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 Hub location is crucial for resilient and uninterrupted supply chain operations, particularly during 
disruptions or unforeseen events. In this paper, we propose a resilience hub location framework 
for Third Party Logistics (3PL) companies with two key objectives: optimizing demand flows 
and establishing a resilient network capable of with-standing sudden disruptions. The study aims 
to identify the key criteria that contribute to the successful implementation of the resilient center. 
The proposed structure utilizes a two-phase decision-making methodology. The first phase 
presents a new Multi-Criteria Decision-Making (MCDM) approach called SWARA-EDAS 
method that evaluates and ranks potential locations based on resiliency criteria. The second phase 
proposes an optimization model to determine the optimal hub location. To illustrate the approach, 
a real-world case study of a 3PL company in Tehran is included. Due to the absence of precise 
demand data in the case study, a novel clustering approach is proposed to estimate the demand 
flow. Each cluster can be considered as a distinct demand point, and a clustering analysis 
involving 122 regions within Tehran is conducted, taking into account various factors such as 
population, economic index, accessibility to the Internet, and the number of business units. To 
enhance the resiliency of the network, mobile distribution centers are also deployed. These 
mobile centers not only provide flexibility but also serve as backup capabilities in the event of a 
disruption or failure at the fixed hub. The proposed structure offers practical in-sights for 3PL 
companies seeking to implement a resilient network structure. 
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1. Introduction 

 

Hubs play a crucial role in logistic networks by facilitating the switching, transshipment, and sorting of commodities in 
complex distribution networks involving multiple sources and destinations (Alumur & Kara, 2008). These hubs efficiently 
consolidate commodity flow from the same source and then redistribute them through various streams to reach the intended 
destination. By leveraging economies of scale, hubs effectively reduce transportation distances between origin and 
destination nodes (Farahani et al., 2013). 

The establishment of a hub is typically a strategic decision that requires substantial investment, considerable social and 
human capital engagement, and also a significant amount of time to integrate into the transportation network (Vieira & 
Luna, 2016). Due to the considerable investment at stake, it is crucial to consider resiliency criteria for the hub location, to 
get the least impact of disruption and unforeseen events. The importance of resilience in the face of supply chain disruptions 
cannot be understated (Ambulkar et al., 2015). During the COVID-19 pandemic, disruptions in the supply chain, particularly 
those related to distribution centers, had a significant impact on supply chain operations and performance (Zheng et al., 
2022).  
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The study by Zsidisin and Wagner (2010) emphasizes that while redundant supply chain practices can offer a company 
extra time to recover from disruptions, there are associated costs with this strategy, suggesting that innovative solutions for 
distribution centers can provide a cost-effective solution to enhance resilience. Mobile Distribution Centers (DCs) could be 
considered as an innovative and adaptive approach to stand against the concept of “Hub Paradox1” (Liu et al., 2022). In 
fact, mobile DCs play a crucial role in enhancing the resilience of a supply chain network. Firstly, mobile DCs provide a 
level of flexibility and adaptability that is essential in responding to disruptions (Faugère et al., 2020), (Satish Natarajan, 
2020). They can be strategically positioned and relocated as needed, allowing for quick adjustments and rerouting of 
logistics operations in the face of unforeseen events such as natural disasters or transportation disruptions. This ensures that 
the logistics center can continue its operations and maintain the flow of goods even in challenging circumstances. 

Additionally, mobile DCs contribute to the network's resilience by providing redundancy and backup capabilities. In the 
event of a disruption or failure at a fixed logistics hub, the mobile DCs can quickly step in and continue operations, 
minimizing downtime and ensuring the continuity of services. This redundancy not only helps mitigate the impact of 
disruptions on customers but also provides a safety net for the logistics center itself, reducing the risk of significant financial 
losses or reputational damage. 

This paper seeks to develop a resilient framework for third-party logistics providers. The proposed framework utilizes a 
two-phase decision-making methodology. In the initial phase, an innovative MCDM approach known as the SWARA-
EDAS method is employed to assess the value of potential locations, considering resiliency criteria. In the subsequent phase, 
an optimization model is presented to determine the optimal location for the hub. Additionally, to enhance network 
resilience, the deployment and the location of mobile distribution centers within the clusters is proposed. 

It is important to note that the proposed framework is implemented in a third-party logistics company located in Tehran. 
However, due to the substantial customer base and the unavailability of precise data, we propose a novel clustering approach 
in 122 regions of Tehran to estimate customer demand using the suggested clustering method.  

In summary, this paper makes three significant contributions: 

• Developing an innovative two-phase methodology that combines a Multi-Criteria Decision-Making approach 
using SWARA-EDAS, and a mathematical model for determining resilient hub locations. 

• Introducing a novel clustering approach to analyze 122 regions within the selected case study. 
• Developing a model for the deployment of mobile distribution centers within clusters of the selected 3Pl 

company. 
The subsequent sections of this paper are organized as follows: Section 2 presents a comprehensive review of the most 
relevant studies. In Section 3, we propose a two-phase decision-making methodology. The initial phase employs a hybrid 
SWARA-EDAS method, which is an MCDM approach, to evaluate the potential locations based on resiliency criteria. The 
subsequent phase introduces an optimization model for determining the optimal hub location. In Section 4, we introduce a 
clustering approach to estimate customer demands. In section 5, we identify the locations of mobile DCs in our case study 
conducted in Iran. Finally, in Section 6, we conclude the paper by summarizing our findings and providing suggestions for 
future research. 

2. Literature Review 
 

Extensive research has been conducted on the hub location problem in the literature, leading to the identification of various 
classification criteria. These criteria include the number of hubs, the selection process for candidate locations, the objective 
function, and the hub's capacity. The initial exploration of this domain was introduced by (O’kelly, 1986) . Furthermore, 
Hsieh and Kao (2019) have extensively studied the hub location problem and its different variations, and interested readers 
are encouraged to refer to their work. However, the practical implementation of resilient hub locations, especially in the 
face of disruption like natural hazards, presents some challenges. Although, the idea of "resilience hubs" has recently 
emerged to aid communities in facing challenges and enhancing their well-being during disasters and normal conditions. 
Recently Ciriaco and Wong (2022) offered an initial conceptual comprehension of resilience hubs, particularly their 
transportation requirements, by conducting a thorough literature review. In this context, (Kulkarni et al., 2021) suggested 
using an integer programming to create solution approaches for designing hyperconnected networks that can withstand 
unanticipated disruptions on a large scale.  

In another study, Kulkarni et al. (2022) proposed two approaches for designing resilient hyperconnected logistics hub 
networks in the context of resilient parcel delivery networks. These approaches were motivated by new opportunities 
introduced by the Physical Internet. The first approach involves multiple shortest paths, while the second approach involves 
multiple shortest edge-disjoint paths. To address computational tractability issues, the authors developed a metaheuristic 
algorithm. A comprehensive study about future direction of supply chain resilience is presented by Katsaliaki et al. (2021) 
that eager readers are referred to. 

 
1 The hub paradox in supply chain and distribution refers to the tension between the benefits of centralization and the risks of disruption. 
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In order to enhance the review of the relevant literature, a summary of recent papers in the similar field as our research has 
been provided in Table 1.  

Table 1  
Summarized literature review 

 2 Best–Worst Method 3 Evaluation based on Distance from Average Solution 4 Robustness, Redundancy, Resourcefulness, and Rapidity  5 Latin Hypercube Sampling 6 Sample Average Approximation 7 Scenario Reduction 

Row Reference Novelty Methodology 

1 (Ciriaco & Wong, 
2022) Conceptual understanding of resilience hubs and their transportation needs Conceptual analysis 

2 (Maharjan & 
Kato, 2022) 

Reviewing existing literature on Resilient supply chain network design and 
proposing a new classification for quantitative resilience measures. A systematic literature review 

3 (Aldrighetti et al., 
2021) 

Focus on the costs associated with resilience and disruptions in supply chain 
network design models Systematic literature review 

4 
(López-Castro & 
Solano-Charris, 

2021) 

Integration of resilience and sustainability criteria in the supply chain network 
design Systematic Literature Review 

5 (Kulkarni et al., 
2022) 

The proposal of solution methodologies based on integer programming for the 
establishment of logistics hubs and the connection of origin-destination pairs. Graph-theoretic measures 

6 (Zhalechian et al., 
2018) Designs a bi-objective reliable logistics network based on a hub location problem Hybrid solution approach 

7 (Gkanatsas & 
Krikke, 2020) 

Overview of quantitative modelling approaches for resilient 3PL supply chain 
network designs Systematic literature review 

8 (Özmen & 
Aydoğan, 2020) A three-stage methodology of BWM2 –EDAS3 

Three-stage approach that 
includes criteria determination, 

weighting, and ranking. 

9 (Pahwa & Jaller, 
2023) Introduces the R44 Last Mile Distribution Resilience Triangle Framework 

Performance-based qualitative-
cumquantitative domain-

agnostic framework. 

10 (Saffari et al., 
2023) 

A novel multi-objective model for resilient, sustainable, and responsive 
forward/reverse logistics network design by cionsidering horizontal 

collaboration. 

A multi-objective algorithm 
with a new aggregation 

approach 

11 (Maharjan & 
Kato, 2022) 

Providing a comprehensive review of recent literature on resilient supply 
chain network design Systematic literature review 

12 (Sundarakani et 
al., 2021) 

Examining the feasibility of establishing or relocating distribution facilities within 
the global supply chain, by considering factors such as costs, fulfillment 

capabilities, trade uncertainties, and risks, with the aim of achieving a resilient and 
sustainable supply chain. 

Robust Optimisation and Mixed 
Integer Linear Programming 

(ROMILP) model 

13 (Yu et al., 2017) Developing risk-averse optimization models for an uncapacitated facility location 
problem with random facility disruptions. 

Mixed-integer nonlinear 
programming 

14 (Lu & Cheng, 
2021) 

Introducing a budgeted uncertainty set that effectively encompasses both 
disruptions in facilities and uncertain customer demand resulting from the failures 

of adjacent facilities. 

Three two-stage robust 
optimization formulations 

15 (N. Wang et al., 
2023) 

Considering a four-tier supply chain network and focuses on optimizing supply 
chain resilience by determining the inventory quantity of each material before 

disruptions, and locating temporary distribution centers, 

Mixed integer linear 
programming model using 

LHS5, SAA6, and SR7 
methods 
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It is important to highlight that the majority of studies in the field of resiliency, particularly concerning resilient hubs, 
primarily concentrate on their role as emergency centers, providing assistance to communities before, during, and after 
disasters. While some research has been conducted on the design of resilient networks within the realm of business logistics 
(see Table 1), To our understanding, there exists a significant lack of thorough research regarding resilient hub locations 
within the logistics industry. Therefore, we propose an innovative structure that considers the resiliency criteria for 
determining the hub location. Additionally, we consider the incorporation of mobile DCs as a flexible approach to bolster 
network resiliency. Although, Faugère et al. (2020)  proposed a mobile access hub structure for parcel delivery, it does not 
account for the relocation of mobile centers to fixed hubs, and its focus is more aligned with sustainability rather than 
resilience. Generally, the objective of this study is to propose a resilient structure for hubs and mobile DCs within a 3PL 
system. Given the strategic nature of hub location decisions and the substantial investments required, our aim is to design a 
distribution network that can effectively withstand disruptions. To achieve this, by using the hybrid SWARA-EDAS 
method, we initially assess and prioritize the critical criteria for establishing a resilient hub that is least vulnerable to 
disruptions. Considering the resilience criteria, we ascertain the optimal location for a logistics hub within a specific case 
study. Additionally, we identify the appropriate locations for mobile DCs that function as adaptable and also backup 
consolidation and deconsolidation centers, thereby enhancing the resilience of the network. 

The subsequent section presents a proposed two-phase decision-making methodology for determining the resilient location 
of the hub. 

 3. Hub Location: A Two-Phase Decision-Making Methodology 

 3.1 Phase One: Hybrid SWARA- EDAS Method 
 

 This methodology comprises three key parts. First, a comprehensive literature review is conducted to identify relevant and 
essential criteria for locating a resilience hub in a supply chain. The second part introduces the SWARA (Step-wise Weight 
Assessment Ratio Analysis) method, which is utilized to assign weights to the identified criteria based on their significance. 
This allows for a systematic assessment of their relative importance. The third part employs the EDAS (Evaluation based 
on Distance from Average Solution) method, which scores and ranks potential hub locations using the weighted criteria. 
The SWARA-EDAS method offers substantial advantages in evaluating potential locations for hubs and distribution centers 
in terms of resiliency. The SWARA component enables the decision maker to select, evaluate, and weigh the indicators, 
while the EDAS method considers both positive and negative deviations from an average solution, making it effective in 
balanced decision-making. The adaptability of the SWARA-EDAS method in facilitating informed decision-making even 
with estimated data has been demonstrated in various applications such as supplier selection, personnel selection in the 
aviation industry, and evaluation of supply chain management (Dahooie et al., 2020; Kurnaz et al., 2023). Additionally, the 
SWARA method has been found to be simpler to comprehend with fewer pair comparisons than similar methods such as 
AHP and ANP, making it a practical choice in decision-making processes (Mostafaeipour et al., 2020). In addition, the 
integration of fuzzy SWARA and EDAS methods has been shown to increase the accuracy of risk analysis, particularly in 
the context of turnaround project risk assessment in upstream oil process industries (Moniri et al., 2021). These references 
collectively support the effectiveness and practical applicability of the SWARA-EDAS method in multi-criteria decision-
making for evaluating locations in terms of resiliency. 
 
In the subsequent sections, each part of the methodology will be explained in detail, providing a comprehensive 
understanding of the approach. 

 
3.1.1 Identified Criteria for Selecting a Resilience Hub Location 

 
The identification of criteria for locating a resilience hub in a supply chain is a crucial step in ensuring the resilience and 
continuity of supply chains, particularly in the face of disruptions or unexpected events. Through an extensive literature 
review and analysis of existing studies, industry reports, and best practices in supply chain management and disaster 
resilience, we have identified seven criteria that play a significant role in locating a resilient hub center. It is essential to 
understand the rationale behind each criterion and its contribution to the resilience of hub locations. Below, we expand on 
the rationale and significance of each criterion selected for assessing location resilience: 
 
Land Cost and Availability: The cost and availability of land are pivotal factors in the establishment of hubs and 
distribution centers. Affordable and accessible land offers flexibility for operational expansion or modifications in response 
to emergencies or evolving needs. This criterion also involves evaluating land in areas less vulnerable to disasters, thereby 
enhancing resilience and reducing potential disruption risks (Pu et al., 2023). 
 
Accessibility to Transportation Infrastructure: Proximity to highways, ports, or airports is crucial for maintaining supply 
chain flow, especially during disruptions. Reliable access to diverse transportation modes and routes is a cornerstone of 
resilience, enabling quick rerouting of goods and maintaining operational continuity in crisis scenarios (Pettit et al., 2019). 
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Accessibility to Transport Terminals: The ease of reaching major transport terminals, particularly for small-sized 
shipments, is essential for rapid response capabilities during disruptions. This criterion focuses on the location’s 
connectivity with key logistic nodes, ensuring efficient material flow under varying circumstances (Remko, 2020). 
 
Geographical Situation and Environmental Safety: The geographical location's inherent characteristics, such as its 
proximity to disaster-prone areas or major transportation routes, are crucial in mitigating the impact of potential disasters. 
A location’s environmental safety influences its vulnerability to disruptions and shapes its recovery strategies post-
disruption (Brandon‐Jones et al., 2014). 
 
Availability of Labor: The presence of a skilled workforce is vital for effective operation and swift recovery following 
disruptions (Jakubicek & Woudsma, 2011). Labor availability impacts the ability to maintain operational efficiency during 
normal conditions and enhances the capacity for rapid response and recovery in crisis situations. 
 
The Urban Fabric of the Location: The existing urban infrastructure and surroundings, including facilities, services, and 
amenities, significantly contribute to a location's resilience (Çakmak et al., 2021). A robust urban fabric supports logistical 
operations by providing additional resources and capabilities, especially critical during emergency responses. 
 
Communications System: Effective communication infrastructure is indispensable in resilience-building (Ciriaco & 
Wong, 2022). Timely information dissemination and efficient communication channels are key during disruptions, aiding 
in quick decision-making and coordination among various stakeholders. 
 
Table 2 summarizes the key criteria for selecting resilient hub locations. The table serves as a quick reference, outlining 
each criterion's importance and source, facilitating easier application in decision-making. 

 
Table 2   
Criteria for Locating a Disaster Resilience Hub in a Supply Chain 
Index Criteria Brief Explanation Source 

C1 Land cost and availability 
Refers to the cost and availability of suitable 

land for establishing a hub and distribution 
center. 

(Sopha et al., 2016), (Chou et al., 2008) , (Stević 
et al., 2018), (Alam, 2013) (Pourmohammadreza 

& Jokar, 2023) (Pu et al., 2023) 

C2 
Accessibility to 

transportation infrastructure 

Considers the proximity and ease of access to 
transportation infrastructure, such as highways, 

ports, or airports. 

(Sopha et al., 2016), (Stević et al., 2018), 
(Uyanik et al., 2020), (Erkayman et al., 2011), 

(Pettit et al., 2019) 

C3 
Accessibility to the transport 

terminals 

Focuses on the proximity and ease of access 
to major transportation terminals, such as rail or 
container terminals for small-sized shipments. 

Based on the expert team's idea of the selected 
company, (Remko, 2020) 

C4 
Geographical situation and 

environmental safety of the 
location 

Takes into account the geographical 
characteristics of the location, such as its 

proximity to potential disaster-prone areas or 
transportation routes. 

(Sopha et al., 2016), (Uyanik et al., 2020), (Erbaş 
et al., 2018) , (Witkowski et al., 2018), (Tadić et 

al., 2014), (B. Wang et al., 2014) 

C5 Availability of labor 
Considers the availability of skilled labor or 

workforce in the area, which is crucial for 
operating the center effectively. 

(Jakubicek & Woudsma, 2011), (Maharjan & 
Hanaoka, 2019) 

C6 
The urban fabric of the 

location 

Refers to the existing urban infrastructure and 
surroundings of the location, including facilities, 

services, and amenities. 

(Sopha et al., 2016), (Chou et al., 2008), 
(Stević et al., 2018), (Uyanik et al., 2020), 

(Çakmak et al., 2021) 

C7 Communications system 
Effective communication and timely 

dissemination of information in case of 
disruptions or disasters. 

(Ciriaco & Wong, 2022), (USDN, n.d.) 

 
 

By incorporating these criteria into our proposed framework, we aim to provide a comprehensive approach for 3PL 
companies to evaluate and select suitable locations for their hubs and distribution centers. This approach will enable them 
to optimize their supply chain operations, mitigate risks, and enhance their ability to respond and recover from unexpected 
disruptions. 
 
This study employs a hybrid MCDM approach, integrating the SWARA and EDAS methods. This innovative hybrid 
methodology, developed as the main framework of our research, has been previously utilized in only one other study for 
practical application in house plan shape evaluation (Juodagalvienė et al., 2023). The current study leverages the robustness 
of the EDAS method to derive stable answers, and the flexibility of SWARA to evaluate criteria based on policy-based 
strategy and perspective. 

 
3.1.2 SWARA Method 

 
The SWARA method is employed in the first phase of the process, aiming to ascertain the weights of the criteria. This 
method has been selected due to its ability to handle uncertainty and its efficiency in determining the weights of decision 
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criteria in a hierarchical structure (Salehi et al., 2022). Our study uses SWARA to deal with subjectivity and bias associated 
with the evaluation of decision criteria (Appendix). In order to implement the SWARA method, a group of highly 
experienced experts in the logistics industry was surveyed. These experts were asked to fill in SWARA forms, expressing 
their opinions on the importance of different criteria for the selection of resilience locations. The experts' opinions, captured 
through SWARA, formed the basis for the weighting of the decision criteria. Table 3  presents the outcomes of the SWARA 
method.  

 
Table 3  
The ranks of the factors 

Factors Comparative importance of average 
value (𝐒𝐂𝐣) 

Coefficient ( 𝐊𝐂𝐣=𝐒𝐂𝐣+1) 
Recalculated          (𝐐𝐂𝐣= (𝐐𝐂𝐣ି𝟏)/ 𝐊𝐂𝐣) 

Weight (𝐖𝐂𝐣) Rank 

C1 0 1.00 1.00 0.22 1 
C2 0.09 1.09 0.92 0.20 2 
C3 0.1625 1.16 0.79 0.18 3 
C6 0.23125 1.23 0.64 0.14 4 
C4 0.275 1.28 0.50 0.11 5 
C7 0.35 1.35 0.37 0.08 6 
C5 0.34375 1.34 0.28 0.06 7 

 

 
3.1.3 EDAS Method 

 
The EDAS method is utilized in the second phase of the process, ranking the zones based on the weighted criteria derived 
from the SWARA method. In order to mitigate the high complexity inherent in the continuous form of the hub location 
problem, a clustering strategy has been devised to partition Tehran (the region of our case study) into distinct zones. This 
approach facilitates the transformation of the problem into a discrete hub location, whereby a finite set of potential hub 
locations can be identified. Unlike typical discrete hub location problems where candidate locations are predetermined, in 
this particular case, the list of potential locations is unknown. Consequently, a set of notable criteria, as detailed in Table 2, 
have been established to evaluate potential hub locations. To that end, the EDAS method has been selected due to its ability 
to provide an objective and precise ranking of alternative locations based on multiple criteria. This method calculates the 
distances of each alternative from the average solutions, considering both the best and worst performance of each criterion. 
It uses these distances to calculate a relative closeness coefficient for each alternative, which in turn forms the basis for the 
final ranking of locations. The outcomes are shown in Table 4. 
 
Table 4  
The outcomes of the EDAS method 

Area SPi
8 SNi

9 NSPi
10 NSNi

11 ASi
12 

A1 0.094 0.194 0.108 0.687 0.398 
A2 0.137 0.167 0.159 0.731 0.445 
A3 0.442 0.147 0.512 0.763 0.638 
A4 0.562 0.097 0.651 0.844 0.747 
A5 0.779 0.031 0.902 0.950 0.926 
A6 0.846 0.031 0.980 0.950 0.965 
A7 0.863 0.028 1.000 0.955 0.978 
A8 0.139 0.380 0.161 0.388 0.275 
A9 0.061 0.414 0.071 0.333 0.202 
A10 0.413 0.042 0.478 0.933 0.706 
A11 0.308 0.042 0.357 0.933 0.645 
A12 0.116 0.143 0.134 0.770 0.452 
A13 0.102 0.142 0.118 0.772 0.445 
A14 0.061 0.379 0.071 0.389 0.230 
A15 0.061 0.379 0.071 0.389 0.230 
A16 0.149 0.386 0.173 0.378 0.276 
A17 0.014 0.621 0.016 0.000 0.008 
A18 0.014 0.621 0.016 0.000 0.008 
A19 0.015 0.551 0.018 0.112 0.065 
A20 0.160 0.354 0.186 0.430 0.308 
A21 0.160 0.354 0.186 0.430 0.308 
A22 0.144 0.138 0.167 0.778 0.472 

 
The column header of Table 4 is described in the following (Keshavarz Ghorabaee et al., 2015).  

 8 The sum of positive distances for location i 9 The sum of negative distances for location i 10 Normalized sum of positive distances for location i 11 Normalized sum of negative distances for location i 12 Appraisal score for location i 
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SP: This metric calculates the aggregate positive deviation of each alternative from the average solution for all criteria. A 
higher SP value indicates that an alternative performs significantly better than the average across multiple criteria, 
highlighting its strengths. 
 
For each alternative 𝑖, SPi is calculated as:  
 𝑆𝑃௜ = ∑ 𝑤௝ ୫ୟ୶ (଴,൫஺௏ೕି௑೔ೕ൯)஺௏ೕ௠௝ୀଵ  , where 𝐴𝑉௝ = ∑ ௫೔ೕ೙೔సభ௡  (1) 

where 𝑥௜௝ embodies the performance score of alternative Ai with respect to criterion Cj, 𝑤௝ is the weight of criterion j, and 𝑛 is the total number of locations. 
 
SN: Conversely, SN measures the total negative deviation of each alternative from the average solution. A lower SN value 
is preferable, indicating fewer or less significant weaknesses relative to the average performance. 
 𝑆𝑁௜ = ෍𝑤௝ max ቀ0, ൫𝑋௜௝ − 𝐴𝑉௝൯ቁ𝐴𝑉௝௠

௝ୀଵ   (2) 

 
NSP: Normalization of SP is crucial for ensuring comparability between alternatives. NSP is obtained by dividing the SP 
of each alternative by the sum of all SPs. This step adjusts for scale differences and provides a relative measure of each 
alternative's positive aspects. 
 
NSN: This involves normalizing the SN values. It is calculated by dividing the SN of each alternative by the sum of all SNs.  
AS: The AS is a comprehensive metric that combines the positive and negative aspects of each alternative.  

 𝑁𝑆𝑃௜ = 𝑆𝑃௜𝑚𝑎𝑥௜(𝑆𝑃௜)  (3) 

𝑁𝑆𝑁௜ = 1 − 𝑆𝑁௜𝑚𝑎𝑥௜(𝑆𝑁௜)  (4) 𝐴𝑆௜ = (ேௌ௉೔ାேௌே೔)ଶ    (5) 
 
Upon generating scores for each location using the EDAS method, these scores were subsequently normalized to facilitate 
further analysis and comparison among the locations. This normalization process involved dividing each EDAS score 
(A7=0.863) by the maximum score obtained among all locations, effectively translating the raw scores into a range of 0 to 
1 (Table 5). 

 
Table 5  
Normalizing scores and selecting the most appropriate areas 

Area  Normalized Score Area Normalized Score 
A1 0.407 A12 0.463 
A2 0.455 A13 0.455 
A3 0.652 A14 0.235 
A4 0.765 A15 0.235 
A5 0.947 A16 0.282 
A6 0.987 A17 0.008 
A7 1.000 A18 0.008 
A8 0.281 A19 0.067 
A9 0.207 A20 0.315 
A10 0.722 A21 0.315 
A11 0.660 A22 0.483 

 
Following this, the locations with normalized scores exceeding the middle score (0.5) were identified as potential 
candidates. The locations that met this criterion were A3, A4, A5, A6, A7, A10, and A11. These locations emerged as suitable 
candidates owing to their superior scoring under the hybrid SWARA-EDAS methodology. It is important to note that this 
selection represents a relative superiority in disaster resilience hub characteristics, as defined by the multi-criteria decision 
framework of our study. These candidate locations were earmarked for further examination and subsequently underwent a 
mathematical model. 
 
The proposed hybrid methodology integrates the strengths of both the SWARA and EDAS methods. The scores derived 
from the SWARA method are used as input for the EDAS method, ensuring that the final ranking of locations incorporates 
the expert opinion on the importance of different decision criteria. This two-phase process provides a robust and 
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comprehensive approach to the selection of disaster resilience hub location centers. In the following, we present our 
mathematical modeling for the resilient hub location. 
 
3.2 Phase Two: Mathematical Formulation 

In this section, we present a discrete hub location approach by taking into account the resilient potential hub location 
identified in the previous stage. 

Parameters: 𝐾: Set of all potential resilient locations 𝐶௜௝: The distance cost between non hub cluster 𝑖 and hub cluster 𝑗. ℎ௜௝: The flow from cluster 𝑖 to cluster 𝑗. 
Decision variables: 𝑦௜௝: Binary variable; takes value 1 if cluster 𝑡 is allocated to candidate location 𝑘. 𝑦௝௝: Binary variable; takes value 1 if the hub is established in location 𝑘. 
 
Considering the above definitions, the hub location problem is stated as follows.   

 𝑚𝑖𝑛෍෍෍ℎ௜௝൫𝐶௜௞ + 𝐶௝௞൯𝑦௜௝ × 𝑦௞௝௞                                                       ௝௜  (6) 

subject to  
 ∑ 𝑦௝௝ = 1   ௝    (7) 𝑦௜௝ ≤ 𝑦௝௝        ∀𝑖, 𝑗 (8) ∑ 𝑦௜௝ = 1           ∀𝑖 ௝    (9) 𝑦௜௝ = (0,1) (10) 
 

Objective function (6) minimizes the overall transfer cost through the hub. Eq. (7) specifies the existence of a single hub. 
Additionally, Eq. (8) mandates that node 𝑖 is exclusively connected to an established hub at a cluster 𝑗. Constraint (9) 
ensures that each cluster is assigned to the hub. Constraint (10) shows the domains of decision variables.  

4. Region Clustering 

As mentioned before, to ascertain the prospective locations for the hub and mobile distribution centers, we employ a 
clustering analysis on 122 regions within Tehran city. This analysis considers four key features: population, economic index, 
internet accessibility, and number of business units. Drawing from our expertise in the chosen company, we believe these 
features serve as reliable indicators of customer demands within a given region. 
 
The objective of this clustering analysis is to identify regions that exhibit similarities in terms of the aforementioned features. 
Each cluster can be regarded as a demand point, which is then assigned to either the main hub or a mobile DC within that 
cluster. 
 
The primary consideration in clustering is that only regions in close proximity can be grouped together. In other words, 
clustered regions should share similar boundaries. To address this, we utilized RapidMiner, a renowned data mining tool, 
to perform clustering on the 122 regions of Tehran. To account for proximity constraints, we introduced a new feature called 
“relative distance”, which captures the C2C13 distance between each region and a predetermined reference region (such as 
region 1). Notably, neighboring regions to region 1 exhibit lesser distances compared to more remote regions. Thus, the 
geographic location of each region was taken into account during the clustering process. The resulting clustered regions, 
obtained through the K-means algorithm in RapidMiner, are illustrated in Fig. 1. 

 
 

 

 13 Center to Center 
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Fig. 1. Clustering the regions of Tehran by K-means 
algorithm (K=10) 

Fig. 2. The amended clustering of Tehran 

 
As depicted in Fig. 1, although the relative distance was defined, certain non-adjacent regions were grouped together in the 
clustering process. In order to address this issue and account for the proximity constraint of each region, we introduced the 
Euclidean distance between every pair of cluster centers. To mitigate scale-dependent challenges in clustering, we 
normalized each feature using the following formulation. 
 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑢௝ − 𝜇௝𝜎௝  (11) 

In which 𝜇௝ and 𝜎௝ are the mean and standard deviation of observation 𝑢௝ , respectively. Thus, by incorporating the distance 
between each pair of clusters, we refine the clustering depicted in Fig. 1. In this updated clustering, each heterogeneous 
region14 is assigned to the cluster with the minimum distance from its current location. The resultant revision of the 
clustering is illustrated in Fig. 2.  By this clustering, there are already 12 potential candidate locations for DCs. 

 
5. Case Study 

Due to the scarcity of reliable shipping demand data for our specific case study, we rely on demographic and economic 
indicators of the diverse regions in Tehran to estimate customer demands. Population and economic status are identified as 
the key determinants of demand in our chosen 3PL company. Consequently, we employ Eq. (12) to predict the demand for 
each cluster based on these factors. It is important to highlight that the population and economic status of each region in 
Tehran have been derived from experimental studies conducted by the local government. 𝑑𝑒𝑚𝑎𝑛𝑑 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 × 𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑠𝑡𝑎𝑡𝑢𝑠  𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 (12) 

Considering the economic situation within a range of 0 to 1, a higher index value indicates a more favorable economic 
condition in the respective area. For instance, if a region has a population of 1000 and an economic index of 0.1, it implies 
that the potential demand for that region is estimated to be 100. To determine the most suitable resilient locations for our 
case study, we implemented the two-phase methodology outlined in section 3. In the first phase, we assessed and ranked 
the candidate locations based on their resilience criteria using the SWARA-EDAS method. Subsequently, we utilized 
CPLEX 12.6 to solve the proposed model and identify the optimal hub location. The optimal hub location is denoted by a 
star symbol in Fig. 3. 

 
Fig. 3. The optimal location for establishing hub logistics in the eastern part of Tehran 

 14 The regions that are not in the neighborhood of others. 
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While the optimization model designates the star location as the optimal hub site, concerns arise regarding the restriction 
on truck traffic. In accordance with the regulations in Tehran, the main highways on star location permits trucks weighing 
more than 6.2 tonnes to operate only between the hours of 10:00 p.m. and 6:00 a.m. Consequently, this limitation not only 
hampers the efficiency of hub capacity utilization but also leads to shipment delays. To address this issue, we identify an 
alternative location by excluding the star location from the list of candidate sites. By solving the mathematical model, we 
determine the following optimal location, which is depicted in Fig. 4. 

  
Fig. 4. The second optimal location for establishing 

hub logistics in the eastern part of Tehran 
Fig. 5. The optimal location and its second alternative for 

establishing the hub in the eastern part of Tehran 

Fig. 5 displays both alternate locations for the hub on a single map. 

5.1 Hub and DC Relationship 

The selected company currently operates a hub in the western part of Tehran, functioning as both a sorting center and a 
distribution center. Under the existing structure, collected goods from all areas of the city are consolidated at this hub for 
sorting and subsequent dispatch according to their respective delivery points. However, due to the continuous growth in 
shipment demand, the current capacity of this single hub is insufficient. Moreover, the current practice of routing all goods 
(from various geographical zones) through this central facility before distributing them across Tehran results in significant 
inefficiencies in the pickup and distribution of shipments throughout the city. Therefore, we have identified the need for an 
additional hub located on the eastern side of the city (see Fig.). Furthermore, for the purpose of enhancing network 
resilience, we consider deploying mobile DCs in designated clusters. In the subsequent analysis, we ascertain the optimal 
number and placements of mobile DCs within the cluster. The clusters’ assignment, whether to a mobile DC or a fixed hub, 
is determined with the objective of reducing the total cost. The assumptions, parameters, and decision variables of the model 
are presented as follows. 

Assumption: 

• When a mobile DC is deployed in a cluster 𝑗, it is positioned at the central area of that cluster.  
• When a mobile DC is located in a cluster 𝑗, all customers within the regions of a cluster 𝑗 are assigned to that particular 

mobile DC. 
• Each cluster is assigned exactly to one main hub or one mobile DC. 
 

Parameters: 𝑑௜: demand of cluster 𝑖 𝑐௟: the average distance cost of all regions in cluster 𝑙 from its centroid. 𝑏௜௞: the distance cost between cluster 𝑖 and main hub 𝑘. 

f: the fixed cost of buying or renting mobile DC 𝑄௞: the capacity of main hub 𝑘. 

Decision variables: 𝑥௜௞: a binary variable; takes the value 1 if cluster i is assigned to main hub 𝑘 (k∈ {1,2}). 𝑦௝: a binary variable; takes the value 1 if a mobile DC is deployed at location 𝑗. 
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In view of the above formulation, the mathematical formulation is described as follows: 𝑚𝑖𝑛෍෍𝑑௜ × 𝑏௜௞ × 𝑥௜௞  + ෍𝑑௟ × 𝑐௟ × 𝑦௟ + ෍෍𝑏௝௞ × 𝑧௝௞௞ + ෍𝑓 × 𝑦௝௝௝௟௞௜  

s.t: 
(13) 

෍𝑥௜௞ + 𝑦௜ = 1∀𝑖 ௞  ∀𝑖 (14) ෍𝑧௝௞ = 𝑦௝௞  ∀𝑗 (15) ෍𝑥௜௞ ×  𝑑௜ ≤  𝑄௞௞  ∀𝑘 (16) 𝑥௜௞,𝑦௝ , 𝑧௝௞ ∈ {0,1}      ∀𝑖, 𝑗, 𝑘 (17) 
 

Objective function (13) represents the total cost, which is composed of four components. The first component represents 
the transportation cost of the clusters that are assigned to the main hubs. Components two and three indicate the average 
transportation cost from the customers within a cluster to a mobile DC within that cluster, and the cost of shipping from 
that cluster to a main hub, respectively. The final component of objective function (13) represents the fixed cost associated 
with acquiring or renting a mobile DC. Constraint (14) dictates that each cluster must be assigned to either a main hub or a 
mobile DC located within that cluster. Constraint (15) specifies that each mobile DC must be assigned to one of the main 
hubs for the purpose of (de)consolidating parcels from customers. Constraint (16) ensures that the total assigned demands 
to each hub do not surpass the capacity of that hub. Constraint (17) defines the domain of all decision variables involved in 
the problem. Upon solving the aforementioned mathematical model (equations 13 to 17), the deployment of three mobile 
distribution centers (DCs) was determined for clusters 4, 7, and 8. Subsequently, based on the positioning of the primary 
hubs and mobile DCs, the relationship between the hubs and mobile DCs was analyzed under two scenarios: one where the 
eastern hub is situated at the star location in Fig. 4, and the other where it is located at the star position in Fig. 5. 

Case 1: Hub establishment based on Fig. 4: In this case, after optimally solving the problem with CPLEX 12.9, the total 
weighted transportation cost is 84589325.7.  

Case 2: Hub establishment based on Fig. 5: By locating the hub in the second optimal place (shown in Fig. 5), the total 
weighted cost is 85041011.2. 

 

Upon comparing these two cases, it can be concluded that the difference is not significant, with a variation of less than 1%. 
Consequently, if the truck traffic regulations impose limitations on establishing the hub at the most optimal location, the 
second proposed location could be considered as an alternative for the eastern hub placement. 

6. Conclusions 

Due to the considerable advance in the e-commerce market, the demand for parcel delivery services has been increasing. 
We selected one of the foremost delivery service providers in Tehran, and we proposed a resilient framework especially in 
dealing with disruption and unforeseen events. The proposed framework utilizes a two-phase decision-making 
methodology, incorporating a novel MCDM approach called hybrid SWARA- EDAS and a mathematical model for hub 
location. In the first phase (SWARA- EDAS), the identified criteria for the resilient hub location are weighted based on 
their significance using the SWARA method. This facilitates a systematic assessment of their relative importance. 
Subsequently, the EDAS method is employed to score and rank potential hub locations according to the weighted criteria. 
However, given the lack of demand and flow data in our selected case study, we used Tehran's data to predict demand and 
shipment flow in various regions of the city. We conducted a clustering analysis on the 122 regions of Tehran, considering 
population, economic status, internet accessibility, and the number of business units in each region. In order to enhance 
network resilience, the deployment of mobile DCs in designated clusters is being considered. Then each cluster can be 
assigned to the main hub or the mobile DC within that cluster. Our proposed structure does have certain limitations. Due to 
the unavailability of precise demand data for our case study, we relied on estimations derived from the population and 
economic status of each region. However, in the event of a disaster the city-wide demand pattern might change and become 
random, it is more realistic to treat demand as an uncertain parameter. Furthermore, for the purpose of simplicity, we have 
chosen to focus solely on a static model that encompasses only one time period. Although, including different time periods 
during which a mobile DC can relocate within various clusters, in response to prevailing conditions or fluctuations in 
demand, makes the proposed structure more realistic. It's worth noting that comparing our methodology with other MCDM 
methods to select resilient hub locations seems to be beneficial as well. 
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Appendix  

The SWARA method is an expert-driven approach used for decision-making, comprising the ensuing steps: 
 

Step 1: Ranking of Criteria 
 
This initial step involves experts ranking the criteria based on their relevance to the issue at hand. The most critical criterion 
is assigned the highest rank, with subsequent criteria ranked in descending order of importance. This ranking process is 
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reliant on the expertise and insights of the experts into the problem being addressed. 
 

Step 2: Calculation of Weighted Average Value (SCj) 
 
Here, the focus is on determining each criterion's relative weight by comparing it with the criterion that follows it in the 
ranking. Experts choose a significance rate, ranging from 0 to 1, for each criterion, indicative of its importance over the 
next. This value is determined through the weighted average value (SCj) of the subsequent criterion, calculated using the 
formula: 𝑆𝐶௝ = ∑ ௐೕோ೔ೕೕಿసభ∑ ௐೕೕಿసభ , 

where Wj represents the weight of criterion Cj, Rkj its rank as determined by expert i, and n represents the total number of 
experts involved. 

 
Step 3: Calculation of the KCj Coefficient 
 
Once the SCj values for all criteria are established, the next step is to compute the KCj coefficient. This coefficient, 
representing each criterion's relative significance, is derived using the SCj value of the criterion immediately below in the 
ranking. 

 
Step 4: Computation of Initial Criterion Weight 
 
In this phase, the primary weight for each criterion is calculated. The criterion deemed most important is given a weight of 
1. Subsequent criteria are assigned weights using the formula: 𝑄𝐶ଵ=1 and ொ஼ೕషభ௄஼ೕ              𝑗 ൐ 1. 

 
Step 5: Normalization of Criterion Weights 
 
The concluding step consists of modifying the weights of the criteria to guarantee their collective sum equals one. This 
normalization is executed using the formula: 𝑊𝐶௝ = 𝑄𝐶௝∑ 𝑄𝐶௝ே௝ୀଵ  

where WCj represents the normalized weight assigned to criterion Cj, and N denotes the overall number of criteria. 
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