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 The multiple travelling salesman problem (MTSP) extends the classical travelling salesman 
problem (TSP) by involving multiple salesman in the solution. MTSP has found widespread 
applications in various domains, such as transportation, robotics, and networking. Despite 
extensive research on MTSP and its variants, there has been limited attention given to the open 
close multiple travelling salesman problem (OCMTSP) and its variants in the literature. To the 
best of the author's knowledge, only one study has addressed OCMTSP, introducing an exact 
algorithm designed for optimal solutions. However, the efficiency of this existing algorithm 
diminishes for larger instances due to computational complexity. Therefore, there is a crucial 
need for a high-level metaheuristic to provide optimal/best solutions within a reasonable 
timeframe. Addressing this gap, this study proposes a first meta-heuristic called multi-
chromosome-based Genetic Algorithm (GA) for solving OCMTSP. The effectiveness of the 
developed algorithm is demonstrated through a comparative study on distinct asymmetric 
benchmark instances sourced from the TSPLIB dataset. Additionally, results from 
comprehensive experiments conducted on 90 OCMTSP symmetric instances, generated from the 
renowned TSPLIB benchmark dataset, highlight the efficiency of the proposed GA in addressing 
the OCMTSP. Notably, the proposed multi-chromosome-based GA stands out as the top-
performing approach in terms of overall performance. Further, solutions to symmetric TSPLIB 
benchmark instances are also reported, which will be used as a basis for future studies. 
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1. Introduction 
 

The Multiple Traveling Salesman Problem (MTSP) represents an extension of the classical Traveling Salesman Problem 
(TSP). In MTSP, the challenge involves coordinating multiple salesman to efficiently cover a specified set of cities, ensuring 
each city is visited exactly once, and the salesman collectively return to the starting point, aiming to minimize the total 
traversal cost or distance. The MTSP is closely connected with diverse optimization problems such as vehicle routing 
problem (VRP) (Braekers et al.,  2016) and task assignment problem (TAP) (Öncan, 2007). Indeed, MTSP can be viewed 
as a relaxed version the VRP, assuming unlimited vehicle capacity and customers with unit demands. While MTSP shares 
similarities with the TSP and the TAP, it imposes restrictions on multiple visits to the same city and the formation of sub-
tours. Consequently, a solution to MTSP can be effectively applied to tackle the challenges posed by VRP or TAP. 
 
The MTSP has undergone extensive research and has found applications in diverse fields, including transportation, robotics, 
and networking. In different practical scenarios, the "salesman" in MTSP can represent entities such as trucks, robots, or 
drones. The cities to be covered by the salesman correspond to customers in transportation and logistics distribution, critical 
sites in disaster management, targets in strategic war operations, sensor nodes in wireless sensor networks, and victims in 
emergency missions (Cheikhrouhou & Khoufi, 2021). Due to its broad applicability, MTSP has garnered significant 
attention from the research community. Researchers have explored various variants of the problem, such as MTSP with 
multiple depots (Malik et al., 2007), solid MTSP (Changdar et al., 2017), MTSP with precedence constraints (Sarin et al.,  
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2014), MTSP with time windows (Kara & Bektas, 2006), Open close MTSP (Thenepalle & Singamsetty, 2019) and Open 
MTSP with load balancing (Thenepalle & Singamsetty, 2021) etc. Due to NP-hardness, no known algorithm is presented 
that works within polynomial time for solving the MTSP and its variants (Garey & Johnson, 1979).  MTSP, being a 
generalized form of TSP, allows solution techniques developed for TSP to be applicable to MTSP and its variations. These 
solution approaches can broadly be categorized into two types: heuristics or metaheuristics, which provide solutions that 
are optimal or near-optimal without guaranteeing their quality, and exact algorithms, which assure optimal solutions. As 
the problem size grows, achieving an optimal solution becomes increasingly challenging and computationally expensive. 
Consequently, the application of heuristics or metaheuristics becomes essential for solving practical MTSP models within 
reasonable time constraints. 
 
Concerning the solution techniques, some of the heuristic/metaheuristics techniques devoted for MTSP by implementing 
biological characteristics such as Evolutionary approach (Bao et al.,  2021; Sofge et al.,  2002), Particle swarm optimization 
(PSO) (Yan et al.,  2012), Ant colony optimization (ACO) (Changdar, 2023; Wang et al.,  2020; Yousefikhoshbakht, 2013), 
Hybrid algorithm (Jiang et al.,   2020), Genetic algorithm (GA) (Gomes et al.,  2021; Király & Abonyi, 2011; Lou et al.,   
2021; Singamsetty & Thenepalle,  2021), Learning-based metaheuristic approach (Belhor et al.,  2023), Efficient routing 
optimization with discrete penguins search algorithm (Mzili & Riffi, 2023) etc. Various heuristic and metaheuristic 
approaches have been proposed for the Multiple Traveling Salesman Problem (MTSP) and its variations, each carrying its 
unique strengths and challenges. For instance, Particle Swarm Optimization (PSO) is known to be prone to local optima, 
while Ant Colony Optimization (ACO) is computationally demanding, characterized by a slower convergence rate. On the 
other hand, Genetic Algorithms (GA) tend to exhibit early convergence and can be heavily influenced by the initial 
population. Despite these complications associated with GA, literature shows to its effectiveness, as it is widely employed 
for successfully addressing the MTSP and its diverse variants (Xu et al.,  2018).   
 
Examining the evolution of Genetic Algorithms (GA), Bagley (1967) was a pioneer in introducing the concept, followed 
by Holland, who conducted a scientific exploration into the mechanism of the survival of the fittest in 1975. Subsequently, 
the literature has witnessed significant progress in the development of GA, particularly in its application to addressing the 
MTSP and its variants, which can be seen in following works (Al-Omeer & Ahmed, 2019; Alves & Lopes, 2015; Brown et 
al.,  2007; Carter & Ragsdale, 2006; Harrath et al.,  2019; Kaliaperumal et al.,  2015; Király & Abonyi, 2011; Shuai et al.,  
2019; Tang et al.,  2000; Thenepalle & Singamsetty, 2021; Xu et al.,  2018; and Yuan et al.,  2013). The cited studies 
motivate us to develop an efficient GA for solving the OCMTSP, aiming to find optimal solutions within a short timeframe. 
Table 1 summarizes the various instances of MTSP and its variants addressed through different solution methodologies. 
 
The MTSP can be categorized into two main types based on the nature of the salesman routes: open MTSP and open-close 
MTSP. In the open MTSP, all salesman initiate their routes from the depot city and are not obligated to return to the starting 
city after completing the assigned cities. On the other hand, the open-close MTSP (OCMTSP) involves salesman starting 
from the depot city, visiting a specified number of cities, with only certain salesman required to return to the depot city. The 
goal is to minimize the overall distance or cost covered in the routing process. This model finds practical applications in 
transportation and logistics distribution, particularly in scenarios where vehicle operations are outsourced.  
 
For instance, consider Fig. 1, which illustrates two variants of the classical MTSP: open MTSP and open-close MTSP. In 
this representation, numbered circles denote cities to be visited by the salesman, with city 0 serving as the depot city where 
all salesman commence their routes. Fig. 1 depicts a scenario of open MTSP involving 3 salesman and 10 cities, including 
the depot city. As shown, salesman 1 covers 3 cities, salesman 2 visits 3 cities, and salesman 3 covers 3 cities. Similarly, 
Fig. 2 illustrates a scenario of OCMTSP involving 3 salesman (1 internal and 2 external) and 10 cities, including the depot 
city. As shown, salesman 1 covers 3 cities and returned to depot city, salesman 2 just visits 3 cities, and salesman 3 covers 
3 cities. The varying routes and the decision of which salesman return to the depot city contribute to minimizing the overall 
distance or cost incurred in the routing process. This flexibility in route planning is particularly beneficial in logistics and 
transportation optimization. 

 

 
 

Fig. 1. An arbitrary open MTSP solution with 10 cities 
and 3 salesman 

Fig. 2. An arbitrary open close MTSP solution with 
10 cities and 3 salesman 
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Upon reviewing the existing literature, it becomes evident that, with the exception of the OCMTSP model, the other models 
mentioned have received significant attention. To the best of the author's knowledge, the only investigation into OCMTSP, 
addressed by an exact lexi-search algorithm (Thenepalle & Singamsetty, 2019), stands as the only study on this specific 
topic in the literature. However, the existing exact algorithm for OCMTSP demonstrates effectiveness primarily for smaller 
instances but proves computationally expensive when applied to higher dimensions. Recognizing this limitation, there is a 
pressing need to devise high-level, efficient metaheuristic approaches capable of producing optimal solutions within 
practical time constraints. To address this gap, the present study aims to introduce a multi-chromosome-based Genetic 
Algorithm (GA) for solving OCMTSP. The performance of this proposed approach is thoroughly analyzed through 
computational experiments, aiming to provide insights into its performance.  
 
The rest of the paper is organized as follows: Section 2 describes a detailed description of the problem statement and its 
formulation. The preliminary concepts of GA are presented in Section 3.  Extensive computational results are reported in 
Section 4. Finally, conclusions are given in section 5. 
 
2. Problem Description and Mathematical Model 

2.1 Problem Statement  

The OCMTSP is formally stated as follows: Let ( , )G N E=  be a directed connected weighted graph in which 

{1, 2,..., }N n= represents the set of n  cities/nodes (together with depot city) and E  denote an edge set. Let 

( )ij jiij d dd ≠  be an asymmetric travel distance from thi city to thj city that is assigned to each edge ( , )i j E∈ . Let 

{1, 2,..., }K m=  be the set of m (where ; )m p q m n= + ≤  salesman located at a depot city (say , )Nα α ∈ , of 

which p  salesman constitutes for closed paths and q  salesman establishes open tours. If the salesman visits thj city from 
thi city then the decision variable ijx assumes 1, and 0ijx = , otherwise. The OCMTSP objective is to find a solution 

involving p  closed paths and q  open paths, such that each city is to be covered by just one salesman and the total distance 
covered by m salesman is minimized. Note that, the lower and upper bound on the number of cities visited by any salesman 
is 1 and 1n m− + . 

2.2 Assumptions 

The below assumptions are used to formulate the OCMTSP: 
a. There are n cities to be covered by m  salesman located at the depot city, of which a predefined p salesman are 

intended for closed paths and q  salesman are employed for open paths. 
b. All the salesman is asked to begin at the depot city and only p  salesman are required to come back to the depot 

city, whereas the other q  salesman is not necessary to return. 
c. The values , ,&m p q are predefined. 
d. The cities assigned dynamically to each salesman in order to minimize the overall traversal distance. 
e. Each salesman has to cover atleast 1 city and at most 1n m− + cities.  

 
2.3 Mathematical Model 

The OCMTSP can be expressed as a zero-one integer linear programming (0-1 ILP) as follows: In this article, a salesman 
objective (distance) is established that generally assures that the distance found is reduced. The mathematical model 
formulated by Thenepalle & Singamsetty, (2019) is considered without any modifications in the present study  

a. This objective is to minimize overall traversal distance 
The objective is to minimize overall traversal distance. This objective function promises that the distance involved in 
covering all the cities is minimized. It can be shown as: 
 

1 1
min

n n

ij ij
i j

Z d x
= =

=åå  
(1) 

 
b. Constraints 
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n n
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+Sub tour/illegal tour elimination constraints  (8) 
{0,1} ,ijx i j NÎ " Î  (9) 

 
The 2nd Constraint guarantees that any feasible solution must include 1m n q+ − − edges. The 3rd and 4th Constraints ensure 
that m  salesman departs from the depot city ( )α and exactly p  salesman must return to it. The 5th and 6th Constraints 
guarantee that a salesman visits each city exactly once and can depart from each city at most once. The 7th Constraint ensures 
that each salesman covers atleast 1 city and at most 1n m− +  number of cities. The 8th Constraint is intended to eliminate 
the sub-tours from the solution. Finally, Constraint (9) denotes the binary variable.  
 
3.  Genetic algorithm  

This section provides an overview of both the conventional Genetic Algorithm (GA) and the proposed algorithm. The GA 
stands out as one of the widely adopted metaheuristic algorithms in evolutionary computation for addressing various 
combinatorial optimization problems, as highlighted by Goldenberg (1989). Originating from the survival of the fittest 
strategy introduced by Holland in 1975, GA is an adaptive exploration method. Genetic Algorithms are extensively utilized 
for solving the Multiple Traveling Salesman Problem (MTSP) and its variants, as evidenced by the following studies: 
(Tjandra et al., 2022 and Wang et al.,  2021). Typically, a GA commences with an initial set of solutions constituting the 
initial population, referred to as chromosomes, where all genetic information is encoded. Each element within the 
chromosome is treated as a gene. The efficiency of a chromosome is evaluated through a fitness value. The GA process 
involves selecting two parent chromosomes with high fitness values randomly from the population. Following the selection, 
a crossover operation is performed between the chosen parent chromosomes to generate two new chromosomes. The 
resulting chromosomes replace the old ones if they exhibit superior fitness values. To maintain diversity within the 
population, a mutation operation is applied to the newly generated chromosomes. This cycle of selection, crossover, and 
mutation iterates, producing novel chromosomes until the size of the new population matches that of the old one. The 
updated population is then utilized to initiate the next iteration. Notably, the probability of selecting superior chromosomes 
for crossover is higher, and the newly generated chromosomes are more likely to inherit the characteristics of their parent 
chromosomes. The search process continues for several generations until predefined conditions are met, constituting a 
complete iteration of the classical GA. 

3.1. Proposed GA 
 

To achieve an optimal or suboptimal solution for the OCMTSP, various crucial factors come into play. These factors 
encompass chromosome representation, population initialization, computation of fitness values, selection mechanisms, 
crossover operations, mutation operators, as well as the fine-tuning of GA parameters. The diversity in GA approaches 
stems from variations in how encoding, crossover, and mutation operations are employed, leading to divergence in the 
search process. Consequently, the redesign of these fundamental operations is imperative to ensure the attainment of optimal 
or suboptimal solutions. The foundational components of the proposed GA for OCMTSP are outlined as follows: 

a. Chromosome representation 

To efficiently address the OCMTSP, it is crucial to adopt a suitable chromosome representation. Given that the MTSP is a 
generalized form of the TSP, it is possible to adapt TSP chromosome representations with minor adjustments for OCMTSP. 
Various techniques have been proposed for representing TSP solutions as chromosomes, including path representation 
(Larranaga et al.,  1999), matrix representation (Khan et al.,  2009), double chromosome representation (Riazi, 2019), and 
multi-chromosome representation (Singh et al.,  2018). 

In this study, the OCMTSP solution is depicted using a multi-chromosome representation, a technique previously employed 
by researchers such as Albayrak and Allahverdi (2011) and Király and Abonyi (2015). This approach involves utilizing the 
same number of chromosomes as there are salesman. The length of each chromosome, which dynamically changes, is 
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determined by the number of cities assigned to each respective salesman. This choice of representation is made to suit the 
specific characteristics and constraints of the OCMTSP, aligning with the objectives of this research. Assume that the first 
chromosome is 1p , the second is 2p , and so on.  As a result, total number of cities in the multi-chromosome representation 

equals to 
1

1
m

i
i

p n
=

= −  (since depot city is not included in any of the chromosome). Cities are randomly chosen to be 

assigned to salesman. For example, let there will be 17 cities ( 17)n =  including depot city (α = 1), four salesman (m = 4) 
are positioned at the depot city. Of the four salesman, two salesman (p = 2) are intended for closed paths and other two (q 
= 2) are devoted for open paths. Then the multi-chromosome representation of an arbitrary OCMTSP solution with 
seventeen (n = 17) cities and with four salesman ( 4; where 2 & 2)m p q p q= + = = =   is shown in Fig. 3. For the four 
salesman involved, the chromosomes are partitioned into four distinct parts, each uniquely represented by a different colour, 
as depicted in Fig. 3. The numerical values within each segment denote the cities covered by the respective salesman. To 
create a closed tour for each salesman, the home city (1, for instance) is inserted at both the beginning and the end of each 
segment. It's important to note that the insertion of the home city (1) at the end is only applicable for closed tours but not 
for open tours. The route plan for the four salesman is outlined below: 

Salesman 1: 1→ 4 → 9 → 15 → 12 →6→ 1; Salesman 2: 1→ 14→ 5 → 7 →3 → 1 and  

Salesman 3: 1→ 2 → 10 → 17; Salesman 4: 1→ 8 → 16 → 13→11. Here, closed paths are associated with the salesman 
1 and 2, whereas, open paths are assigned to the salesman 3 and 4.  

 
Fig. 3. Illustration of a multi-chromosome representation for a 17-city OCMTSP with 4 salesman 

 
b. Evaluation of fitness function 

The objective function, as expressed in Eq. (1), aligns with our fitness function in this study. In the context of the OCMTSP, 
the fitness value serves as a measure of the total traversal distance incurred by m salesman while visiting a set of n cities, 
including the home city. It is noteworthy that, in this context, a higher fitness value indicates a more favourable 
chromosome. Therefore, the better the chromosome in terms of solving the OCMTSP, the greater the corresponding fitness 
value. The fitness function effectively captures the essence of optimizing the total traversal distance for each salesman, and 
thus, maximizing the fitness value signifies superior solutions within the genetic algorithm framework. 

c. Selection 

In our approach, we employ tournament selection, where 8 individuals compete for survival. The chromosome exhibiting 
the lowest fitness value successes in the tournament, earning the privilege of being chosen for the generation of new 
individuals. The selected individual seamlessly integrates into the new population without any modifications. This process 
ensures that more favourable chromosomes are likely to be chosen, while less desirable ones are discarded. The underlying 
principle of this selection strategy is to transmit high-quality chromosomes to the next generation, enhancing both evaluation 
efficiency and the convergence towards optimal and sub-optimal solutions. 

d. Mutation Operators  

Following the selection process, the mutation operation is promptly executed. Its primary goal is to prevent the GA from 
becoming trapped in local optima and to enhance the genetic diversity within the population. In this study, we incorporate 
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seven mechanisms—namely, Flip, Swap, Slide, Crossover, Flip + Crossover, Swap + Crossover, and Slide + Crossover—
adopted from the work of Király & Abonyi (2015). These mechanisms collectively contribute to enhancing the population 
of candidate solutions across generations, thereby maintaining genetic diversity within the population. Consequently, this 
approach mitigates the risk of the algorithm being confined to local optima by facilitating exploration across a broader 
search space. As previously discussed, there exist various genetic operators in the literature. For instance, a multi-
chromosomal mutation can be derived by combining a series of single-chromosomal mutations. While the majority of these 
operators can be derived from others, introducing a new representation may necessitate the inclusion of additional genetic 
operators. The operators outlined below can be constructed from existing simple operators. The terms "In-route mutations" 
and "Cross route mutations" denote two distinct sets of mutation operators. In-route mutation operators, such as flip or gene 
sequence inversion, modify only two genes within a chromosome and operate within a single chromosome. Larranaga et 
al., (1999) serve as reliable sources for these "classical" representations and operators. On the other hand, a cross-route 
mutation operator simultaneously alters several chromosomes. It is important to note that this operator may bear similarity 
to the standard crossover operator when utilizing conventional notation and treating chromosomes as individual entities. 

To begin, the application of an in-route mutation known as the flip operator is initiated, modifying a set of genes within a 
chromosome. Subsequently, a Swap operator is employed, transposing the gene sequences between two chromosomes, 
resulting in the creation of a new offset. Following this, a slide operator is applied, moving the last gene from each 
chromosome to the beginning of another. In addition to in-route mutations, a cross-route mutation employed in this study 
is the crossover operator, which executes a one-point crossover between two chromosomes. In this process, two random 
crossover points are selected, and the tails of the two chromosomes are swapped to generate new offspring. The effective 
utilization of these basic mutation operators is visually depicted in Figs. 4-7. 

Utilizing the aforementioned simple mutations, more complex mutations, namely Flip + Crossover, Swap + Crossover, and 
Slide + Crossover, can be derived. Figure 8 depicts the process when two cross-route operators are sequentially applied, 
resulting in a complex mutation. Initially, a Swap operator is employed, transposing the gene sequences between two 
chromosomes and moving the last gene from each chromosome to the beginning of another. Subsequently, another Swap 
operator is applied, generating the new offset. 

 
Fig. 4. Illustration of in-route mutation – “Flip” 

 

 
Fig. 5. Illustration of cross-route mutation – “Swap” 

 
Fig. 6. Illustration of cross-route mutation – “Slide” 
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Fig. 7. Illustration of cross-route mutation – “One-point crossover” 

 

  
Fig. 8. Illustration of cross-route mutation – complex mutation : “Swap + Crossover” 

d. GA parameters 

The algorithm's effectiveness is determined by its parameter values, encompassing the population size, mutation probability 
rate, and termination criterion. A thorough calibration process was undertaken to establish optimal values for the genetic 
algorithm parameters. The population size is set at 160, and the iteration number is fixed at 3000. The utilization of crossover 
and mutation operators with diverse probability values is designed to guide the Genetic Algorithm (GA) toward the 
convergence of efficient solutions. The termination condition for the current GA is contingent upon reaching the maximum 
number of generations. The flow diagram of the proposed GA is illustrated in Fig. 9. 

 

 
Fig. 9. The workflow of proposed GA  

 

4. Computational Results 

In this section, we present the experimental results attained by employing the proposed GA. Subsequently, we provide a 
comprehensive analysis of the algorithm's performance by comparing it to alternative state-of-art algorithms. Our 
experimentation involved the utilization of diverse benchmark instances sourced from TSPLIB to assess the algorithm's 
performance. The implementation of the algorithm was carried out in MATLAB 2023a, executed on a PC equipped with 
MS Windows 2010 and an Intel Core i3-5005U CPU operating at 2 GHz and an 8GB RAM. The algorithm was subjected 
to 3000 iterations, population size 160, with a termination condition defined as the stabilization of the best solution over ten 
consecutive iterations. The reported results represent the mean outcomes derived from 50 independent runs of the algorithm. 
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4.1 Comparative results of OCMTSP over asymmetric TSP benchmark instances 

This section presents a comparative study of OCMTSP over asymmetric TSP benchmark instances generated from TSPLIB 
(http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/). To measure the performance of the proposed GA, it has been 
tested over 17 asymmetric TSP benchmark instances generated from br17, ftv33, ftv35, and ftv44. The GA results obtained 
are compared against with the best know results achieved by Lexi-search algorithm (LSA) (Thenepalle & Singamsetty, 
2019) and the TSP solver LKH-3 (http://webhotel4.ruc.dk/~keld/research/LKH-3/). Table 1 comprehensively presents the 
results of our analysis. Notably, in 3 out of the 17 instances, the solutions obtained through the GA align precisely with 
those derived from Lexi-search algorithm (LSA) and the TSP solver LKH-3. For the remaining cases, the GA solutions 
demonstrate proximity to the best-known solutions. This observation is reinforced by examining deviation percentage values 
calculated using equation (10). Additionally, it is noteworthy that the proposed GA exhibits a marked advantage in terms 
of CPU runtime, ranging from 6.12 seconds to 6.92 seconds. 

(%) 100 (10)Best GAsolution Optimal solutionDeviation
Optimal solution

−= ×  

Table 1 Comparative results of GA against LSA and LKH-3 for OCMTSP over asymmetric TSP benchmark instances 
Instance |N| m p q BKS by LSA LKH-3 Proposed GA Deviation 

(%) 
CPU 

Runtime 
(In Sec.) 

Best Worst 

br17 17 5 3 2 35 35 39 48 11.43 6.62 
6 4 2 41 41 46 54 12.20 6.48 
4 3 1 35 35 35 41 0.00 6.17 
5 2 3 30 30 30 36 0.00 6.42 
6 2 4 33 33 38 44 15.15 6.65 

ftv33 34 5 3 2 1240 1239 1305 1378 5.33 6.80 
7 4 3 1278 1278 1278 1416 0.00 6.92 
6 3 3 1225 1225 1273 1359 3.92 6.71 
6 2 4 1185 1185 1206 1325 1.77 6.87 

ftv35 36 6 2 4 1284 1283 1308 1421 1.95 6.85 
5 2 3 1307 1304 1338 1405 2.61 6.64 
8 3 5 1324 1324 1404 1516 6.04 6.28 
7 3 4 1328 1328 1439 1497 8.36 6.12 

ftv44 45 5 3 2 1619 1577 1737 1870 10.15 6.67 
4 3 1 1691 1595 1732 1861 8.59 6.76 
6 4 2 1678 1629 1776 1878 9.02 6.78 
6 3 3 1603 1549 1674 1891 8.07 6.84 

ftv55  5 3 2 – – 1906 2174 - 6.45 
 6 3 3 – – 1829 2112 - 7.03 
 7 4 3 – – 2017 2163 - 7.21 
 8 5 3 – – 2134 2432 - 7.30 

|N|=n – Number of cities; m – Number of salesman; p – Number of internal salesman; q – Number of external salesman; BKS– best known solution 
by LSA ; GA– Genetic algorithm 

4.2 Experimental results of OCMTSP over symmetric TSP benchmark instances 

The author’s would like to highlight that as far as their knowledge extends, there exists only a single study addressing the 
asymmetric OCMTSP. Consequently, no evaluations comparing algorithmic performance against symmetric benchmark 
test cases have been conducted. However, comprehensive experimentation has been undertaken, involving the evaluation 
of the proposed Genetic Algorithm (GA) on symmetric TSP benchmark instances. The benchmark dataset comprises a total 
of 90 distinct test cases, categorized into 15 groups. Each group consists of six distinct test cases, each with varying 
parametric (i.e. , &m p q ) values. The results of these experiments are presented in Table 2. 

The results reveal that the CPU runtime required for the proposed GA to determine the best solution varies between 23.05 
seconds and 28.70 seconds, as visually depicted in Fig. 10. It's important to emphasize that CPU runtimes exhibit 
inconsistency, making it challenging to pinpoint which specific parameters or factors might be influencing these variations 
in performance. These findings demonstrate the strong performance of the proposed algorithm in terms of computational 
efficiency. Further, mean absolute deviation (MAD) for each test case has been computed. Based on the obtained, it is 
evident that the MAD implies that the solutions generated by the proposed GA in ten separate runs exhibit a slight tendency 
to cluster around the average solution.  It should also be emphasized that the results presented here can serve as a valuable 
reference for future research comparisons. Finally, the best route plans for the instance eil51 in each of the six cases are 
now depicted in Figs. 11-16. 
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Table 2  
GA performance results on symmetric TSP benchmark instances for OCMTSP 

Instance |N| m p q Proposed GA Mean absolute 
deviation 

CPU 
Runtime Best Worst Mean  

att48 48 4 2 2 33361.4 37128.56 35173.49 1139.186 25.34 
4 3 1 35604.1 39945.8 37934.7 1173.1 25.81 
5 3 2 35629 27828.1 36496.5 693.3904 26.73 
5 2 3 32822.85 37346.93 34753.88 1034.603 24.93 
6 3 3 35742.83 39636.78 37216.01 713.083 26.46 
6 4 2 38272.72 39916.64 39370.36 373.4672 26.57 

eil51 51 4 2 2 452.6784 511.2921 469.5353 14.008254 23.05 
4 3 1 466.425 494.797 478.962 6.443216 23.92 
5 3 2 463.687 512.112 482.091 11.3762 24.10 
5 2 3 455.6285 488.746 468.4005 10.36111 24.93 
6 3 3 475.454 510.5049 489.2125 8.86626 25.34 
6 4 2 494.7597 519.4884 505.6106 8.544784 25.96 

berlin52 52 4 2 2 7586.835 8424.335 7931.529 196.09442 23.21 
4 3 1 7893.51 8687.9 8449.74 226.6396 23.88 
5 3 2 7810.855 8828.088 8246.682 232.4367 24.91 
5 2 3 7557.154 8286.813 7889.646 188.97516 25.06 
6 3 3 7696.653 9152.853 8221.316 305.89788 25.82 
6 4 2 8140.038 8934.301 8567.904 179.811 26.03 

st70 70 4 2 2 697.4394 728.9744 712.53703 6.85011 23.73 
4 3 1 735.4455 799.5496 766.2036 18.31968 24.86 
5 3 2 726.852 774.82 750.864 12.31896 23.94 
5 2 3 697.0462 724.1514 709.7671 7.38743 25.79 
6 3 3 731.1449 766.7738 754.7678 9.54792 27.78 
6 4 2 767.673 814.1438 795.8641 11.5507 25.96 

eil76 76 4 2 2 575.8659 630.9071 600.8822 12.74806 24.61 
4 3 1 595.435 641.946 615.711 11.63961 24.03 
5 3 2 607.011 645.771 624.112 9.245 25.30 
5 2 3 576.0584 625.2755 596.96 13.42114 25.86 
6 3 3 588.1477 657.4689 615.093 20.196196 26.84 
6 4 2 632.0019 667.3908 644.222 8.07833 27.21 

pr76 76 4 2 2 105467 116057 111261.26 2216.42 24.02 
4 3 1 115731 122752 119782 1718.27 23.88 
5 3 2 117523 125156 120001 1796.544 25.44 
5 2 3 113527.1 118431.8 115626.1 1328.79 24.89 
6 3 3 118915.2 125947.6 121323.2 1242 26.84 
6 4 2 122898.3 130930.1 127788.57 2511.396 27.21 

gr96 96 4 2 2 524.3464 593.7042 570.64574 14.220152 23.99 
4 3 1 570.636 613.654 597.045 9.684316 24.90 
5 3 2 580.726 613.419 594.639 11.01297 25.98 
5 2 3 545.5041 592.8673 568.6016 13.037284 26.08 
6 3 3 572.1919 612.56 592.95109 11.23225 27.43 
6 4 2 601.3454 652.6115 635.72836 10.9706 26.94 

rat99 99 4 2 2 1350.443 1425.148 1385.2342 18.39896 26.65 
4 3 1 1406.191 1481.838 1444.7665 22.2817 26.14 
5 3 2 1444.89 1551.1 1486.96 23.49656 28.62 
5 2 3 1366.866 1429.921 1406.282 19.84928 27.76 
6 3 3 1433.659 1508.559 1472.9271 19.29072 26.94 
6 4 2 1498.812 1593.716 1555.0075 31.9035 27.14 

rd100 100 4 2 2 8235.437 8868.961 8559.9134 176.24072 24.66 
4 3 1 8823.73 9153.765 9017.2148 98.06084 25.64 
5 3 2 8742.42 8998.39 8882.01 80.7202 26.81 
5 2 3 8428.115 9080.572 8739.408 217.9691 25.40 
6 3 3 8589.89 9398.539 9082.7171 214.91128 27.88 
6 4 2 8877.86 9617.527 9348.9187 220.78836 27.52 

pr107 107 4 2 2 39660.88 41961.71 41037.002 745.3516 25.21 
4 3 1 42363.75 44967.32 43687.389 669.7388 24.33 
5 3 2 41820.7 49464.9 45623.5 2417.362 26.81 
5 2 3 39632.08 41347.81 40298.92 441.9876 26.92 
6 3 3 41426.72 43936.04 42865.367 505.8884 27.88 
6 4 2 44400.43 47751.89 46473.428 1043.0044 26.71 

gr137 137 4 2 2 871.5383 906.2047 889.74713 11.066684 26.72 
4 3 1 939.7482 997.3293 974.3590 14.049608 24.22 
5 3 2 987.999 1006.91 997.229 5.19134 25.26 
5 2 3 953.8393 990.8595 981.3576 6.635984 27.21 
6 3 3 1043.887 1098.558 1074.5439 17.42652 26.94 
6 4 2 1064.442 1142.739 1125.0803 15.74638 28.13 
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Table 2  
GA performance results on symmetric TSP benchmark instances for OCMTSP (Continued) 

Instance |N| m p q Proposed GA Mean absolute 
deviation 

CPU Runtime 
(In Sec.) Best Worst Mean  

ch150 150 4 2 2 7852.04 8205.907 8013.0271 112.5723 25.30 
4 3 1 7471.565 8249.651 8021.609 192.405 26.15 
5 3 2 7625.57 8184.28 7948.06 159.1553 25.39 
5 2 3 7359.895 8137.189 7943.105 165.08588 25.12 
6 3 3 7880.665 8461.061 8110.5373 153.94136 27.54 
6 4 2 8075.022 8443.949 8287.0034 120.83192 26.31 

d198 198 4 2 2 21026.24 22807.33 22027.447 477.4316 25.80 
4 3 1 22591.03 24364.6 23661.997 400.753 26.14 
5 3 2 24519.6 25890.5 25353.2 334.2564 26.02 
5 2 3 23428.73 24216.49 23817.87 243.765 26.69 
6 3 3 25961.58 27442.89 26788.02 361.476 27.71 
6 4 2 27781.63 29289.32 28826.913 419.673 27.84 

gr202 202 4 2 2 651.5022 715.5991 687.34464 19.0114 25.18 
4 3 1 683.9505 727.6095 708.99506 9.5166 26.47 
5 3 2 687.173 781.258 751.113 19.8872 26.12 
5 2 3 665.071 711.6968 694.3388 11.1299 26.80 
6 3 3 713.7567 790.7828 765.31276 16.1709 28.70 
6 4 2 747.3569 805.2652 784.25438 15.7902 27.32 

a280 280 4 2 2 4868.733 5314.822 5166.8091 106.00546 25.32 
4 3 1 5084.362 5413.642 5283.3941 84.92568 26.54 
5 3 2 5246.59 5837.96 5645.53 111.8587 27.40 
5 2 3 5159.341 5538.281 5378.421 96.6912 27.49 
6 3 3 5309.086 5769.293 5624.2374 107.87732 27.82 
6 4 2 5508.558 5860.253 5689.2671 87.6179 27.80 

 

 
Fig. 10. Proposed GA performance in terms of CPU runtime (in sec.) 

 

  
Fig. 11. Best (i.e. 452. 6784) route plan found by 
proposed GA on eil51 with 4 salesman ( 2p = and 

2q = ) 

Fig. 12. Best (i.e. 466.4254) route plan found by 
proposed GA on eil51 with 4 salesman ( 3p = and 

1q = ) 
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Fig.13. Best (i.e. 463.6873) route plan found by 
proposed GA on eil51 with 5 salesman ( 3p = and 

2q = ) 

Fig.14. Best (i.e. 455.6285) route plan found by 
proposed GA on eil51 with 5 salesman ( 2p = and 

3q = ) 
  

  
Fig. 15. Best (i.e. 475.4540) route plan found by 
proposed GA on eil51 with 6 salesman ( 3p = and 

3q = ) 

Fig. 16. Best (i.e. 494.7597) route plan found by 
proposed GA on eil51 with 6 salesman ( 4p = and 

2q = ) 
 

5. Conclusions 

In this research paper, we developed a genetic algorithm that depend on a multi-chromosome approach to tackle the open 
close multiple traveling salesman problem (OCMTSP). As far as the author’s knowledge, this is the second study and first 
meta-heuristic algorithm designed for addressing the OCMTSP. To assess the effectiveness of our GA, incorporating the 
multi-chromosome method, we conducted a comparative analysis over 17 asymmetric TSP benchmark instances against 
other established methods such as LSA, and LKH-3. Our computational results conclusively demonstrate that our proposed 
GA outperforms all other methods in terms of computational runtime and reasonably performs well in terms of solution 
quality. Additionally, we conducted a thorough validation of GA effectiveness and performance by testing it on a diverse 
set of instances 90 symmetric instances with different parametric ( ). . , &i e m p q  values derived from the TSPLIB Library. 
Based on the statistical metrics employed, it is evident that the proposed algorithm excels in addressing OCMTSP. Notably, 
it's important to highlight that the proposed GA is versatile and effective for solving both symmetric and asymmetric 
instances of the problem.  As it is new attempt, these findings serve as a valuable benchmark for future investigations, 
offering insights into the problem's complexity and highlighting potential areas for improvement using state-of-the-art 
algorithms. However, it is essential to acknowledge the limitations of this research. The proposed algorithm, while efficient, 
may not guarantee the optimal solutions. Despite the limitations, this work serves as a stepping stone for future research, as 
we look forward to seeing advancements in the context of OCMTSP scenerios. 
 

Future research directions can focus on various aspects. Firstly, exploring more advanced algorithms, such as meta-heuristic 
techniques, could lead to further improvements in optimizing OCMTSP. Secondly, incorporating practical constraints into 
the model could render it more realistic and robust, aligning it better with real-world scenarios. 
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