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 During the past few years, despite tremendous contribution on deterministic flow shop problem, 
there are only limited number of works dedicated on stochastic cases. This paper examines 
stochastic scheduling problems in two-machine flow shop environment for expected makespan 
minimization where processing times of jobs are normally distributed. Since jobs have 
stochastic processing times, to minimize the expected makespan, the expected sum of the 
second machine’s free times is minimized. In other words, by minimization waiting times for 
the second machine, it is possible to reach the minimum of the objective function. A 
mathematical method is proposed which utilizes the properties of the normal distributions. 
Furthermore, this method can be used as a heuristic method for other distributions, as long as 
the means and variances are available. The performance of the proposed method is explored 
using some numerical examples.     

© 2013 Growing Science Ltd.  All rights reserved.
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1. Introduction 

Scheduling has become a well-studied problem and there are literally tremendous efforts on providing 
solution strategies for various kinds of modeling formulations such as job shop and flowshop. There 
are literally many applications for flowshop problem (e.g. Defersha, 2010; Mahavi Mazdeh et al., 
2010; Braglia et al., 2011). Zammori et al. (2011), for instance, investigated CONWIP card setting in 
a flow-shop system with a batch-processing machine. In addition, there are different types of 
flowshop problem. Araújo and Nagano (2010), for instance, studied a new effective heuristic method 
for the no-wait flowshop with sequence-dependent setup times problem. Mgwatu (2011) studied an 
integration of part selection, machine loading and machining optimization decisions for balanced 
workload in flexible manufacturing system.  

For years, all input parameters in scheduling such as processing times were considered deterministic. 
For instance, Johnson (1954) studied deterministic flow shop scheduling and proposed an algorithm 
called Johnson's Rule. His study led to so many researches analyzing the same problem under various 
conditions and using different techniques to reach some optimal solutions. Reisman et al. (1997) 
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reviewed 170 articles on scheduling flow shop problems, all of which were associated with the 
problems with contributions to the “subdiscipline”. Moreover, Farminan et al. (2004) studied 76 
articles with the identical topic on scheduling deterministic flow shop problems . Saghafian and 
Hejazi (2005) reviewed 176 articles on flow shop problems with makespan objective function and 
various heuristic methods. Ruiz and Maroto (2005) performed a review on 53 heuristics presented for 
permutation flow shop with makespan objective function. Allahverdi and Mittenthal (1995), for 
instance, proposed a solution procedure for scheduling on a two-machine flowshop subject to random 
breakdowns with a makespan objective function.  
 
Allahverdi and Fatih Tatari (1997), in another assignment, performed an empirical investigation on 
stochastic machine dominance in flowshop problem. Ruiz and Allahverdi (2007) presented some 
effective heuristics for no-wait flowshop with setup times to minimize total completion time. Ruiz 
and Stützle (2008) suggested an iterated greedy heuristic for the sequence dependent setup times 
flowshop problem with makespan and weighted tardiness objectives. Sayadi et al. (2010), in another 
assignment, presented new meta-heuristics called discrete firefly with an adaptation of local search 
for makespan minimization in permutation flow shop scheduling problems. Ancǎu (2010) discussed 
some weakness and strength of stochastic search in solving flowshop scheduling problem. Naderi-
Benia et al. (2012) presented a two-phase fuzzy programming model for a complex bi-objective no-
wait flow shop scheduling. Wang and Tang (2012) offered a discrete particle swarm optimization 
algorithm with self-adaptive diversity control for the permutation flowshop problem with blocking.  
 
In stochastic flow shop problem, processing times are supposed to be stochastic and it is considered 
as random variable with certain probability distribution. This simple difference between stochastic 
and deterministic problems leads to many complexities in stochastic problems. Flowshop problem 
with uncertain processing time has been an open research for the past few years. Therefore, a 
challenging task of the previous researches is that the less attention has been paid to find methods for 
solving stochastic flow shop problems. If stochastic flow shop problem were limited to two-machine 
version and exponential processing times, then the expected makespan value would be minimized in 
the case that the jobs are sorted non-increasingly in terms of parameter 1 2(1/ 1/ )i i  . This method 

was proposed by Talwar (1967) which is known as Talwar's Rule. Later, Cunningham and Dutta 
(1973) proved its optimality.  
 
Adiri and Frostig (1984) studied a stochastic permutation-flowshop scheduling problem minimizing 
in distribution the schedule length. Ku and Niu (1986) obtained a sufficient condition for stochastic 
dominance and showed that Talwar’s Rule yields a stochastically minimal makespan. Sethi et al. 
(1993) offered feedback production planning in a stochastic two-machine flowshop based on 
asymptotic analysis and computational results. Elmaghraby and Thoney (1999) studied the two-
machine stochastic flowshop problem with arbitrary processing time distributions. Moreover, 
Kalczynski and Kamburowski (2004) generalized Johnson and Talwar’s scheduling rules for two-
machine stochastic flow shops. Soroush and Allahverdi (2005) presented a stochastic two-machine 
flowshop scheduling problem with total completion time criterion. Kalczynski and Kamburowski 
(2006) tried to apply Talwar’s Rule for Weibull distribution. Portougal and Trietsch (2006) applied 
Johnson's Rule for solving stochastic problems. They utilized mean processing time of every job as 
job processing time in Johnson's Rule and produced a response with asymptotically optimal expected 
makespan values in order to minimize the makespan.  
 
Baker and Trietsch (2010) also explored three heuristic methods for two-machine stochastic model 
with a general distribution function. They compared Johnson’s Heuristic method and Talwar’s 
Heuristic method, applying mean processing time instead of job processing time in these two 
methods, and heuristic method of changing neighboring pairs where two neighboring jobs are 
separately considered and are displaced if their order can be optimized and figured out that none of 
these methods dominate the others. In another study, Kenneth and Dominik (2012) used three 
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heuristic methods for flow shop problem with m machines, supposing general distributions for 
processing times. They investigated the performance of these algorithms in a set of problems using 
simulation and noticed that these algorithms had near-optimal performance. 
 
In spite of the various researches in the last decades, few studies have been performed on flow shop 
problems with stochastic processing times. This paper investigates the stochastic scheduling problem 
in two-machine flow shop environment. The purpose of this study is to give a stochastic method to 
solve such problems using a stochastic mathematical model. The logic applied in this research is to 
emphasize on minimizing waiting times in the second machine. In this method, decisions about 
prioritization and scheduling of the jobs are made based on the waiting time produced in the second 
machine. In this regard, first, the considered mathematical model are presented in deterministic mode 
and then the model is customized for the stochastic version. The objective function in the proposed 
model is to minimize expected weighted sum of free times in the second machine and thus to 
minimize expected makespan. The value of objective function would be stochastic in this problem. In 
this research, we assume that the job processing time is a random variable with normal distribution 
and processing times of different jobs are independent from each other. A mathematical model is 
proposed for two-machine stochastic flow shop problem and its performance is examined using some 
numerical examples. Furthermore, this model is applicable for situations where the processing time 
distribution is not normally distributed or the distributions are totally unknown. 
 
Research assumptions and definitions are presented in Section 2. In Section 3, the deterministic 
mathematical model are presented. Stochastic mathematical model are developed in Section 4. Then, 
the algorithm's performance are examined using some numerical examples in Section 5. Finally, the 
results are presented in the conclusion section. 
 
2. Research assumptions and definitions 
 
Let i be job index, j be machine index and k represent job priority index. It is supposed that 

 1, 2,3, ,i n  is the set of jobs, which have to be processed in two-machine flow shop 

environment. Every job has stochastic processing time,  2,ij ij ijt N   , and jobs are independent of 

each other. The objective function is to minimize expected makespan. The applied symbols are as 
follows: 

1

0ik

if job i has the priority of k
x

otherwise


 


 )1(  

:ijt  Processing time of job i on machine j , 

:ij  Mean of processing time of job i on machine j , 
2 :ij  Variance of processing time of job i on machine j , 

:kjC  Completion time of job with priority k on machine j ,  

:
kjC  Mean of completion time of the job with priority k on machine j , 

2 :
kjC  Variance of completion time of the job with priority k on machine j , 

:kT  Waiting time of the second machine from completing the job with priority 1k  until starting the 

job with priority k , 
:  The probability of producing waiting time in the second machine is compared to this coefficient. 

This coefficient is called “confidence percentage”. 
 

1 ( 1)21 if (

0 otherwise

k k

k

p C C
y

   
 


 )2(  
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The considered assumptions in this article are as follows: 
 

 Machines have constant speed, which cannot be varied. 
 The order of processing jobs is the same on the first and second machines. 
 Machines are ready to be utilized at zero time. 
 Every machine can operate at most one job at a time. 
 Initiation of any job on the second machine would be after completion of the job on the first 

machine. 
 Preemption of the jobs is not allowed. 

 
3. Developing deterministic mathematical model 
 
Since the objective function of this study is expected makespan minimization and considering the fact 
that makespan increase is due to increase in waiting time in the second machine, this paper focuses on 
minimizing sum of expected waiting times of the second machine. In this section, the problem in 
deterministic (non-stochastic) mode is investigated. In addition, the appropriate mathematical model 
is presented.  
 
One of two S1 and S2 scenarios would occur in the second machine from the completion of one job to 
start of the next one. These scenarios are demonstrated in Fig. 1 and Fig. 2. 

 
11t  

21t

 
12t  

22t
1 :S






12C 22C

11C 21C

 
11t  

21t

 
12t  

22t

12C 22C

11C
21C

2 :S






 

Fig. 1. First scenario and the second job waiting time Fig. 2. Second scenario and creation of waiting time in 
the second machine 

values of Ck1 and Ck2 are calculated as follows: 

1 1
1 1

k n

k i ik
k i

C t x
 

  

2

12 1
1 1

n

ij i
j i

C t x
 

   

2 1 ( 1)2 2
1

max( , ) 2,3,...,
n

k k k i ik
i

C C C t x for k n


    

(3) 

Therefore, waiting time of the second machine from the completion of the job with k-1 priority to 
start of the job with k priority is given by: 
 

1 ( 1)2max( ,0)k k kT C C    (4)  

Thus, for instance, waiting time of the second machine from the completion of the job with the first 
priority to start of the job with second priority is as follows: 
 

1 21 12max(0, )T C C   )5(  

Finally, the mathematical model of the problem in deterministic mode is as follows: 
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 1

min

subject to

n

k
k

T



 

 

2

12 1
1 1

1 1 1
1

n

ij i
j i

n

i i
j

C t x

T t x

 










 

For 2,3,...,k n  1 1
1 1

k k

k i ik
k i

C t x
 

  

For 2,3,...,k n  2 1 ( 1)2 2
1

. (1 ).
n

k k k k k i ik
i

C y C y C t x


     

For 2,3,...,k n  
1 ( 1)2

1 ( 1)2

.

.( 1)

k k k

k k k

C C M y

C C M y





 

  
 

For 2,3,...,k n  1 ( 1)2max( ,0)k k kT C C    

For 1,2,3,...,k n  
1

1
n

ik
i

x


  

For 1,2,3,...,i n  
1

1
n

ik
k

x


  

 
 

)6(  

4.The problem in stochastic mode 
 
In stochastic mode, waiting time in the second machine is calculated by the difference between 1kC  

and ( 1)2kC  . Since the processing time of jobs is stochastic, so completion times will be stochastic too. 

Parameter  , as mentioned earlier, is confidence percentage and is defined to compare completion 
times. The probability of producing waiting time in the second machine is compared with this 
coefficient. If 1 ( 1)2( )k kp C C   , initiation time of the job with  priority k  in the second machine 

is supposed to be equal to the completion time of the same job in the first machine ( 1kC ) and the 

second machine will have waiting time (Fig. 1 shows this scenario). Furthermore, if this probability is 
less than  , then the initiation time of the job with priority k  in the second machine is equal to 
completion time of the job with  priority 1k   on the same machine. Therefore, after processing 
operations in the first machine, the job with priority k  will wait for the second machine to complete 
the previous job, and there would be no waiting in the second machine. Thus, the expected value of 
waiting time in the second machine and consequently value of expected makespan can be obtained. 
Since the processing time is normally distributed, thus, 1kC and ( 1)2kC   will be normally distributed, 

as well.  
2( , )ij ij ijt N    

12 12 12 12

2 2
2 2 2

12 1 1
1 1 1 1

( , ) ,
n n

c c c ij i c ij i
j i j i

C N x x     
   

      

1 1 1 1

2 2 2
1 1 1

1 1 1 1

( , ) ,
k k k k

k n k n

k C C C i ik C i ik
k i k i

C N x x     
   

      

)7(  
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2 1 ( 1)2

2 1 ( 1) 2

2
1

2 2 2 2
2

1

1 ( 1)2

. (1 ).

. (1 ).

1 ( )

0

k k k

k k k

n

C k C k C i ik
i

n

C k C k C i ik
i

k k

k

y y x

y y x

if p C C
y

else

   

   













   

   

 
 




  

Both 1kC  and ( 1)2kC   follow normal distribution, thus: 

1 ( 1) 2 1 ( 1)2

2 2
1 ( 1)2 ( , )

k k k kk k C C C CC C N    
      )8(  

Therefore, expected sum of waiting time of the second machine from the completion of the job with 
priority 1k   until the initiation of the job with priority k  is equal to: 

( 1)2 1

( 1)2 1

( 1) 2 1 ( 1) 2 1

( 1) 2 1 ( 1) 2 1

1 ( 1)2 1 ( 1)2 2 2

2 2 2 2

( ) ( 0) ( )

1 ( ) 1 ( ) 2,3,...,

k k

k k

k k k k

k k k k

C C

k k k k

C C

C C C C

C C C C

p C C p C C p z

p z for k n

 

 

   

   





 

 

 


     



 
     

 

 

( 1) 2 1

1 ( 1)2

( 1) 2 1

2 2
(1 ( )).max( ,0) 2,3,...,k k

k k

k k

C C

k C C

C C

T for k n
 

 
 








   



)9(  

where  is cumulative distribution function (cdf) of standard normal. Moreover, second machine’s 
waiting time during the processing of job with priority 1 is equal to completion time of that job on 
machine 1 ( 11C ). Accordingly, the mathematical model of the problem in the stochastic mode would 

be as follows: 

 1
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subject to

n

k
k

T


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n
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( 1) 2 1

( 1)2 1
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( 1)2 1
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k k

k k
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k k

C C
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C C
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( 1) 2 1

1 ( 1) 2

( 1) 2 1
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(1 ( )).max( ,0)k k

k k

k k

C C

k C C

C C

T
 

 
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






  
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For 1,2,3,...,k n
1

1
n

ik
i

x


  

For 1,2,3,...,i n
1

1
n

ik
k

x


  

This mathematical model uses the properties of normal distribution; however, it is applicable as a 
heuristic when the distributions are non-normal, as long as their means and variances are available. 

 
5. Computational experiment 
 
In this section, the performances of three methods for solving stochastic scheduling problem are 
compared with each other in order to minimize the expected makespan. Johnson's Heuristic method 
solved the two-machine stochastic flow shop problem using mean of the processing time. In fact, this 
method applied Johnson's Rule to the mean time of processing jobs in stochastic terms. Talwar's 
method also solved two-machine stochastic flow shop problem by sorting the jobs using non-
increasing differences of the mean processing rates.    
 
The algorithm proposed in this paper is called HMB and is based on minimization of the sum of all 
expected delays in the second machine. Between the two sequences, the one, which resulted in less 
delay in the second machine and finally smaller expected makespan, would be selected. Here we 
explain the issue with a numerical example. 
 
Example1: Consider a stochastic two-machine flow shop problem with three jobs and specifications 
given in Table 1 as follows, 
 
Table 1 
The mean and variance of jobs on machine one and two for example 1 

i  1i  2
1i  2i  2

2i  

1 67 15 42 10 
2 48 14 51 16 
3 45 12 59 14 

 
Considering sequence 3-1-2, weighted sum of expected waiting times in the second machine is 
computed as follows: 

12 12

2 2 2
11 31 32 31 32 12(45,12)         (104,26)C CC N C N             

21 21

2 2 2
31 11 31 11 21        (112, 27)C C C N            

)11(  

 
If we assume that 0.8  , then we have to calculate 21 12( )p C C  and compare it with  : 
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2 2
21 12 21 12 21 12 21 12

21 12 21 12

( ) ( , ) ( ) (8,53)

( ) ( 0) 1 ( 1.099) 0.86

C C N C C N

p C C p C C

         
       

 )12(  

 
Since 21 12( )p C C   , initiation time of the job with priority 2  (job 1) in the second machine is 

supposed to be equal to the completion time of the same job in the first machine ( 21C ) and the second 

machine will have waiting time. 22C  is calculated as follows: 

22 21 22 21

2 2 2
12 12 22      (154,37)C C C C C N            (13)

The completion time of third priority job (job 2) will be calculated as follows: 

31 31

2 2 2 2
31 11 21 31 11 21 31       (160, 41)C C C N                

31 22 31 22

2 2
31 22 31 22 31 22( ) ( , ) ( ) (6,78)  ( ) 1 ( 0.68) 0.75C C C CC C N C C N p C C                (14)  

So 31 22( )p C C    and the initiation time of the job with priority 3  in the second machine is equal 

to completion time of the job with priority 2  on the same machine: 

32 22 32 22

2 2 2
22 22 32  (205,53)C C C C C N            (15)  

Based on the above calculations mean and variance of completion time of jobs on machines 1 and 2 
are given in Table 2 as follows, 
 
Table 2  
Mean and variance of completion time of jobs on machines 1 and 2 

( )k priority  
1kC  

1

2

kC  
2kC  

2

2

kC  

1 45 12 104 26 
2 112 27 154 37 
3 160 41 205 53 

 
Fig. 3 shows this sequence situation: 
 
 

1

2

:

:

M

M







11t31t 21t

32t 22t12t

Waiting time for job with 3 prioriy

Waiting time in machine 2

21C

12C

31C

23C

 

Fig. 3. Example 1 with 3-1-2 sequence and 0.8   
 
Expected sum of waiting time of the second machine is equal to: 
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3

1
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T T
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12 21

21 12

12 21

1

2 2 2

45

(1 ( )).max( ,0) 6.88
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C C
C C

C C
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T



 
 

 

 


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

 

22 31

31 22

22 31

3 2 2
(1 ( )).max( ,0) 4.5 56.38C C

C C

C C

T T
 

 
 


     


 

(16)  

For a specific problem of two-machine stochastic flow shop, we need to verify which of these three 
algorithms provides a better function, which is accomplished through simulation technique. Gourgand 
et al. (2003) made comparisons in cases where Markovian analysis is applicable to assess the 
accuracy of simulation. In addition, they concluded that the sample sizes of 5000 were adequate for 
testing procedures. They provided answers to some other questions about evaluating the efficiency of 
simulation method. 
 
The purpose of this paper is to compare the performance of the three mentioned methods by this 
technique. For this purpose, a set of two-machine stochastic flow shop problems are designed. 
Number of jobs, and mean and variance of their processing times should be determined for the first 
and the second machines. The values of mean and variance of the jobs are generated randomly in the 
specified range. When these values are determined, the three mentioned methods are used to evaluate 
the sequence of jobs. It is evident that these three methods may result in completely different 
sequences depending on the problem. In the next step, 5000 samples for deterministic problem are 
produced (based on mean and variance of jobs in that problem). Then, based on the sequence 
presented by these three methods, real makespan value for all the problems will be computed. The 
performances of these methods are compared based on the following index, improvement index, and 
denoted by IM. 

IM is defined as “the ratio of the cases in which the performance of one method is better than or equal 
to other methods for all cases” 

For example, if HMB is better than or equal to two other methods in m cases, we have: 

,HMB

m
IM

n
  (17)  

where n is the total number of samples.  Moreover, if this index takes greater value for one method 
than for the other methods, it indicates that the method provides better performance in most of the 
cases.  
Table 3 shows the comparison of the performance results of the three methods, namely HMB, the 
Talwar (T) and Johnson (J). 

 The first row of the table shows the number of jobs and machines in each problem.  
 Second and third rows are the ranges in which the mean and variance of the jobs are 

generated. 
  The following rows show IM index, which compares the performance of one method to 

another. 
 
Table 3  
Comparison of the IM for constant variance (The number of machines = 2, The number of Jobs = 10) 

110-190 120-180 130-170140-160145-155 Means 
30 30 30 30 30   

35%38% 43%41%52% J 
41%42% 46%43%53% T 
42%45% 47%43%54% HMB 
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As can be seen from Table 3, in most of the cases, HMB algorithm provided a better response 
compared with other two methods. For the next case, we assume that the same calculation is 
performed when the variance is not constant. The results of this case are presented in Table 4. 

 
Table 4  
Comparison of the IM for variable variance (The number of machines = 2, The number of Jobs = 10) 

110-190 120-180 130-170140-160145-155 Means 
15-35 15-35 15-35 15-35 15-35 σ 

49%41% 43%39%43% J 
52%44% 47%41%47% T 
55%48% 47%42%47% HMB 

 
Comparison of the values in Table 4 indicates that the performance of HMB algorithm is better than 
Johnson's and Talwar's methods. Furthermore, the results of simulation with more jobs, which have 
been computed with supposition , also confirmed the better performance of this algorithm. 
However, sensitivity analysis can be performed for the different values of α. For example, if we 
assume that the mean and variance of processing time of jobs are considered as fourth column of 
Table 3, then the performance of the HMB algorithm, in comparison with two other methods, for 
different values of α  would be those shown in Table 5: 
 
 Table 5  
Comparison of the IM for variable variance base on  in constant variance mode (The number of 
machines = 2, The number of Jobs = 10, Means 130-170, Variance = 900) 

0.9 0.8 0.7 0.60.5 0.4   
39% 43% 41%47%48% 43% J 
41% 46% 46%49%52% 52% T 
40% 47% 47%49%51% 41% HMB 

 
As shown in the Table 5, the performance of the HMB algorithm is different for different values of . 
In addition, the algorithm has better performance when   is between 0.6 and 0.8. However, it may 
be different for other cases. In addition, if the variance is not constant, it will be a different situation 
as shown in Table 6: 
 
Table 6  
Comparison of the IM for variable variance base on  in constant variance mode (The number of 
machines = 2, The number of Jobs = 10, Means 130-170, Variance = 500-1000) 

0.9 0.8 0.7 0.60.5 0.4   
38% 38% 44%49%38% 52% J 
42% 42% 46%53%39% 54% T 
35% 37% 46%55%40% 55% HMB 

 
Therefore, the performance of HMB algorithm will change by changing the value of  . For instance, 
in Table 6 when   is between 0.5 and 0.7, it provides better performance for the algorithm. 
Therefore, an optimal value of   should be used in order to solve the stochastic scheduling problem 
using HMB algorithm which provides the most appropriate performance. 

 
6. Concluding remarks 
 
In this paper, scheduling problem was investigated for two-machine flow shop environment with 
stochastic processing time and the objective function of expected makespan minimization. First, the 
mathematical model of this problem was developed in deterministic mode considering the approach 
of minimizing waiting times in the second machine. Then, this model was customized for the 
stochastic mode. This customized model can be considered as the first studies, which are presented to 
solve stochastic flow shop problem with a mathematical model. Moreover, results of the proposed 

0.8 
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algorithm were obtained, and indicate a significant improvement in performance compared to the two 
previous heuristic methods. Development of this algorithm in flow shop problem with more machines 
version can be recommended for the future studies. 
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