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 This paper presents a strategic multi segment, multi period and multi-product supply chain 
management to meet reliable networks for handling disruptions strike. We present a mixed-
integer programming model whose objective is to minimize the expected cost composed of 
probability and cost of occurrence in each scenario. The proposed model of this paper considers 
time value of money for each operation and transportation cost. We attempt to minimize 
expected costs by considering the levels of inventory, back-ordering, the available machine 
capacity and labor levels for each source, transportation capacity at each transshipment node 
and available warehouse space at each destination. The problem is generalized by taking into 
account backup supplier with reserved capacity and backup transshipment node that, which 
satisfies demands at higher price without disruption facility. We use a priority-based genetic 
algorithms encoding to solve the proposed problem under multi period and multi product 
conditions. The performance of the proposed model is examined using some instances.        

© 2013 Growing Science Ltd.  All rights reserved.
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1. Introduction 

Suppliers, retailers and distribution centers are essential components of supply chain and they need to 
be designed properly for long-term networking plans. There are literally many mathematical models 
to solve a variety of supply chain network design problems (e.g. Magnanti & Wong, 1984; Owen & 
Daskin, 1998; Daskin et al., 2005; Meixell & Gargeya, 2005). However, many facilities are not 
reliable in today’s industries and they may fail or disrupted during the design phase. The 
popularization of the ‘‘lean’’ concept, which allows minimum redundancy, and the development of 
global supply chains have created some challenges for optimal design problems. From the terrorist 
attacks of 9/11 to the catastrophic devastation caused by Hurricane Sandy, recent events (Barrionuevo 
& Deutsch, 2005; Latour, 2001; Mouawad, 2005) have raised higher risks from disruptions. Many 
people state that today international supply chains are strong and reliable, but in reality, many are 
fragile and easily disrupted when the unexpected incidents occur. For instance, in 2008, the delivery 
of the Dreamliner 787 was interrupted because of delays in supply for some critical components and 
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the firm was fined because of delay (Bathgate & Hayashi, 2008). In 2011, a disastrous earthquake and 
the following tsunami struck Japan, causing heavy casualties and property losses. As a result, the 
sequences of this trouble adventures as plant damage, transportation blockage or power outages 
interrupted the production in a broad spectrum of the country’s industries (Clark & Takahashi, 2011). 

In this paper, we study the problem of designing a multi segment, multi period and multi product 
supply chain network, which consists of supply, transshipment, and demand nodes with reserved 
capacity for back up supplier. Reserved capacity used to deal with disruption is determined by 
decision maker and owner of back up supplier. The price of products under reserved capacity is 
cheaper than price of products upper reserved capacity. Once such a supply chain infrastructure is 
built, it will be very difficult and costly to modify the design. Therefore, it is important to design 
supply chain systems that attain continuity and efficiency in the presence of all kinds of disruptions 
from the start.  

2. Literature review 
 

There is no doubt that we need to design supply chains, which are resilient to disruptions using 
different robust strategies for mitigating supply chain disruptions. This will enable a supply chain to 
function smoothly and to serve customers during disruptions, continually (Tang, 2006). Kleindorfer 
and Saad (2005) presented a conceptual framework for disruption risk management in supply chains, 
which is based on the risk management literature and models of supply chain coordination. Drezner 
(1987) studied the unreliable p-median and (p, q)-center location problems, in which a facility had a 
given probability of becoming inactive. Snyder and Daskin (2005) presented reliable uncapacitated 
fixed-charge location problem (UFLP) and the P-median problem aimed to minimize a weighted sum 
of the nominal cost when no disruptions occur and the expected cost accounting for random 
disruptions were considered. For tractability, they made a strong assumption that all facilities had the 
same probability of failure. Berman et al. (2007), Cui et al. (2010), Li and Ouyang (2010), Lim et al. 
(2009), Lim et al. (2010), Shen et al. (2007), Snyder et al. (2006), and Zhan et al. (2008) all 
considered models similar to Snyder and Daskin’s but used variety of modeling approaches else the 
uniform-disruption-probability assumption. Bunschuh et al. (2006) presented disruptions in a multi-
echelon supply chain network and to improve the robustness of the network, a redundancy was 
created. In addition, they added supplier sourcing constraints, which give upper bounds on the total 
amount a customer can source from a single supplier to the model. This approach forces customer to 
select multiple suppliers and does not explicitly include the possibility of disruption for each supplier. 
Snyder et al. (2006) introduced an expected-cost objective rather than a robustness constraint and 
wide range of strategic planning models for facility location and supply chain network design 
problems under the threat of disruptions. Scapparra and Cappanera (2010) considered a network 
design problem with a shortest-path objective in presence of disruption. In addition, Peng Peng et al. 
(2011) presented min-cost-flow-type objective for above model, which seemed more suitable. In 
these papers, supply chain’s models are single product and single period. However, in practical 
situations, many of disruption have certain duration like strike, and more supply chains are multi 
period and multi product we may consider decision maker to include inventory level for dealing with 
disruption or backorder demand to next period.  

The rest of the paper is organized as follows. In Section 3, we formulate the multi segments, multi-
product and multi-time period problem (MSMDPD). A priority-based GA is proposed in Section4. 
We report our numerical results in Section 5. Section 6 concludes our study. 

3. Problem formulation 

3.1 Problem description, assumptions, and notations 

In this section, we present multi segments, multi-product and multi-period problem (MSMDPD). This 
study assumes that the logistics center of a supply chain attempts to design the suitable MSMDPD 
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integration plan for nu types of homogeneous goods to satisfy demand of destinations over a planning 
horizon hu with facilities as sources (factories), transshipments (distribution centers). Each source 
affected by disruption has a supply of the commodity available for distribution to different 
transshipments. In addition, transshipments under risk of disruptions must fulfill demand of each 
destination with received commodities from supplier. Finally, each destination also forecasts the 
demand for the commodity and receives from its sources. This paper focuses on presenting an 
integrated plan to deal with disruption risk as:  

1. How much commodities must care to next period for suppliers with no disruption in a certain 
potential scenario of disruption.  

2. How much of commodities must be back ordered to satisfy demand within the next period in 
disruption condition. 

3. How much of commodities must be provided from external supplier with no interruption in 
external transshipment. 

To address these concerns, we propose MSMDPD problem and to meet this goal, the following 
assumptions are considered.  

(1) Fixed cost at each source and each transshipment of product n in period h are independent from 
size of ordering. 

(2) All of the objective functions and constraints are linear equations. 

(3) Operation costs at each source and distribution costs on a given route are directly proportional to 
the units manufactured and shipped, respectively. 

(4) The escalating factors of the related operating cost categories are certain over the next H planning 
horizon. 

(5) The actual labor levels, machine capacity, transportation volume and warehouse space in each 
period cannot exceed their respective maximum available levels. 

(6) Either the sources can satisfy, or back order the forecasted demand at each destination over a 
particular period. However, the sources must fulfill the backorder in the next period. 

(7) Transportation cost from main transshipments to other destinations is less than from main backup 
transshipment to other destinations. 

(8) Transportation cost from sources to backup transshipment is higher than from sources to main 
transshipments. 

(9) Transportation cost from backup supplier to transshipments as back up and main is higher than 
other suppliers are. 

(10) Operation cost in backup supplier, which is higher than any main supplier, divided in two 
segments as operation cost on under reserved capacity level and operation cost on upper reserved 
capacity level. First kind of operation cost is less than second kind cost.  

(11) Disruption will be lost inventory level from previous period, capacity of machine and available 
labor level of each product in each period.  

Assumption 1 states fixed cost in our supply chain is more expensive than operation costs and 
independent from operation volume and must be bought at each period to satisfy demand of each 
product. Assumptions 2 to 4 indicate linearity, proportionality and certainty properties must be 
technically satisfied as a standard LP form. Assumption 5 represents the limits on the maximum 
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available labor levels, machines, transportation and warehouse capacities. Assumption 6 details the 
necessary level of satisfaction in the portion of demand at each destination during any period. A 
business can backorder the remaining demand, but they should not carry over the backorders for more 
than one period. Assumption 7, 8 and 9, 10 addresses the higher expenses of using backup source and 
back up transshipment node than main supplier in our supply chain because of its location on a 
foreign country or region. This study uses the following notation. 

Index sets 
i source i = 1,2,. . . , m 
d back up source 
n product type n = 1,2, . . . , nu 
h planning period h = 1,2,. . . , hu 
t transshipment t=1,2,…, tu 
td back up transshipment 
j destination j = 1,2,. . . , mp 
s disruption scenario s=1, 2,…, sce 

 
Decision variables 
 
A. Integer variables 

 VA୧୬୦ production of product n by source i in period h, VAୢ୬୦ production of product n by backup source d in period h under reserved capacity level, VAdୢ୬୦ production of product n by backup source d in period h upper reserved capacity level, VC୧୬୦ inventory level of product n by source i in period h, VD୧୬୦ backordering of product n by source i in period h, VE୧୬୦୲ units distributed of product n from source i to transshipment t in period h, VE୧୬୦୲ୢ units distributed of product n from source i to back up transshipment td in period h VEୢ୬୦୲ units distributed of product n from back up source d to transshipment t in period i,  VEୢ୬୦୲ୢ units distributed of product n from back up source d to back up transshipment td in 
period h VB୲୬୦୨ units distributed of product n from transshipment t to destination j in period h VB୲ୢ୬୦୨ units distributed of product n from back up transshipment td to destination j in period h, 
 

B. Binary variables: 
 xw୧୬୦ Binary variable for order of source i of product n in period h,      xv୲୬୦ Binary variable for chose of transshipment t of product n in period h, 

 
Parameters: f୧୬ଵ fixed cost of product n by source i in period 1, f୲୬ଵ fixed cost of product n by transshipment t in period 1, e୤෥  escalating factor of regular production cost, a୧୬ଵ unit production cost of product n by source i in period 1, a1ୢ୬ଵ unit production cost of product n by back up source d in period 1 under reserved 

capacity level, a2ୢ୬ଵ unit production cost of product n by back up source d in period 1upper reserved 
capacity level, eୟ෥  escalating factor of regular production cost, c෤୧୬ଵ inventory unit carrying cost of product n by source i in period 1, eୡ෥  escalating factor of inventory carrying cost, 
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85d෨୧୬ଵ backordering unit cost of product n by source i in period 1, e෦ୢ escalating factor of backordering cost, k୧୬ଵ୲ delivery unit cost of product n from source i to transshipment t in period 1, k୧୬ଵ୲ୢ delivery unit cost of product n from source i to backup transshipment td in period 1, kୢ୬ଵ୲ delivery unit cost of product n from backup source d to transshipment t in period 1, kୢ୬ଵ୲ୢ delivery unit cost of product n from backup source d to backup transshipment td in 
period 1, e୩෦  escalating factor of delivery cost, b୲୬ଵ୨ delivery unit cost of product n from transshipment t to destination j in period 1, b୲ୢ୬ଵ୨ delivery unit cost of product n from back up transshipment td to destination j in period 1, eୠ෦  escalating factor of delivery cost, D୬୦୨ demand of product n of destination j in period h, l୧୬୦ unit labor hour of product n is used by source i in period h, L୧୬୦ maximum labor hour levels available of product n by source i in period h, r୧୬୦ unit machine hour of product n produced by source i in period h, M୧୬୦ maximum machine capacity available of product n by source i in period h, xୢ୬୦ reserved capacity of product n by back up source d in period h, V୬ unit warehouse space of product n, W୬୦୨ maximum warehouse space available of product n of destination j in period h, Mt୲୬୦ maximum  capacity available of product n by transshipment t in period h, st୲୬୦ unit landed and loaded hour  of product n by transshipment t in period h, ܛ۾ Probability of disruption scenario s,  xc୧୬୦ 1 if supplier i of product n is disrupted at period h in scenario s, 0 otherwise, xt୲୬୦ 1 if transshipment t of product n is disrupted at period h in scenario s , 0 

otherwise. 
 

3.2 Original multi segment multi-product and multi-time period MSMDPD model 

3.2.1 Objective function 
 

After reviewing the literature and considering practical situations, the original multi segment multi-
product and multi-period MSMDPD model designed in this paper selects the total manufacturing, 
transportation and distribution costs as the objective function of each scenario. Total cost is expected 
cost of all scenarios. In practical MSMDPD problems, a DM considers typical related operating costs, 
inventory and backordering levels, available resources and capacities, market demand, product life 
cycle, employment laws, probability of occurrence scenario and other factors to either minimize total 
manufacturing and distribution costs or maximize profits. Accordingly, the following illustrates the 
function of expected cost. 

Z =෍Pୱୱୡୣ
ୱୀଵ (෍ ෍ ෍ a୧୬ଵ ∗ VA୧୬୦(1 + eୟ)୦ିଵ୦୳୦ୀଵ୬୳୬ୀଵ୫୧ୀଵ +෍ ෍ a1ୢ୬ଵ ∗ VAୢ୬୦(1 + eୟ)୦ିଵ୦୳୦ୀଵ୬୳୬ୀଵ+෍ ෍ a2ୢ୬ଵ ∗ VAdୢ୬୦(1 + eୟ)୦ିଵ୦୳୦ୀଵ୬୳୬ୀଵ +෍ ෍ ෍ c୧୬ଵ ∗ VC୧୬୦(1 + eୡ)୦ିଵ୦୳୦ୀଵ୬୳୬ୀଵ୫୧ୀଵ+෍ ෍ ෍ d୧୬ଵ ∗ VD୧୬୦(1 + eୢ)୦ିଵ୦୳୦ୀଵ୬୳୬ୀଵ୫୧ୀଵ +෍ ෍ ෍ ෍ K෩୧୬ଵ୲ ∗ VE୧୬୦୲(1 + e୩)୦ିଵ୲୳୲ୀଵ୦୳୦ୀଵ୬୳୬ୀଵ୫୧ୀଵ+෍ ෍ ෍ K෩୧୬ଵ୲ୢ ∗ VE୧୬୦୲ୢ(1 + e୩)୦ିଵ୦୳୦ୀଵ୬୳୬ୀଵ୫୧ୀଵ +෍ ෍ ෍ K෩ୢ୬ଵ୲ ∗ VEୢ୬୦୲(1 + e୩)୦ିଵ୲୳୲ୀଵ୦୳୦ୀଵ୬୳୬ୀଵ+෍ ෍ K෩ୢ୬ଵ୲ୢ ∗ VEୢ୬୦୲ୢ(1 + e୩)୦ିଵ୦୳୦ୀଵ୬୳୬ୀଵ +෍ ෍ ෍ ෍ b୲୬ଵ୨ ∗ VB୲୬୦୨(1 + eୠ)୦ିଵ୫୮୨ୀଵ୦୳୦ୀଵ୬୳୬ୀଵ୲୳୲ୀଵ+෍ ෍ ෍ b୲ୢ୬ଵ୨ ∗ VB୲ୢ୬୦୨(1 + eୠ)୦ିଵ୫୮୨ୀଵ୦୳୦ୀଵ୬୳୬ୀଵ +෍ ෍ ෍ f୧୬ଵ ∗ xw୧୬୦(1 + e୤)୦ିଵ୦୳୦ୀଵ୬୳୬ୀଵ୫୧ୀଵ+෍ ෍ ෍ f୲୬ଵ ∗ xv୲୬୦(1 + e୤)୦ିଵ୦୳୦ୀଵ୬୳୬ୀଵ୲୳୲ୀଵ  (1) 
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where a୧୬ଵ, a1ୢ୬ଵ, a2ୢ୬ଵ, c୧୬ଵ, d୧୬ଵ, K୧୬ଵ୲, K୧୬ଵ, K୬ଵ୲, K୬ଵ, b୲୬ଵ୨, b୲ୢ୬ଵ୨, f୧୬ଵ	and	f୲୬ଵ	denote the cost 
coefficients. The total cost of each scenario is the sums of the manufacturing and distribution costs. 
Total   cost of supply chain achieve from expected cost of all scenarios. In real-world situations, the 
interest factor commonly affects the value of total costs and a DM must consider the time value of 
money for each cost category in practical these problems. Therefore, the escalating factors in Eq. (1) 
represent the time value of money for operating cost categories. Additionally, the adjustment of cash 
flows to a common time basis is necessary when determining the time value of money. Within the 
subscripts of each operating cost category, 1 should replace the index h. 

3.2.2. Constraints 
 

3.2.2.1. The demand constraints for each destination j ෍ VBୱ୲୬୦୨୲୳୲ୀଵ + VBୱ୲ୢ୬୦୨ = D୬୦୨				∀݊, ∀h, ∀݆, ݏ∀  
(2) 

 

In real-world situations, the sum of regular production, inventory levels and backorder levels coming 
from various sources should essentially be equal the demand of each destination, as in Eq. (2). 

3.2.2.2. The inventory levels constraints VAୱ୧୬୦ + VCୱ୧୬୦ିଵ × xcୱ୧୬୦ + VDୱ୧୬୦ିଵ × xcୱ୧୬୦ −෍ VEୱ୧୬୦୲୲୳୲ୀଵ − VEୱ୧୬୦୲ୢ= VCୱ୧୬୦ × xcୱ୧୬୦ + VDୱ୧୬୦ × xcୱ୧୬୦ ∀݊, ∀h, ∀݅, ݏ∀  

(3) 

VAୱୢ୬୦ + VAdୱୢ୬୦ −෍ VEୱୢ୬୦୲୲୳୲ୀଵ − VEୱୢ୬୦୲ୢ = 0 ∀݊, ∀h, ݏ∀  

 

(4) 

Eq. (3) stands for the constraint that the demand for each destination over a particular period could be 
either satisfied or backordered by sources in disruption condition; however, the backorder must be 
fulfilled by sources in the next period. Eq. (4) states backup supplier must fulfill remain demand that 
cannot satisfy by other sources because of disruption. 

3.2.2.3. Balance of transshipments constraints ෍ VEୱ୧୬୦୲୫୧ୀଵ + VEୱୢ୬୦୲ =෍ VBୱ୲୬୦୨୫୮୨ୀଵ ∀݊, ∀h, ,ݐ∀ ݏ∀  

 

(5)

෍ VEୱ୧୬୦୲ୢ୫୧ୀଵ + VEୱୢ୬୦୲ୢ =෍ VBୱ୲ୢ୬୦୨୫୮୨ୀଵ ∀݊, ∀h,  ݏ∀
(6)

 

Eq. (5) and Eq. (6) determine product volume, which must be received and sent for transshipment t 
and backup transshipment td for product n in period h. 

3.2.2.4. The production, transshipment capacity and warehouse space constraints l୧୬୦ ∗ VAୱ୧୬୦ ≤ L୧୬୦ ×	xw୧୬୦ × xcୱ୧୬୦ ∀n, ∀h, ∀i, ∀s  (7) r୧୬୦VAୱ୧୬୦ ≤ M୧୬୦ ×	xw୧୬୦ × xcୱ୧୬୦		∀݊, ∀h, ∀݅, ݏ∀  (8) st୲୬୦ ×෍ VBୱ୲୬୦୨୫୮୨ୀଵ ≤ Mt୲୬୦ ×	xv୲୬୦ × xtୱ୲୬୦ ∀݊, ∀h, ,ݐ∀ ݏ∀  
(9) 
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v୬ ×෍ VBୱ୲୬୦୨୲୳୲ୀଵ + VBୱ୲ୢ୬୦୨ ≤ W୬୦୨ ∀݊, ∀h, ∀݆, ݏ∀  
(10) 

Eq. (7) and Eq. (8) represent the limits of available labor levels and machine capacity of each product 
for each source in each period, respectively. Eq. (9) represents the limits of capacity of each product 
for each transshipment in each period. Eq. (10) represents the limits of actual warehouse capacity in 
each period of each product for each destination. 

3.2.2.5. Non-negativity constraints VAୱୢ୬୦, VAdୱୢ୬୦, VAୱ୧୬୦, VBୱ୲୬୦୨, VBୱ୲ୢ୬୦୨, VCୱ୧୬୦, VDୱ୧୬୦, VEୱ୧୬୦୲, VEୱ୧୬୦୲ୢ, VEୱୢ୬୦୲, VEୱୢ୬୦୲ୢ≥ ,ݐ∀		0 ∀݅, ∀݊, ∀h, ∀݆, ݏ∀  
(11)

3.3. Identifying disruption scenarios 

An important question associated with this model is to determine disruption scenarios. Consider a 
model, which has m supplier and tu transshipment center of nu product at hu period. Thus, Total 
possible scenario is	2(୫ା୲୳)∗୬୳∗୦୳. Obviously, increasing one unit of each segment that mentioned 
will increase the size of problem, exponentially. In practice, the number of considered scenarios is 
much smaller. To identify scenarios, decision makers use expert judgment. There are more options to 
start by identifying scenario, where one of them is a facility disrupt in one period caused by operation 
problem. Another possible scenario is a disruption with supplier in all period due to unexpected 
incidents such as fire. Sometimes, suppliers in an area are inactive because of disruption events such 
as earthquakes, electricity shortages, and so on. Note that probability of more than two facilities 
without any mentioned causes at the same time is very small. Other scenarios are achieved based on 
relationships between suppliers and decision maker judgment. 

3.4. Complexity 

Peng Peng et al. (2011) proved that this problem is NP-hard for single product and single period 
situation and the proposed model of this paper is also NP-hard. 

4. Hybrid meta-heuristic algorithm 

Practitioners are often more interested in obtaining near-optimal solutions in relatively short amount 
of time. Genetic algorithms (GA) are powerful global search heuristics inspired by evolution theory 
(Holland, 1975). GAs have gained popularity for their ease of implementation and successful 
application in a wide ranges of optimization and search problems (Gen & Cheng, 2000). Peng Peng et 
al. (2011) used GA to solve problem in single period and single product situation with robust and 
expected cost optimization. However, their approach cannot solve this problem with multi period and 
multi product. Thus, we use a priority-based GA encoding to solve this problem that update to multi 
period and multi product state. Numerical experiments (Section 4) show that the algorithm 
outperforms LINGO in terms of CPU time and solution quality for most instances tested. Our GA 
encodes values for the locations of the supply, transshipment nodes and whether inventory is carried 
or not (xv, xw, xwc variables). Once these variables are chosen, other variables are set optimally for 
each scenario by solving priority algorithm. Finally, expected cost is get from probability of each 
scenario and its cost. 

4.1. priority-based genetic algorithms 

Search techniques such as Branch and Bound that work on improving one single solution consume 
much memory and time to obtain best solution are also good methods to use. However, GAs that 
maintains a population of solutions spends relatively little effort on each one, time and memory. The 
name of each individual in the population is chromosome. A chromosome consists a solution to the 
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problem and is often coded as a binary string of 0s and 1s. To find the best solution or near best 
solution of a problem in genetic algorithm, one or several iterations may be needed. Each iteration 
contains a process that the population is updated called evaluation. Iteration after this process must be 
evaluated by every individual by fitness function. Finally, iteration is stochastically selected multiple 
individuals from current population based on their fitness and is formed for the next population 
(generation) by either merging two chromosomes using a crossover operation or modifying a 
chromosome using a mutation operation. Next iteration based on this population is performed through 
their process that explained. The GA is stopped when termination criteria such as the maximum 
number of iterations is met. To obtain comprehensive information on GAs and their applications, 
view Gen and Cheng (2000). Researcher and practitioner applied GAs to various facility location and 
network design problems and proved to be a very effective heuristic method to solve this type of 
problem, especially problems of large scale (see, e.g. Alp et al., 2003; Drezner & Wesolowsky, 2003; 
Snyder & Daskin, 2006). 

In this paper, we apply a priority-based genetic algorithm to solve model by Gen et al. (2006). 
Different from the basic GA scheme, we apply a priority approach in GA, which not only considers 
position of gen in chromosome but also considers value of gen in its inside. Numerical tests show that 
this step greatly reduces the solution time. The details of our algorithm are described next. 

4.2. Representation scheme 

We use an n-digit binary string chromosome structure to represent a solution X, which composed of 
xw, xv and xwc variables where n =|xw|+|xv|+|xwc|. Each gene less than |xw|+|xv| state related 
facility of product n in a certain period is open (‘‘1’’) or not (‘‘0’’). And each gene else presents 
inventory level of each product in a certain period for next period is positive (‘‘1’’) or not (‘‘0’’).For 
example, in Fig. 1, Suppliers 1, 2  for product 1and 2 in period 1 are chosen in the current solution 
and transshipment 1 for product 1, 2 in period 1 are chosen in the current solution . Finally, supplier 
1can carry inventory to next period for both product.  

 

Fig. 1. Chromosome structure. 
After we build the chromosome, we determine value of gens less than |xw|+|xv| with fixed cost of use 
facility i or t for product n in period h. For gens into xwc segment, value of gens  is carrying cost to 
next period or c୧୬୦ . For each scenario, we multiply parameter of the scenario to chromosome and do 
algorithm as follow: 

4.3. Algorithm 

After we determine decision variables in each scenario, we calculate cost of each scenario. Then we 
multiply this cost (scenario cost) to probability of scenario. The expected cost is summation of the 
results of each scenario. 

4.4. GA operators 

Two individuals are selected randomly from the current population by crossover operator. To 
generate new individuals, crossover operator chose some digits randomly on one of the chromosome 
and switch with the digit at same position on another chromosome (See Fig. 2). 

xw୧୬୦ 

xwଵଵଵ 
1  1  0  0  1  1  0  0

xwc୧୬୦

xwcଵଶଵ
1 0 0 0 0  0  0 1 1

xvଵଵଵ
1 1 0 0

xv୲୬୦
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1. Sort gens which are open based on value (fixed cost) in xv୲୬୦ segment of each chromosome. 
2. For these gens calculate  	MT୲୬୦ = MT୲୬୦/st୲୬୦ . 
3. For all destination calculate 	W୬୦୨ = 	W୬୦୨/v୬ 
4. For transshipments from step 1 as (t) do. 

a. Sort destination (j) based on transshipment cost  for each transshipment (t)	b୲୬୦୨: 
i. Allocate	VB୲୬୦୨ = min	(D୬୦୨,W୬୦୨, MT୲୬୦). 

ii. Update value of൫D୬୦୨൯, ൫W୬୦୨൯and(MT୲୬୦) as bellow: 
1. W୬୦୨ = W୬୦୨ − VB୲୬୦୨ 
2. D୬୦୨ = D୬୦୨ − VB୲୬୦୨ 
3. Mt୲୬୦ = Mt୲୬୦ − VB୲୬୦୨ 

b. If൫ܦ୬୦୨൯ = 0	or	W୬୦୨ = 0	 select next j and go to step i. 
5. Allocate VB୲ୢ୬୦୨ = D୬୦୨ for each remain demands for product n in period h. 
6. Determine demand of each transshipment as follow and called Dt 

a. Dt୲୬୦ = ∑ VB୲୬୦୨୫୮୨ୀଵ  

b. Dt୲ୢ୬୦ = ∑ VB୲ୢ୬୦୨୫୮୨ୀଵ  

7. Sort gens which are open based on its value (fixed cost) in xw୧୬୦ segment. 

8. For these gens calculate Mi୧୬୦ = min	(୑౟౤౞୰౟౤౞ , ୐౟౤౞୪౟౤౞ ) and from best to worst of gens do: 

a. Sort transshipment nodes (t) based on cost of transportation for each supplier (i) as	k୧୬୦୲. 
b. Determine volume transportation VE୧୬୦୲ based on (VE୧୬୦୲ = min(Dt୲୬୦,Mi୧୬୦) + VEሖ ୧୬୦ିଵ୲) 
c. Update value of(Dt୲୬୦)and(Mi୧୬୦). 

i. Dt୲୬୦ = Dt୲୬୦ − VE୧୬୦୲ 
ii. Mi୧୬୦ = Mi୧୬୦ − VE୧୬୦୲ 

d. If (Dt୲୬୦) equal zero, select next t and go to step b. 
9. If all (Mi୧୬୦) parameters are zero go to step 10. If all (Dt୲୬୦) are zero go to step 13.  
10. Achieveܲݐܦ௡௛ାଵ = ሼmin(∑ M୧୬୦ାଵ௠௜ୀଵ , ∑ L୧୬୦ାଵ௠௜ୀଵ )ሽ − ∑ Dt୲୬୦ାଵ୲୳୲ୀଵ  and sort suppliers of product n 

in period h which capacity (Mi୧୬୦)is positive based on	d୧୬୦. 
11. If	ܲݐܦ௡௛ାଵ > 0 .then for above set do: 

a. allocate VD୧୬୦ = min	(Mi୧୬୦ାଵ, ∑ Dt୲୬୦୲୳୲ୀଵ ,  .	(௡௛ାଵݐܦܲ
b. Update Mi୧୬୦ାଵ	and	Dt୲୬୦ as follow 

i. Mi୧୬୦ାଵ = Mi୧୬୦ାଵ − VD୧୬୦ 
ii. For  Dt୲୬୦ > 0,then VEሖ ୧୬୦୲ = min	(Dt୲୬୦, VD୧୬୦) 

iii. For  Dt୲୬୦ > 0,then Dt୲୬୦ = Dt୲୬୦ − VEሖ ୧୬୦୲. 
iv. ܲݐܦ௡௛ାଵ = ௡௛ାଵݐܦܲ − VD୧୬୦ 

c. If Mi୧୬୦ାଵ = 0	and	∑ Dt୲୬୦୲୳୲ୀଵ ∗ ௡௛ାଵݐܦܲ > 0, go to next member of set in step 10. 
12. If  ∑ Dt୲୬୦୲୳୲ୀଵ = 0  then go to step 20 and if ܲݐܦ௡௛ାଵ = 0 go to step 19. 
13. Sort suppliers which Mi୧୬୦ are positive of product n in period h. 
14. For above set do: 

a. Allocate  VE୧୬୦୲ୢ = min(Dt୲ୢ୬୦,Mi୧୬୦)  
b.  Update Mi୧୬୦	and	Dt୲୬୦ as follow 

i. Mi୧୬୦ = Mi୧୬୦ − VE୧୬୦୲ୢ 
ii. Dt୲ୢ୬୦ = Dt୲ୢ୬୦ − VE୧୬୦୲ୢ 

c. If	Mi୧୬୦ = 0, then go to next member. 
15. Calculate	ܲݐܥ௡௛ାଵ = ∑ Dt୲୬୦ାଵ୲୳୲ୀଵ − ሼmin(∑ M୧୬୦ାଵ௠௜ୀଵ , ∑ L୧୬୦ାଵ௠௜ୀଵ )ሽ. 
16. If (∑ M୧୬୦௠௜ୀଵ )and	ܲݐܥ௡௛ାଵ    are greater than zero then go to step 17, else go to step 19. 
17. Sort suppliers like i in each period and each product which xwc୧୬୦ = 1	and	Mi୧୬୦ > 0	 based on 	c୧୬୦.  
18. For above set do:  

a. Allocate	VC୧୬୦ = min(	ܲݐܥ௡௛ାଵ,Mi୧୬୦). 
b. Update Mi୧୬୦	and	ܲݐܥ௡௛ାଵ as follow 

i. Mi୧୬୦ = Mi୧୬୦ − VC୧୬୦. 
ii. PCt୬୦ାଵ = PCt୬୦ାଵ − VC୧୬୦ 

iii. Mi୧୬୦ାଵ = Mi୧୬୦ାଵ + VC୧୬୦. 
c. If Mi୧୬୦ = 0, then go to next member of set in step 18. 

19. AllocateVEୢ୬୦୲ = ∑ Dt୲୬୦୲୳୲ୀଵ . 
20. AllocateVEୢ୬୦୲ୢ = Dt୲ୢ୬୦. 
21. Determine VA୧୬୦ = ∑ VE୧୬୦୲୲୳୲ୀଵ + VE୧୬୦୲ୢ 
22. Determine VAୢ୬୦ = min(∑ VEୢ୬୦୲୲୳୲ୀଵ + VEୢ୬୦୲ୢ,  .(ௗ௡௛ݔ
23. Determine VAdୢ୬୦ = ∑ VEୢ୬୦୲୲୳୲ୀଵ + VEୢ୬୦୲ୢ − VAୢ୬୦. 
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A probability is drawn uniformly from the set {0.0, 0.1, 0.2... 1.0} for each pair, and each digit is 
swapped with that probability. To prevent the algorithm from becoming trapped in local optima and 
to ensure a diverse population, a mutation process must be done. Mutation selects 20% of 
chromosome in each population. Then, mutation selects gen of each chromosome randomly. Finally, 
Mutation changes these gens from 1to 0 or 0 to 1, as shown in Fig. 3. 

1 1 0 1 0 1 0 0     0 1 1 1 0 1 0 0 
↕  ↕ ↕                 
0 1 1 1 0 0 1 1     1 1 0 1 0 0 1 1 
                   Parents                                                                                        Children 

Fig. 2. Crossover operation 
 

1 1 0 1 0 1 0 0 
     ↓   
1 1 0 1 0 0 0 0 

Fig. 3. Mutation operation 

4.5.  Termination criteria 

Many criteria exist to stop genetic algorithm as meet pre specified time or iteration limit and little 
improvement objective function for consecutive iterations. For our problem, we use second kind of 
criteria that select 0.00001of the best solution for little improvement objective function and 10 
iterations for number of consecutive iterations. To compare the best solution with the lower bound 
that calculated by LINGO, we use LP relaxation.  

5. Computational results 

We performed a series of numerical experiments to evaluate the performance of our algorithm. We 
coded the algorithm in MATLAB and executed it on a computer with an AMD Athlon X2 Neo 
2.66GHz processor and 2 GB of RAM, operating under Microsoft Windows 7 Ultimate. We 
benchmark our results using the branch-and-bound algorithm in Lingo 11.0, which we ran on the 
same hardware. Computation times are reported in seconds. 

5.1. Experimental design 

To investigate of our model, we generate 45 random data sets of different size of our model. Size of 
our problem is 10, 15 and 20 for supplier nodes, 10,15 and 20 for transshipment nodes, 3 and 4 for 
products and 15, 20 and 25 for destination node in 3,5 and 7 periods and 25,36,49 and 64 scenarios.  
The resulting instances are labeled ‘‘m-tu-nu-hu-mp-sce’’ where “sce” is number of scenario which 
the probability of scenarios are equal. (For example, instance‘‘10-20-4-7-20-64’’ has 10 supply 
nodes, 20 transshipment nodes, 4 products, 7 periods, 20 demand nodes, 64 scenarios).The fixed costs 
for supply nodes (f୧୬ଵ)and for transshipment nodes (f୲୬ଵ) are drawn uniformly from [200, 235] and 
[170, 220], respectively. The unit transportation costs from transshipment nodes to destination nodes b୲୬ଵ୨ and transportation costs from backup transshipment nodes to destination nodes b୲ୢ୬ଵ୨are drawn 
uniformly from [4, 6] and [25,30], respectively.  In addition, the unit transportation costs from supply 
nodes to transshipment nodes k୧୬ଵ୲ and transportation costs from supply nodes to backup 
transshipment nodes k୧୬ଵ୲ୢ are drawn uniformly from [1, 20] and [26,41], respectively. Finally, the 
unit transportation costs from backup supplier to transshipment nodes kୢ୬ଵ୲ and backup 
transshipment nodes kୢ୬ଵ୲ୢ are drawn uniformly from [42, 62] and [70, 85], respectively. Operation 
costs for supply nodes as production costs	a୧୬ଵ, carrying costs 	c୧୬ଵand backorder costs 	d୧୬ଵ are 
drawn uniformly from [10, 13], [4, 6] and [90,100], respectively. Production costs for backup supply 
nodes as 	aୢ୬ଵ and 	adୢ୬ଵ are [120 130] and [750 760] respectively. At each demand node, the 
parameter 	D୬୦୨ is drawn uniformly from [600, 1100]. At each supply nodes, the machine 
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capacity	M୧୬୦ and labor level 	L୧୬୦ are drawn uniformly from [200, 1100] and [500, 1000]. At each 
transshipment nodes, the capacity 	Mt୲୬୦ is drawn uniformly from [200, 900].finally, at each 
destination nodes the warehouse capacity 	W୬୦୨ is drawn uniformly from [800, 1200]. The capacity of 
the emergency facility is always set to infinity but reserved capacity, which determine between back 
up supplier and logistic segment is 100. The disruption scenarios are generated randomly until get sce 
unique scenarios.  

5.2 Algorithm performance 

We compare the performance of our GA with LINGO in Table 1.  

Table 1 
Algorithm performance – vs. LINGO 

Test problem lingo GA Diff 
Time Cost Time Cost Time Cost 

10-10-3-5-15-25 38.32903 120281067.8 50.43658 133353290.1 32% 9.8% 
10-10-3-5-15-36 55.30912 143945594.8 78.66427 158824296.4 42% 9.4% 
10-10-3-5-15-49 76.28904 143747764.7 83.29719 158612876.9 9% 9.4% 
10-10-3-5-15-64 105.9592 148744814.9 97.13254 165922394.3 8% 10.4% 
10-10-4-5-15-25 57.70918 162018844.5 65.06504 173845684.3 13% 6.8% 
10-10-4-5-15-36 83.48927 242296863.2 54.83608 265588213.1 34% 8.8% 
10-10-4-5-15-49 115.4193 270082708.4 94.17767 294610461.8 18% 8.3% 
10-10-4-5-15-64 153.9793 167230061.4 101.9228 185131193.2 34% 9.7% 
10-10-3-7-15-25 54.12935 185993844.6 43.47341 205385194.2 20% 9.4% 
10-10-3-7-15-36 79.67941 266580367.2 75.44138 288398599.2 5% 7.6% 
10-10-3-7-15-49 108.9894 266935813.1 95.20869 289751434.1 13% 7.9% 
10-10-3-7-15-64 144.4394 264150503.5 94.28847 288338464.1 35% 8.4% 
10-10-4-7-15-25 325.0291 462541249.8 47.62104 459711320.7 85% 0.6% 
10-10-4-7-15-36 120.9496 343789092.5 52.35256 364711817.5 57% 5.7% 
10-10-4-7-15-49 167.6495 345713905.6 64.82729 365788689.8 61% 5.5% 
15-10-4-5-20-25 98.0683 307845383 46.2273 339127202.8 53% 9.2% 
15-10-4-5-20-36 143.5983 307421922 67.27968 338900351.5 53% 9.3% 
15-10-4-5-20-49 199.4183 282817140.1 110.3454 305210936.3 45% 7.3% 
15-10-4-5-20-64 406.9083 282600558.8 129.7485 304956716.3 68% 7.3% 
15-10-4-7-20-25 145.0583 361816788.9 53.6301 388642173.9 63% 6.9% 
15-10-4-7-20-36 210.119 322355694.7 82.20221 351245706.4 61% 8.2% 
15-10-4-7-20-49 422.639 322134158 116.4464 351020555.6 72% 8.2% 
15-15-3-5-20-25 87.13816 262299028.5 57.65947 293321941.5 34% 10.6% 
15-15-3-5-20-36 127.6182 225532974 81.69035 248474642 36% 9.2% 
15-15-3-5-20-49 177.1682 177808755 123.4124 195946002.2 30% 9.3% 
15-15-3-5-20-64 372.2482 239745119.3 152.2498 266406872.7 59% 10.0% 
15-15-3-7-20-25 125.6282 359671417.9 70.34346 393693671.2 44% 8.6% 
15-15-3-7-20-36 183.3482 426891462 103.7308 458722391 43% 6.9%
15-15-3-7-20-49 386.6582 354411010 125.6565 385831751.2 68% 8.1% 
20-15-4-5-25-25 203.5893 371931435.8 68.74606 398991155.2 66% 6.8% 
20-15-4-5-25-36 407.4993 441614755.2 93.05132 489555845.6 77% 9.8%
20-15-4-5-25-49 608.1494 287415466.2 142.6571 308145585.7 77% 6.7% 
20-15-4-5-25-64 406.9083 282600558.8 129.7485 304956716.3 68% 7.3% 
20-15-3-7-25-25 191.7193 412296295.4 84.49902 441014735.2 56% 6.5% 
20-15-3-7-25-36 377.2193 411786908.8 97.9248 440826064.3 74% 6.6% 
20-15-3-7-25-49 n/a n/a 125.6565 385831751.2 n/a n/a 
20-15-4-7-25-25 295.5894 429032639.3 76.34809 455186753.1 74% 5.7% 
20-15-4-7-25-36 n/a n/a 82.20221 351245706.4 n/a n/a 
20-15-4-7-25-49 n/a n/a 116.4464 351020555.6 n/a n/a 
20-20-3-5-25-25 168.3592 320919455.1 81.90629 347696952.7 51% 7.7% 
20-20-3-5-25-36 241.9392 320337794.1 98.3552 347544924.1 59% 7.8% 
20-20-3-5-25-49 n/a n/a 123.4124 195946002.2 n/a n/a 
20-20-3-5-25-64 n/a n/a 152.2498 266406872.7 n/a n/a 
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The ‘‘Test Problem’’ column gives the instance name. For each solution procedure as genetic 
algorithm and LINGO, two columns report the run time (‘‘Time’’) and objective value (‘‘Cost’’).The 
CPU times for them include the time required to compute the optimal scenario costs. The two 
procedures are compared in the (‘‘% DIFF’’) column, where the (‘‘Time’’) column gives the 
percentages of LINGO’s CPU time required by our GA and the (‘‘Cost’’) gives the percent difference 
between the objective function values. A value less than 100% in the (‘‘Cost’’) column indicates that 
our algorithm found a better solution, while a value less than 100% in the (‘‘Time’’) column indicates 
that our algorithm was faster, which occurs in all instances. As shown in Table 1, when compared 
with LINGO, our algorithm was able to find the better solutions in shorter time. In this table, n/a state 
a LINGO cannot solve it, because lack of memory on our system. Gap of cost of our algorithm is less 
than 10% and average gap of time of our algorithm is 47% in our numerical example. 

 

6. Conclusion 

 

In this paper, we have presented a multi segment multi product multi period supply chain network 
design model, which minimizes the expected cost. We propose an algorithm based on GA-priority to 
solve the model, and computational experiments show that we can obtain quality solutions that are 
very close to optimal given a fraction of the time required by LINGO. This makes our heuristic 
attractive in situations in which numerous experiments must be carried out and obtaining high-
quality, near optimal solutions in a short period of time is desired. The scenario approach can also be 
adopted to model other sources of uncertainties, such as customer demands, transportation costs, and 
so on. It is also possible to consider network design together with other supply chain problems, such 
as capacity expansion, vehicle routing, and so on, where traditional results are often in conflict with 
the objective of designing for disruptions. 
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