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 Clustering plays an essential role for data analysis and it has been widely used in different fields 
like data mining, machine learning and pattern recognition. Clustering problem divides some 
data, which is more similar to each other in terms of parameters under consideration. One of 
available methods about this area is k-means algorithm. Despite dependency of this algorithm 
on initial condition and convergence to local optimal points, it classifies n data to k clusters 
with high speed. Since we encounter a huge volume of data in clustering problems, one of 
suitable methods for optimal clustering is to use a meta-heuristic algorithm, which improves 
clustering operation. In this paper, differential evolution algorithm is utilized for solving 
available problems in k-means algorithm. In this paper, meta-heuristic algorithm has been used 
for solving data clustering problems. The applied algorithm has been compared with k-means 
algorithm on six known dataset from UCI database. Results show that this algorithm achieves 
better clustering than k-means algorithm.  
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1. Introduction 
 

 
Data clustering is one of the most complicated engineering problems and it is considered as an NP-
hard problem. Data clustering is challenging issue as the size of the data set problem increases, it 
becomes a time consuming issue and there are literally tremendous efforts to reduce the complexity 
of this class of problems (Leung et al., 2000; Qian, 2008). Clustering algorithms are generally 
classified as hierarchical clustering and partition clustering (Han et al., 2006; Frigui & Krishnapuram, 
1999). Hierarchical clustering normally groups data objects with a sequence of partitions, using 
singleton clusters either to a cluster including all individuals or vice versa. Hierarchical procedures 
can be either agglomerative or divisive: agglomerative algorithms start with each element as a 
separate cluster and merge them in successively larger clusters. Divisive algorithms begin with the 
whole set and divides it into successively smaller clusters (Jain et al., 1999; Rokach & Maimon, 
2005). Partition procedures that we concerned in this paper, try to divide the data set into a set of 
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disjoint clusters without the hierarchical structure. The most popular partition clustering algorithms 
are the prototype-based clustering algorithms. In this method, each cluster is normally represented by 
the center of the cluster and the used objective function is the sum of the distance from the pattern to 
the center (Mirkin, 1998; Eiben & Smith, 2003). K-means algorithm is one of well-known algorithms 
in solving data clustering problem because of its implementation simplicity and high speed to locate 
local optimum and the method has been successful in clustering many problems. However, high 
dependency of the results on initial state of this algorithm and convergence possibility of problem to 
local optimum (instead of global optimum) creates difficulty to solve many problems (Liu et al., 
2011). Therefore, to handle data clustering problem, researchers use possible optimization methods 
such as genetic algorithm, firefly algorithm and imperialist competitive algorithm (Shelokar et al., 
2004; Bin et al., 2002; Yang, 2009). In this article, differential evolution has been implemented for 
solving data clustering problem (Storn & Price, 1997; Jiawei & Kamber, 2001; Noman & Iba, 2008). 
This algorithm is a random algorithm based on population and it is one of the evolutionary 
algorithms. Differential evolution algorithm has been implemented to improve previous works. The 
results from this algorithm are compared with results from K-means algorithm. This paper is 
organized as follows. We first introduce the clustering problem in section 2. The implementation of 
the differential evolution algorithm is introduced in section 3 and 4. Finally, the experiments and 
results presented and are discussed in sections 5 and 6. 

2. The clustering problem   

Clustering is used by organizing models in humongous clusters for discovering intra-relation and 
inters-collection of samples and models. Clustering can be used in some areas such as analysis of 
similarity or dissimilarity and decreasing volume and data dimensions for data pre-processing. Many 
factors must be considered for solving clustering problem such as similarity standards or initial 
conditions. One of usual standards for measuring similarity among samples is Euclidean distance 
which is defined by Eq. (1). 
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where x is a data vector, c is cluster centers, and m is the number of data. In fact, in an N-dimensional 
space, we consider each n sample as a point in the space and then we assign these points to k cluster 
based on pre-defined standards. One of important and famous algorithms in solving data clustering 
problem is k-means algorithm, which preserve a simple and relatively high speed to obtain local 
optimal solution. The primary objective of this algorithm is to find k center of the cluster. However, 
despite its success in solving most of the clustering problem, k-means algorithm cannot solve many 
problems due to dependency of the procedure on initial value of centers and early convergence and 
being in local optimum. 

3. Differential evolution algorithm 

Storn and Price (1997) are believed to be the first who proposed differential evolution algorithm. This 
algorithm is a random algorithm based on population and it is one of the evolutionary algorithms. It is 
similar to the other evolutionary algorithms and it is unique method for producing new solution in 
differential evolution algorithm. For solving optimization problems, it uses sampling target function 
in multiple selective points, randomly. Predetermined parameters constraints specify some regions in 
which initial population must be produced. Differential evolution algorithm produces a new solution 
in d-dimensional space and this new solution results from difference of available points. This method 
works by regulating three parameters. Parameter CR is probability of doing crossover, parameter NP 
is population size and parameter F is mutation weigh, which is multiplied by difference of tow 
vectors and added to the third vector. 
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3.1. Mutation 

In this section, three vectors are selected randomly, two by two. Mutated vector is generated by Eq. 
(1) for each vector within population. Another operator has been proposed for mutation, too. This 
design increases greedy degree of algorithm movement towards optimization by using an optimum 
vector. Convergence is very suitable in order to increase speed especially for problems where their 
general optimum is found, very easily (Gong et al., 2008) 

ܸ,ீାଵ ൌ ܺଵ,ீ  ܨ ∗ ሺܺଶ.ீ  ܺଷ,ீሻ (2)

3.2. Crossover 

In the crossover step, each of mutated vector components is transferred to candidate vector (by 
probability CR). CR is the crossover constant   [0, 1], otherwise, equivalent component is 
substituted for main vector. 
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In Eq. (3), rand (j) is jth call of random function, which is a number within [0, 1]. However, for 
ensuring that, at least, one component is transferred to experimental vector, one component is 
transferred from mutated vector to experimental vector (without regard to CR), randomly. Therefore, 
one component is selected randomly for each candidate vector by using function randb() for 
transferring to the next generation (Bergey & Ragsdale, 2005; Storn & Price, 1997; Bäck & 
Schwefel, 1993).  

3.3. Selection  

Greedy method is applied for selecting survivors where each vector is compared with related 
candidate vector and each one, which is more competent, is transferred to the next generation. Fig.1 
shows the DE algorithm. 
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Differential Evolution Algorithm 
Generate P=(x1,x2,…,xn); N(point in D) 
Repeat 
       For i=1 to N do 
             Compute a mutant u; 
            Create y by the crossover of u and xi; 
            If f(y) < f(xi) then insert y into Q 
                             Else insert xi into Q  
          End if; 
     End for; 
    P:= Q; 
Until stopping condition; 

Fig. 1. Pseudo-code of the DE algorithm 

4. Proposed clustering method 

Differential evolution algorithm uses a differential operator for producing new solutions and this 
operator exchanges information among population members. One of advantages of this algorithm is 
to have a memory, which keeps information of suitable solution in the recent population. The other 
advantage of this algorithm is associated with operator of its selection. In this algorithm, all members 



  322

of one population have equal chance to be chosen as one of the parents. In this algorithm, in lieu of 
each member, a gene donor is produced which performs exchanging by that member. 

4.1. The first cost function 

One of the parameters used to evaluate the clustering problem is the distance to within cluster and the 
proposed method of this paper uses Eq. (5) as follows,                                                                                               
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where Cli is a cluster center in Datai, M is number of data and the maximum distances among centers 
of clusters are obtained.  

4.2. The second cost function 

In this study, the average distance between the clusters centers are also considered to be Eq. (6) is 
calculated.                                                                                                                                   
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4.3. The third cost function 

The third cost function to minimize the total cost function values is obtained from both the first and 
second as follows, 
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5. Experimental Results 

In this section, the results of the proposed algorithm are compared with algorithm k-means for 
solving clustering problem. Implementation of this algorithm has been accomplished by MATLAB 
software package. The parameters of DE algorithm are Npop=50, number of cluster centers=3, CR= 
0.9, mutation factor=0.01, iteration=100. Used data set includes Pima, Glass, Wine, Breast cancer 
(original), Breast cancer (diagnostic) and Iris, which have been extracted from known data base UCI. 
The characteristics of each dataset are described next. 
 

Brest Cancer Wisconsin (Original): This breast cancer databases was obtained from the University 
of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. This data set has 699 samples and 2 
different classes. Every sample has 9 attributes. 
 
Pima (Pima Indians Diabetes Database): this data set is about Pima Indians Diabetes that has 
totally 768 samples in 2 classes. These classes are about Diastolic blood pressure (mm Hg), Triceps 
skin fold thickness (mm), 2-Hour serum insulin (mu U/ml), Body mass index (weight in kg/ (height in 
m) ^2), Diabetes pedigree function, and Age (years) and each data has 8 attributes. 
 

Iris (fisher’s iris plants database): This data set is according to the Iris flowers recognition that 
has three different classes and each class consists of 50 samples. Every sample has four attributes. 
 
Glass (glass identification database): this data set is about several types of glass that has totally 
214 samples in 6 classes.  
These classes are about building_windows_float_processed, vehicle_windows_float_processe,   
containers,  ableware, building_windows_non_float_processed   and headlamps and each data has 9 
attributes. 
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As we can observe from Fig. 2, differential evolution algorithm has provided more accurate 
clustering than algorithm k-means. According to results, this algorithm can be applied in clustering 
problems for finding optimal or near-optimal solutions for dividing N object in K clusters. 

6. Conclusions 

In this paper, we have presented a new differential evolution algorithm for solving problem of data 
clustering. The proposed algorithm measures the least distance between the available data and their 
centers. In addition, the farthest distance among centers of clusters was also obtained. Next, the 
proposed method considered the sum of these distances by some coefficients for each one as target 
function. In order to measure the performance of the proposed model, the results were compared with 
k-means algorithm based on cluster distance. The preliminary results indicate that the proposed 
algorithm provides more acceptable results than k-means algorithm. 
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