in 
section 5.  

2. Basic concepts 

A Fuzzy random variable was first introduced by Kwakernaak (1978), and its mathematical basis was 
constructed by Puri and Ralescu (1986). An overview of the developments of fuzzy random variables 
was found in the recent article of Gil et al. (2006). In general, fuzzy random variables can be defined 

in an n dimensional Euclidian space Rn. We present the definition of a fuzzy random variable in a 
single dimensional Euclidian space R. 
 

 Definition 1  (Sakawa 1993) 

Let (Ω, A, P) be a probability space, where Ω is a sample space, A is a σ-field and P is a 
probability measure. Let FN be the set of all fuzzy numbers and B a Borel σ-field of R. Then a 
map :Z F  is called a fuzzy random variable if it holds that 

      , | , 0,1R Z A B            (1)

where  

     
 
  , |

Z
Z Z Z R  


           

  �

    (2)

is an α-level set of the fuzzy number  Z   for   . 

Intuitively, fuzzy random variables are considered to be random variables whose realized values are 
not real values but fuzzy numbers or fuzzy sets. 
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 Definition 2  

LR fuzzy number Z  is defined by following membership function: 
 

 

0

0 0

0 1

1

1 1

1

Z x
L if Z x Z

Z X if Z x Z

x Z
R if Z x Z








  

  


  

  
   


      

   (3)

 

where  0 1
,Z Z  shows the peak of fuzzy number Z  and ,   represent the left and right spread 

respectively;  

   , 0,1 0,1L R    with (0) (0) 1L R   and  (1) (1) 0L R   are strictly decreasing, continuous functions. 

A possible representation of a LR fuzzy number is  0 1, , ,
LR

Z Z Z   . 

3. Problem formulation 
 

Investors are rational and behave in a manner of maximizing their utility with a given level of income 
or money. In the following problem, called Fuzzy Random Optimal Portfolio selection problem, the 
return rate of assets are fuzzy random variables: 
 

Problem 1 

1

max
n

j j
j

R xZ


    (4)

 
0

1

subject to ,
n

j
j

x M


  (5)

           1
0

n

j j
j

R x R


    (6)

           
1, 2 , ..., .0 ; j n

j j
x U    (7)

The parameters and variables are define as follow, for j=1, 2,…, n:  

 0 1, , ,
j j j j j LR

R R R   represent fuzzy random variables whose observed value for each    is fuzzy 

number       0 1, , ,
j j j j j LR

R R R     . 

   0 1 0 2 1 2, ,
j j j j j j

R R R tR R tR   is a random vector in which t  is a random variable with cumulative 

distribution function T . 

n  : the number of assets for possible investment 

M0 : available total fund 

jR
 
: the rate of return of assets  j  ( per period) 

0
R  : the return in dollars 

j
x  : decision variables which represent the dollar amount of fund invested in asset  j 

j
U : the upper bound of investment in asset  j. 
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3.1 Possibility-based model 

By Zadeh's extension principle for objective function in problem 1, its membership function is given 
as follows for each   : 

   

   

   
 

0

0

0 1

1

1
Z

Z t
L if t Z

t if Z t Z

t Z
R if otherwise








  








  



  
   


      

  (8) 

where           0 1 0 0

1

, , , ,
n

j jLR
j

Z Z Z Z R x      


   , and    1 1

1

.
n

j j
j

Z R x 


 
 
The degree of 

possibility   Z f    under the possibility distribution    Z
t   is given as follows:

        ( ) 1 2 1 2
,

1 2

( ) sup min , | .
Z f

y y

Z f y y y y       
  (9)

The possibility degree of fuzzy constraint    
0

1

n

j j

j

R x R 


 
 
 
   under the possibility distributions is 

defined as follows:

     
   

 
     

0

1

0 1 2 1 2
,1 1 2

sup min , |
n

j j
j

n

j j R
R xy yj

R x R y y y y


    





 
    
    

     
 



 

 
(10) 

 

We maximize the degree of possibility   Z f    and the degree of possibility

   
0

1

n

j j

j

R x R  


 
 
 
   , our portfolio selection model in Problem 1 comes by the following model:

 
Problem 2 
 
max f  (11)

   subject to Pr | ,Z f        (12)

0

1

,
n

j

j

x M


  (13)

   
0

1

Pr | ,
n

j j
j

R x R     


  
   
  
   

    (14)

1, 2, ..., .0 ;
j

j n
j

x U    (15)

where λ is a predetermined probability level and  η is  a predetermined possibility level. A feasible 
solution of portfolio selection problem is called a possibility solution.  In order to transform the above 
model to a linear programming model, we need to reformulate Eq. (12) and Eq. (14) in problem 2. 
Consider the following theorem: 
 
Theorem 1: (Katagiri et al. 2008) 
 
For any decision variable, it holds that: 
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   
    

   

        

*1 * 2

11

0
1

1 * 2 * 0 * 2 *
0 0 0

1 1

1) Pr |

1

2) Pr |

1 1

nn

j j j jj
jj

n

j j
j

n n

j j j j j
j j

Z f

R T R x R x f

R x R

R T R x R x R T R L

    

  

     

     





 

   


    


         
    

       






 



 

  

 
where *T , *L and *R are pseudo inverse functions defined as: 
 

    * inf |T t T t   ,     * sup |L t L t   and     * sup |R t R t   . 
 

Now the optimal solution of Problem 2 is equal to the following linear fractional programming 
problem: 
 
Problem 3 

    1 * 2 *

1 1

max 1
n n

j j j j j

j j

R T R x R x  
 

     (16)

   
0

1

subject to ,
n

j

j

x M


  (17)

            
        1 * 2 * 0 * 2 *

0 0 0

1 1

1 1 ,
n n

j j j j j

j j

R T R x R x R T R L     
 

         (18)

       
0 ; 1, 2, ..., .

j j
x U j n    (19)

 

This can be solved by one of the LP solver (such as LINGO) and obtained an optimal solution for 
portfolio selection problem. 
 

3.2 Necessity-based model 

The possibility-based model may be improper since the obtain solution will be too optimistic, so 
necessity-based model can be suitable for pessimistic decision maker who wishes to avoid risk. 

The degree of necessity   N Z f   for fuzzy constraint   Z f   under the possibility 

distribution    Z
t   is defined as follows: 

       ( ) 1 2 1 2
,

1 2

( ) inf max 1 ,1 |
Z f

y y

N Z f y y y y        
  (20)

The necessity degree of fuzzy constraint    0

1

n

j j

j

R x R 



 
 
 
   under the possibility distributions is 

defined as follows: 

   
 

     
0

1

0 1 2 1 2

1 ,
1 2

inf max 1 ,1 |n

j j
j

n

j j R
R x

j y y

N R x R y y y y


   





   
    
    

     
 



   (21)

We maximize the degree of necessity   N Z f 
 
and the degree of necessity    0

1

n

j j

j

R x R 



 
 
 
   , 

therefore our portfolio selection model in problem 1 come by following model: 
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Problem 4 

max f  (22)

   subject to Pr | ,N Z f       (23)

       
0

1

,
n

j

j

x M


  (24)

      
   

0
1

Pr | ,
n

j j
j

N R x R    


  
   
  
   

    (25)

     
1, 2, ..., .0 ;

j
j n

j
x U    (26)

where λ is a predetermined probability level and  η is  a predetermined possibility level. A feasible 
solution of portfolio selection problem is called a necessity solution. In order to transform the above 
model to a linear programming model, we need to reformulate Eq. (23) and Eq. (25). Consider the 
following theorem: 
 
Theorem 2: (Katagiri et al. 2008) 
 
Let x j be a positive decision vector then: 

   
    

   

        

*0 * 2

11

0
1

0 * 2 * 0 * 2 *
0 0 0

1 1

1)

2)

Pr |

1 1

Pr |

1 1 1 1

nn

j j j jj
jj

n

j j
j

n n

j j j j j
j j

N Z f

R T R x L x f

N R x R

R T R x L x R T R L

   

  

    

     





 








            




  

     

  

        





 



 

 

where *T , *L and *R are pseudo inverse functions defined as: 

     * inf |T t T t   ,     * sup |L t L t   and     * sup |R t R t   . 

Now the optimal solution of Problem 4 is equal to the following linear parametric programming 
problem: 
 
Problem 5 

    0 * 2 *

1 1

max 1 1
n n

j j j j j

j j

R T R x L x  
 

      (27)

  
0

1

subject to ,
n

j

j

x M


  (28)

           
        0 * 2 * 0 * 2 *

0 0 0

1 1

1 1 1 1
n n

j j j j j

j j

R T R x L x R T R L     
 

           (29)

       
0 ; 1, 2, ..., .

j j
x U j n    (30)

This can be solved by one of the LP solver (such as LINGO) to determine the optimal solution of 
portfolio selection problem. Sadati and Nematian (2013) introduced fuzzy random portfolio problem 
as a two-level linear programming to calculate the upper bound and lower bound of the objective 
function value separately based on the decision maker opinion and according to the possibility and 
necessity-based model we reformulated the fuzzy random portfolio optimization to the linear 
programming. In this paper, our purpose is to find the optimum solution of portfolio optimization 
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when we want to use possibility and necessity (optimistic and pessimistic approach) in one problem, 
so we have to reformulate our problem as a multiobjective problem and put both objective functions 
of problem 3 and 5 in one problem. Therefore, our multiobjective portfolio optimization formulates 
as: 
 

Problem 6 

    1 * 2 *

1 1

max 1
n n

j j j j j

j j

R T R x R x  
 

     (31)

    0 * 2 *

1 1

max 1 1
n n

j j j j j

j j

R T R x L x  
 

      (32) 

  
0

1

subject to ,
n

j

j

x M


  (33) 

         
        1 * 2 * 0 * 2 *

0 0 0

1 1

1 1 ,
n n

j j j j j

j j

R T R x R x R T R L     
 

         (34) 

         
        0 * 2 * 0 * 2 *

0 0 0

1 1

1 1 1 1
n n

j j j j j

j j

R T R x L x R T R L     
 

           (35) 

0 ; 1, 2, ..., .
j j

x U j n    (36) 

To solve this multiobjective problem we use the concepts of optimistic and pessimistic. As we know 
that possibility–based model may be improper since the obtain solution will be too optimistic, so 
necessity –based model can be suitable for optimistic decision maker who wishes to avoid risk. To 
find the optimum solution for this multiobjective portfolio optimization we present two ways: first we 
find the optimum solution just for single objective of possibility-based model with all constraints 
(possibility and necessity-based model constraints) after we find the solution, we use this optimum 
solution as necessity-based model’s constraint. It means the objective function value for single 
objective possibility-based model becomes as a constraint for necessity-based model in the next step 
and finally we find the optimum solution for single objective of necessity –based model. This way 
completely is illustrated by following model: 
 
First, we will find the optimum solution for single objective of possibility-base model without 
computing the objective function of necessity-based model: 
 

Problem 7 

    1 * 2 *

1 1

max 1
n n

j j j j j

j j

R T R x R x  
 

     (37)

  
0

1

subject to ,
n

j

j

x M


  (38)

         
        1 * 2 * 0 * 2 *

0 0 0

1 1

1 1 ,
n n

j j j j j

j j

R T R x R x R T R L     
 

         (39)

         
        0 * 2 * 0 * 2 *

0 0 0

1 1

1 1 1 1
n n

j j j j j

j j

R T R x L x R T R L     
 

           (40)

0 ; 1, 2, ..., .
j j

x U j n    (41)
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After solving this problem by Lingo we find the objective function value(OFV) of problem 7  then 
with this result we determine the necessity-based model with extra constraint stated in Eq. (37) 
resulted according to problem 7,Therefore,  we have: 
 

Problem 8 

    0 * 2 *

1 1

max 1 1
n n

j j j j j

j j

R T R x L x  
 

      (42)

  
    1 * 2 *

1 1

subject to 1 OFV(problem 7)
n n

j j j j j

j j

R T R x R x  
 

      (43)

      
0

1

,
n

j

j

x M


  (44)

          
        1 * 2 * 0 * 2 *

0 0 0

1 1

1 1 ,
n n

j j j j j

j j

R T R x R x R T R L     
 

         (45)

          
        0 * 2 * 0 * 2 *

0 0 0

1 1

1 1 1 1
n n

j j j j j

j j

R T R x L x R T R L     
 

           (46)

          
0 ; 1, 2, ..., .

j j
x U j n    (47)

By solving this problem we find the optimum solution of multiobjective portfolio optimization. The 
second way to find the optimum solution for this multiobjective portfolio optimization is same as first 
way but at first, we find the single objective of necessity-based model and after the finding of 
optimum solution of necessity-based model we use this result as a constraint for possibility –based 
model and finally same as above we will find the optimum solution for possibility-based model.  
 
Therefore, we have: 
 
Problem 9 

    0 * 2 *

1 1

max 1 1
n n

j j j j j

j j

R T R x L x  
 

      (48)

  
0

1

subject to ,
n

j

j

x M


  (49)

         
        1 * 2 * 0 * 2 *

0 0 0

1 1

1 1 ,
n n

j j j j j

j j

R T R x R x R T R L     
 

         (50)

         
        0 * 2 * 0 * 2 *

0 0 0

1 1

1 1 1 1
n n

j j j j j

j j

R T R x L x R T R L     
 

           (51)

    
0 ; 1, 2, ..., .

j j
x U j n    (52)

Similar to problem 7, we find the objective function value(OFV)  then with this result we determine 
the possibility-based model with extra constraint (48) which has been resulted according  problem 
10,Therefore,  we have: 
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Problem 10 

    1 * 2 *

1 1

max 1
n n

j j j j j

j j

R T R x R x  
 

     (53)

    0 * 2 *

1 1

subject to 1 1 OFV(problem 9)
n n

j j j j j

j j

R T R x L x  
 

       (54)

         
0

1

,
n

j

j

x M


  (55)

          
        1 * 2 * 0 * 2 *

0 0 0

1 1

1 1 ,
n n

j j j j j

j j

R T R x R x R T R L     
 

         (56)

          
        0 * 2 * 0 * 2 *

0 0 0

1 1

1 1 1 1
n n

j j j j j

j j

R T R x L x R T R L     
 

           (57)

          0 ; 1, 2, ..., .
j j

x U j n    (58)

By solving this problem, we obtain the second type of optimum solution for our portfolio selection. In 
next section with a numerical example, we will illustrate whole aspects of our approach.  
 

4. Numerical example 

In this section, an example is given to illustrate the proposed possibility and necessity-based model 
for portfolio optimization selection. We believe that an investment plan needs to consider not only the 
historical data, but also new information. Therefore, we decided to use the second type of data, which 
have been received after starting the first decision. Let us consider 5 securities whose returns are 
fuzzy random variables and their values are given in Table 1. t  is a normal random variable whose  
mean 0 and variance 1. The upper bound of investment amount in each stock is set to no more than 60 
units of the total available fund. Given a total allocation budget of 200 units and annual return which 

is fuzzy random variable is shown as 0 0R M r 
  where  

0
1 0.3 ,1 0.3 , 0.3, 0.3 .r t t    

Now we want to know what is the optimal solution for our portfolio selection problem for the 
different levels of probability and possibility {0.1, 0.4, 0.7, 0 .9}.  
We apply the possibility and necessity-based model based on theorems 1and 2 to obtained fuzzy 
random portfolio selection problem. First of all we calculate possibility and necessity-based model 
separately, and then calculate the multiobjective portfolio optimizations according to the two ways 
have been presented. All the results are collected in tables 2 to 5. 
 

Table 1  
Parameters of the example 

j  0
 

1
 

2 3 4
 

5

0

j
R  200 1.2 1.25 1.35 1.25 1.4 

1

j
R  200 1.35 1.3 1.45 1.35 1.5 

2

j
R  60 0.5 0.6 0.55 0.4 0.5 

j
  60 0.15 0.1 0.2 0.15 0.2 

j
  60 0.15 0.1 0.2 0.15 0.2 
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Table 2  
Numerical results (possibility-based model) 

,                0.1              0.4 0.7 0.9 
*

1
x 20 0 0 20 

*

2
x 60 60 20 0 

*

3
x 60 60 60 60 

*

4
x 0 20 60 60 

*

5
x 60 60 60 60 

OFVa
  451.22 331.85 244.39 164.44 

 

Table 3  
Numerical results (necessity-based model) 

,   0.1 0.4 0.7 0.9 
*

1
x  20 0 0 20 

*

2
x  60 60 20 0 

*

3
x  60 60 60 60 

*

4
x  0 20 60 60 

*

5
x  60 60 60 60 

OFVa
  400.22 278.55 188.03 107.44 

a Objective function value. 

Table 4  
Numerical results (multiobjective portfolio optimization according to first way) 

,   0.1 0.4 0.7 0.9 
*

1
x  20 60 20 20 

*

2
x  60 0 0 0 

*

3
x  60 60 60 60 

*

4
x  0 20 60 60 

*

5
x  60 60 60 60 

OFVb 
P 

OFVb 
N 

451.22 

400.22 

332.39 

272.55 

244.39 

187.39 

164.44 

107.44 
b Objective function value of Possibility and Necessity-based model 

Table 5  
Numerical results (multiobjective portfolio optimization according to second way) 

,   0.1 0.4 0.7 0.9 

*

1
x 

20 0 0 20 

*

2
x 

60 60 20 0 

*

3
x 

60 60 60 60 

*

4
x 

0 20 60 60 

*

5
x 

60 60 60 60 

OFVb 
P 

OFVb 
N 

451.22 

400.22 

328.55 

278.55 

242.03 

188.03 

164.44 

107.44 
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Clearly, the greater the ,  value, the greater the level of possibility and the lower the objective 
function value is. The numerical results of Table 2 and Table 3 have been calculated separately but 
results of Table 4 and Table 5 are based on the multiobjective problem, which show how possibility 
and necessity approach influence each other and these results are helpful for decision makers who are 
in ambiguity to choose which approach to find their solution in portfolio selection. In other words, 
when they use only possibility-based model for their portfolio selection, after receiving their optimum 
solution, they found their solution too optimistic and then try to use pessimistic approach of 
necessity-based model and it keeps them in ambiguity to choose which approach. Therefore, for these 
kinds of decision makers, the best approach is to use multiobjective portfolio selection, which has 
been indicated in problem 6. The comparisons between single objective and multiobjective are 
depicted in Fig 1 and Fig 2. 

Fig. 1. Comparison of  Possibility and Necessity-based 
model in   single objective  

Fig. 2. Comparison of  Possibility and Necessity-based 
model in multiobjective 

 

5. Conclusion 

Portfolio optimization has been one of the most important fields of research in economic and finance. 
Since the prospective returns of assets used for portfolio optimization problem are forecasted values, 
considerable uncertainty is involved. In this paper, Markowitz’s mean-variance idea was extended to 
portfolio selection by possibility and necessity-based model. This paper proposed a solution method 
for portfolio selection model whose parameters were fuzzy random variables. The idea was based on 
possibility and necessity-based model. We first presented the possibility and necessity-based model to 
reformulate the fuzzy random portfolio selection model to linear programming, then with these two 
kind of linear programs we constructed the multiobjective problem. The optimum solution of 
multiobjective problem based on the illustrated example was helpful for decision makers who are in 
ambiguity to choose which approach to find their solution in portfolio selection (optimistic or 
pessimistic approach).  For future research, we will apply the other methods for fuzzy random 
portfolio selection model and improve our portfolio selection problem. 
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