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 Android malware is widespread and it is considered as one of the most threatening attacks 
recently. The threat is targeting to damage access data or information or leaking them; in general, 
malicious software consists of viruses, worms, and other malware. Current malware attempts to 
prevent being detected by any software or anti-virus. This paper describes recent Android 
malware detection static and interactive approaches as well as several open-source malware 
datasets. The paper also examines the most current state-of-the-art Android malware 
identification techniques including identifying by comparative evaluation the gaps between these 
techniques. As a result, an API-based dynamic malware detection framework is proposed for 
Android to provide a dynamic paradigm for malware detection. The proposed framework was 
closely inspected and checked for reliability where meaningful API packages and methods were 
discovered. 
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1. Introduction 

According to the latest study, 85% of smartphones in the world use Android OS, which has been developed by Google, and 
the Play Store is rising 3 times as fast as the Apple App Store. This store is not the only source of Android applications; 
many other unofficial third-party application developers exist (Abuthawabeh & Mahmoud., 2020). Thus, it increases the 
possibility of being targeted by malicious software. This growth also leads to the risk of privacy issues, such as accessing 
contact details, GPS locations, and personal data. Recently, smartphone industry exploitation has uncovered malware and 
repackaged software where malicious components were embedded (T. Sharma & Rattan, 2021). 

1.1 Importance of Android Systems 

The open-source Android OS operates on the Linux kernel. Applications written for Android were built using the Java 
programming language. Google offers an SDK, which allows these Java codes to power cell phones, laptops, and other 
computers. The Android operating system became popular with developers because of its configurability. Building an 
application in one platform and distributing it across several platforms concurrently does not necessitate thinking about 
platform updates. Like any other OS, Android is also susceptible to malware attacks (Alam & Demir., 2023). Android 
consumers have the power to authorize or reject applications that have been installed (Sarkar et al., 2019). There are several 
ways to obfuscate code in an Android world, and many off-the-shelf code obfuscators are available for that reason 
(Nellaivadivelu et al., 2020).  

1.2 Risk of Android malware attacks 

Since the functionality of smartphones has expanded, malware risks will rise. use cache policies to increase the launch time 
(Alagarsamy et al., 2022). Malicious Android malware systems have a range of security methods at clearance. The latest 
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Android malware detection strategies are contrasted in this paper to propose more robust and efficient detection methods. 
Malware software can be defined as any malicious software program code aims to obtain access to sensitive information 
stored on the device (Agrawal & Trivedi, 2019). Approximately, 350,000 new malware and potentially unwanted 
applications are identified per day by the AV-TEST Institute.  

1.3 Android API Calls 

An Application Programming Interface (API) represents a software programming interface that enables connectivity 
between various software components such as between the user program and the operating system services. APIs allow 
access to the data and features that reside inside Android devices. Looking at component calls inside the executable file 
allows app functionality to be explored. In certain instances, though, adversaries obfuscate the API calls with encryption, 
reflection, or complex code-loading techniques (Almomani & Alenezi, 2019). 

1.4 Contribution 

This paper aims to systematically explore the various variables that may affect the efficacy of malware API calls using the 
ML engine with multiple newly collected datasets for Android malware. This will pave the way towards focusing on 
processes that will positively affect and mitigate possible negative impacts precisely. This paper also investigates the effect 
and efficacy of noise filtering techniques on ML techniques' accuracy. The paper also examined classification accuracy 
based on Android API calls using ensembles of classifiers. 

The rest of this paper is organized as follows: Section 2 introduces preliminary concepts. The literature is reviewed in 
Section 3. Methods and Materials are explained in Section 4. Experimental results are discussed in Section 5. Conclusions 
and avenues for future work are explored in Section 6.  

2. Preliminaries 

2.1 Android API’s 

An application programming interface (API) allows software components to interact with each other in various ways. In 
many situations, security attackers' APIs are encapsulated with encryption, reflection, or dynamic code. Since this is the 
case, the analysis of the app has been more complex (Alsoghyer & Almomani, 2019). As seen in Figure 1, API calls in 
Android are performed in three key steps. The first step is for a program in the library to access the API. Then, the library 
uses a private interface to operate. Lastly, the private interface issues a Remote Procedure Call (RPC) to the device. The 
code sets up an API to be run in the process (Almomani & Khayer, 2020). 
 

 
Fig. 1. Handling API call by android (Almomani & Khayer, 2020) 

2.2 Android API’s Level 

A collection of APIs that programs can use to interface with the device. When it comes to the Android platform, API Level 
is an integer used to identify the corresponding application revision. It has classes, properties, methods, and events, among 
other things. The system API is defined as set of the following:  

• Packages and classes; 
• XML elements and attributes for declaring a manifest file; 
• XML elements and attributes for declaring and accessing resources; 
• Intents; 
• Permissions that applications can request, as well as permission enforcements included in the system. 

Changes to the API are intended to keep it consistent with previous releases. Changes in the API are, for the most part, 
additive and result in the introduction of new or replacement features. For each API enhancement, current APIs are updated 
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but not replaced to allow old ones to continue to be used (Zhang & Cai, 2019). Most updates to the API are designed to 
improve robustness and device security. The Android framework introduction started with API Level 1 and later supported 
API Levels up to API Level 7. In Table 1 every version of the API level is specified by the supported Android platform. 
Table 1  
Android API's Versions (Android, 2020) 

API Level Version Code Platform Version 
1 BASE Android 1.0 
2 BASE_1_1 Android 1.1 
3 CUPCAKE Android 1.5 
4 DONUT Android 1.6 
5 ÉCLAIR Android 2.0 
6 ECLAIR_0_1 Android 2.0.1 
7 ECLAIR_MR1 Android 2.1.x 
8 FROYO Android 2.2.x 
9 GINGERBREAD Android 2.3, 2.3.1, 2.3.2 
10 GINGERBREAD_MR1 Android 2.3.3, 2.3.4 
11 HONEYCOMB Android 3.0.x 
12 HONEYCOMB_MR1 Android 3.1.x 
13 HONEYCOMB_MR2 Android 3.2 
14 ICE_CREAM_SANDWICH Android 4.0, 4.0.1, 4.0.2 
15 ICE_CREAM_SANDWICH_MR1 Android 4.0.3, 4.0.4 
16 JELLY_BEAN Android 4.1, 4.1.1 
17 JELLY_BEAN_MR1 Android 4.2, 4.2.2 
18 JELLY_BEAN_MR2 Android 4.3 
19 KITKAT Android 4.4 
20 KITKAT_WATCH Android 4.4W 
21 LOLLIPOP Android 5.0 
22 LOLLIPOP_MR1 Android 5.1 
23 M Android 6.0 
24 N Android 7.0 
25 N_MR1 Android 7.1, 7.1.1 
26 O Android 8.0 
27 O_MR1 Android 8.1 
28 P Android 9 
29 Q Android 10 
30 R Android 11 

2.3 Machine Learning 

Machine Learning (ML) is a subclass of Artificial Intelligence (AI). ML techniques perform some learning tasks where they 
gain experience in executing a specific task  (Ray, 2019).  ML is a subclass of Artificial Intelligence (AI).  

2.4 Supervised Learning 

In supervised learning, the input dataset is paired with the target output. It involves algorithms that accept a dataset and 
feedback so that the program can identify the class of each piece of data. Many techniques are used for classification, such 
as regressions, classification trees, support vector machines, random forests, and artificial neural networks (ANNs). The 
study of ANNs is a significant branch of AI (Louridas & Ebert, 2016). Supervised learning can be categorized into two 
categories:  

• Regression, forecasting a continuous result. 
• Classification, forecasting discrete values. 

2.5 Unsupervised Learning 

In unsupervised learning the solution must discover natural grouping. It can be categorized into two categories (Louridas & 
Ebert, 2016):  

• Dimension reduction, which is ideal for reducing the details as much as possible while retaining the facts. 
• Clustering, which involves grouping data into groups that meet those requirements. 

2.6 Semi-supervised Learning 

It is a computational approach, which helps in the automatic labeling of huge unlabeled data based on smaller and similar 
labeled data. "Semi-supervised learning" is taking advantage of labeled and unlabeled data. Labeled data are hard to be 
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found, so semi-supervised learning is promising for grasping unlabeled human category learning (van Engelen & Hoos, 
2020). 

2.7 Reinforcement Learning (RL) 

Sequential decision-making research in computer learning is known as “reinforcement learning”. The principal 
characteristic of RL is that it relies on iterative discovery and only information learning occurs in an environment (François-
Lavet et al., 2018). 

3. Literature review  
 

Smartphones have become an essential part of the lives of an individual in present-day society. Smartphones are the most 
used devices for accessing Internet services in the present day (Faris et al., 2020). With the increase in the popularity and 
frequency of the use of smartphones, they become targets for various attacks, malware, and malicious activities over the 
Internet (Dubey et al., 2023). The attacks on smartphones have excessively increased over the past few years. The number 
of ransomware attacks on smartphones is rapidly increasing as compared to other types of malware attacks (Sharma et al., 
2021). Ransomware attacks on smartphones aim to control smartphone system, data, and demand payment before they 
release it.  
API has become a crucial part of system development in the present-day technological world. They function as rules that 
facilitate communications between programs or hardware devices. Current systems have changed this approach because of 
the demand for data regardless of geographical position. In these cases, there is a need for an interface for sending and 
receiving data to or from servers (Alsoghyer & Almomani, 2019).  
Alsoghyer and Almomani (2019) reported that API-based ransomware detection systems (API-RDS) achieved 97% in 
detecting ransomware attacks when compared to other security systems that were currently being used. The current security 
systems used in Android devices attempt to detect the ransomware once they have entered the systems but often fails because 
ransomware is difficult to detect and can capture the device instantly. The API-based ransomware detection system, on the 
other hand, can detect the malware at the period when the user requests information from a given data.  
API-based ransomware detection systems play a crucial role in enabling a developer to detect the source code vulnerability. 
(Alenezi & Almomani, 2018) noted that developers used the analysis approach in detecting malware and preventing possible 
attacks on systems. The research also examined static software metrics and the ability of these metrics to predict security 
vulnerabilities. They found that the static analysis approach is very effective in detecting vulnerabilities in a source code. 
For this reason, software developers can consider API as a tool for providing security against ransomware because it 
provides access to the source codes. 
The application of static analysis framework as an approach that could be used in API-based ransomware protection systems 
applies to Android devices. Although there is limited research on the application of the static analysis framework, the 
available literature provides critical information that demonstrates its usefulness. (Khayer et al.,2020) presented an Android 
Static Analysis Framework (ASAF) which is a static analysis framework designed for an Android system that provides a 
possible solution to the problem of ransomware attacks. For this reason, they suggested the application of ASAF in Android 
devices to perform various tasks including protection against malware. Furthermore, (Khayer et al., 2020) recommended 
the application of Android Static Parse (ASParse) in the future as an approach to dealing with Android malware, particularly 
ransomware. ASParse tool could also prove to be a crucial element in API because it enables the parsing of files when they 
are requested by the users. This is because parsed files are very easy to analyze and attempt to establish the presence of 
malware. Another important aspect of Android API in the development of ransomware protection systems is that they 
consist of crucial information about the behavior of the malware. Data on the ransomware API call and permissions can be 
extracted and its patterns analyzed to determine the behavior of the ransomware. Research by Faris et al. (2020) explored 
the effectiveness of the Salp Swarm Algorithm (SSA) and Kernel Extreme Learning Machine (KELM) in monitoring an 
information system. These two systems are proposed as an information security system that is designed through the static 
analysis framework. The application of API in the development of a security system to protect Android devices from 
ransomware attacks can also involve the use of Machine learning to collect and statistically analyze data by a computer 
system to create patterns and make decisions without the interference of human beings. (Jung et al., 2018) explore the 
effectiveness of an Android ML API and establish that it can achieve a high accuracy of 99.98%. However, the researchers 
did not apply any feature selections on the datasets and noise insertion and filtering. 
Another research by Jung et al. (2019), explored the need for developing an accurate malware detection system for Android 
devices. This research builds on the effectiveness of Android API in providing security for Android devices against 
ransomware. The authors concluded that the AI-based cybersecurity systems are always considered to be the future of 
information security given their accuracy and efficiency they have in monitoring information systems.  
In conclusion, an API-based malware protection system through the use of a static analysis framework can prove effective 
in the prevention of malware attacks in Android systems. API plays a fundamental role as an interface between the end-user 
and software of a hardware device. Android API, collects information about the actions of various programs making them 
a key data source for understanding the behavior of ransomware attacks. 
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4. Methods and materials 

4.1 Overall Methodology 

This paper intends to explore methods for malware detection for malicious API calls based on ML and the robustness of 
ML algorithms in the presence and absence of injected noise. The main aim is to detect Android malware using ML 
algorithms. Fig. 2 illustrates the general approach used in this paper through the following four experiments, whereas steps 
presented in the algorithm 1, will be conducted in this research. 

• The first experiment involves retrieving a dataset from the Kaggle repository as JSON files and converting the 
dataset to a CSV file after preprocessing. Subsequently, injecting choosing percentage noise from 0%, 5%, 10%, 
15%, and 20% then optimizing data by using feature selection running ML algorithms for classification to 
determine the effectiveness of noise filtering on detecting malware API calls. 

• The second experiment includes the previous steps without optimization. 
• The third experiment involves collecting the dataset from the IEEE Dataport as separated text files and converting 

the dataset to a CSV file after preprocessing. Subsequently, injecting noise by choosing noise percentages from 
0%, 5%, 10%, 15% and 20% then running ML algorithms for classification to determine the effectiveness of noise 
filtering on detecting malware API calls. 

• The fourth experiment involves collecting a dataset from IEEE Dataport as separated text files then starting pre-
processing the data by reassembling the data and converting the dataset to a CSV file. Subsequently, injecting 
noise by choosing noise percentage from 0%, 5%, 10%, 15%, and 20% then optimizing data by using feature 
selection and applying one of three methods to clean noise filtering and running ML algorithms to determine the 
effectiveness of noise cleaning on detecting malware API calls. 

Fig. 2. The Overall methodology used in this paper 

Algorithm 1. Algorithm of the steps that will be conducted during the research 
1. Procedure Detect_Malicious (datasets D, noise_level = {0, 5, 10, 20}) 
2. Return trained models 
3. //Select an appropriate dataset Da and preprocessing and split it into train set DTN and test set DTT 
4. Preprocessing (Da) 
5. DTN, DTT =train_test_split (Da) 
6. //Call Noise_Insertion function with noise level 
7. For each noise_level: 
8.  DTN_noise_level   = Noise_Insertion (DTN, noise_level) 
9. // Noise Filtering 
10. For each dataset with inserted noise: 
11.        DTN_noise_level_f   = Noise_Filtering (DTN_level) 
12. // Feature Selection for all datasets (DTN, DTN_noise_level, DTN_noise_level_f) 
13. DTN_s   = Feature_Selection (DTN) 
14. For each dataset after noise insertion: 
15.          DTN_noise_level_s   = Feature_Selection (DTN_noise_level) 
16. For each dataset with noise insertion after filtering: 
17.          DTN_noise_level_f_s   = Feature_Selection (DTN_noise_level_f) 
18. // Train classification (IBK, MLP & RF) models for each dataset 
19. For each dataset (DTN, DTN_noise_level, DTN_noise_level_f, DTN_s, DTN_noise_level_s, DTN_noise_level_f_s):  
20.          For each classification model (RF, MLP, IBK):  
21.                  Train_model (classification_model, dataset) 
22.                  Evaluate_model (DTT) 
23. end 



  34

4.2 Dataset  

Using datasets is essential to training and validating machine learning algorithms. The focus was on Android API datasets 
as we found many datasets with different aspects like ransomware, malware, adware, and other aspects. Computer- or 
program-generated solutions are needed to handle the increasing number of mobile malware samples (Lindorfer et al., 
2014). The chosen datasets from Kaggle and IEEE Dataport were significant for malware attacks using Android API.  

Pre-Processing for the Dataset 

The data must be processed to clarify the features of the data. The phases of pre-processing of the datasets include: 

• Data Collection Phase: The collected data was divided and duplications were identified which needs to be cleaned. 
The collected dataset from IEEE Dataport was divided into two datasets AMD and DREBIN where every dataset 
has five files containing data, labels, family, sample, and family index. Similarly, the Kaggle dataset was divided 
into two datasets: the first for benign and the second for malware. 

• IEEE Dataset Pre-processing Phase: In this phase, the file has been grouped and is ready to add family and family 
index then add samples. Finally, adding data and labels together into one CSV file.  

• Kaggle Dataset Pre-processing Phase: In this phase, the created CSV dataset with full features and classify apps 
into two CSV files were created: one for benign apps and the other for malware apps where the merge between 
them was done manually.  

Dataset Statistics  

The dataset has 35 API calls from 170 API calls in API level 23. In the pre-processed dataset, 4304 benign and 4011 
malware Android applications were analyzed, which contained 8315 instances and 35 features.  

Feature Selection 

Feature selction is dealing with high-dimensional to find a limited subset of features that describe the target definition while 
elemenation irrelevant features (Priyadarsini et al., 2011). Feature selection attempts to identify an optimal subset of 
variables from the data while reducing the impact of noise or unnecessary variables (Chandrashekar & Sahin, 2014). 

Statistical Feature Selection 

Hall (1999) suggested Correlation-based Feature Selection (CFS) which is a straightforward filter algorithm that ranks 
feature subsets according to a heuristic evaluation function based on correlation. Irrelevant characteristics should be 
overlooked due to their poor association with the class. Delete redundant features that are heavily associated with one or 
more of the remaining features. For convenience, the CFS element subset evaluation function is presented in Eq. (1), 𝑀௦ = 𝑘𝑟௖௙തതതതඥ𝑘 + 𝑘(𝑘 − 1)𝑟௙௙തതതത (1) 

Evolutionary Feature Selection 

According to Abd-Alsabour (2014), evolutionary algorithms are population-based heuristic search techniques (i.e., groups 
of individuals representing different candidate solutions to the optimization problem being solved). Each individual 
represents a subset of features in feature selection problems. Particle swarm optimization (PSO) is used as an evolutionary 
feature selection method. Particle swarm optimization is an incredibly straightforward algorithm that seems to be efficient 
at optimizing various functions. 

Noise Insertion 

Data in the real world has an element in Data Mining algorithms and must be dealt with realistically that way. We insert 
noise intentionally percentage from 5% and then will grow to 20%. There are two types, label noise and attribute noise as 
well. 

Noise Filtering 

Inaccurate and noisy data must be filtered out to obtain more reliable results. Several noise-filtering algorithms may be 
employed, including (Amro et al., 2021): 

• The Repeated Edited Nearest Neighbor Algorithm (RENN): As long as there are no further deleted instances, the 
algorithm loops through ENN many times. By expanding on the above argument, all individual instances are also 
bound to their k closest neighbors (have the same class). 
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• Encoding Length (Explore): first applies the ELGrow algorithm to the data and then experiments with 1,000 
possible classifier improvements. For each mutation, one instance is removed, one is added, or one is substituted. 
This change is kept only if it does not increase the classification costs. 

• DROP5: this algorithm looks at the instances next to their closest first opponent and works its way outwards. This 
excludes most internal events. After this move, the instances are then reviewed for elimination, starting with the 
closest opponent. An instance is eliminated if no more than k of the instances, that have it among their neighbors, 
are correctly classified without it. This is done several times until there is no further progress to be achieved.  

 

4.3 Machine Learning Algorithms 
 
Neural Network 
 

Artificial Neural networks are important in the implementation of Deep Learning. They are efficient and scalable, making 
them useful for tremendous and complex ML tasks. ANNs consist of three layers, input, output, and hidden nodes (Louridas 
& Ebert, 2016). 
 
Decision Trees (DT-J48) 
 
There are several tree analogies in the real world; they are the root of a large portion of machine learning, which deals with 
classification and regression. A decision tree can represent decisions and decision-making by visually and clearly showing 
decision nodes and their choices (Yang, 2019).  
 
Random Forest (RF) 
 

Creates several DTs, each with randomly assigned attributes. Much of the real results are in the distribution of files and 
folders may be managed by voting, where people have the option to vote for or to weigh vote (Buczak & Guven, 2016). As 
a learning tool, it is essential to understand that RF can play a big role in the use of other tools such as trees, predictive 
models, and clustering (Rathore et al., 2016).  
 

Support Vector Machine (SVM) 
 

Support vector machines (SVM) are supervised learning algorithms for classification and regression analysis. SVM 
constructs models that will automatically allocate examples to one or the other (Sabar et al., 2018).  
 

Performance Metrics 
 
The model is tested by performance-metric calculations. In research (Seliya et al., 2009), some performance metrics were 
calculated to determine how successful the ML algorithm is in detecting malware. To calculate performance, it needs to 
determine the following: 
 

• True Positive (TP) the prediction was right and real results indicated that it was a positive 
• False Positive (FP) predictions are inaccurate, Where negative values are predicted as positive 
• True Negative (TN) the prediction was right and real results indicated that it was a negative 
• False Negative (FN) predictions are inaccurate, Where positive values are predicted as negatives. 

 

Precision: That is equal to the ratio of right positive examples / overall positive examples (Eq. (2)). 𝑇𝑃(𝑇𝑃 + 𝐹𝑃)                                                                             (2) 

  

Recall quantifies the number of positive predictions out of all the possibilities (Eq. (3)). 𝑇𝑃(𝑇𝑃 + 𝐹𝑁) (3) 

Accuracy calculates the closeness of a measured or estimated value to its real value (Eq. (4)). 
 (𝑇𝑃 + 𝑇𝑁)(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)  × 100    (4) 

5. Experimental results and discussions 
 

Datasets balancing 
 
SMOTE 
 

Chawla et al. (2002) proposed an approach to balance data. The minority party is oversampled by the use of “synthetic” 
cases by working in “feature space”. The used dataset was imbalanced and SMOTE was applied to balance the dataset to 
get 4304 benign instances and 4304 malware instances. Also, we round up decimal portion for better model training 
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Noise insertion and filtering 

Firstly, we divided the datasets into two training datasets (6456 instances) and testing dataset (2152 instances). Both datasets 
are divided equally between benign and malware instances. Inserting noise is done automatically. The noise ratio calculates 
the percentage of affected instances: 0%, 5%, 10%, and 20% of selected instances randomly. The tests were performed 
using ten equal fold cross-validation and then averaged with each combination of dataset and instance reduction algorithm. 
For noise filtering, kNN, DROP5, RENN, and Explore have been applied as part of our experiment. Table 2 and Table 3 
report the accuracy and size results for every iteration and noise ratio. 
Table 2 
Kaggle dataset noise insertion and cleaning iterations (10 Trials) 

Noise Ration (average)  None (kNN) DROP5 RENN Explore 
Accuraccy Size Accuracy Size Accuracy Size Accuracy Size 

0%  82.54 100.00 80.61 15.40 80.79 81.11 69.10 0.03 
5% 81.35 100.00 79.14 16.60 80.61 77.25 72.00 0.11 

10% 79.96 100.00 78.58 17.26 80.65 73.19 72.00 0.15 
20% 82.54 100.00 80.61 19.66 80.79 64.20 69.10 0.10 

 

Table 3 
Binarized Kaggle dataset noise insertion and cleaning iterations (10 Trials) 

Noise Ration (average) None (kNN) DROP5 RENN Explore 
Accuracy Size Accuracy Size Accuracy Size Accuracy Size 

0% 82.81 100.00 81.68 10.21 81.99 82.99 75.54 0.03 
5% 81.92 100.00 80.92 10.36 81.55 79.20 75.28 0.03 

10% 81.21 100.00 80.75 10.61 81.57 76.06 75.54 0.03 
20% 77.85 100.00 77.83 13.75 79.37 68.87 75.06 0.03 

 

Based on the accuracy average for every run in Table 4 and Table 5 and Fig. 3 and Fig. 4, it can be noticed that DROP5 and 
RENN have similar accuracy. However, Explore and kNN did not give good results. We compared size and accuracy as 
shown in Fig. 5 and Fig. 6. RENN has been chosen because it is the best among all used filtering algorithms. 
Table 4  
Average noise-cleaning accuracy for unpruned trees in the Kaggle dataset at different noise ratios 

Noise Ratio None (kNN) DROP5 RENN Explore 
Accuracy Size Accuracy Size Accuracy Size Accuracy Size 

0% 82.54 100.00 80.61  15.40 80.79 81.11  69.10  0.03 
5% 81.35 100.00 79.14 16.60 80.61 77.25 72.00 0.11 

10% 79.96 100.00 78.58 17.26 80.65 73.19 72.00 0.15 
20% 82.54  100.00 80.61 19.66  80.79  64.20 69.10 0.10 

 

Table 5  
Average noise-cleaning accuracy for unpruned trees in the binarized dataset at different noise ratios 

Noise Ratio None (kNN) DROP5 RENN Explore 
Accuracy Size Accuracy Size Accuracy Size Accuracy Size 

0% 82.81 100.00 81.68  10.21 81.99 82.99 75.54  0.03 
5% 81.92 100.00 80.92 10.36 81.55 79.20 75.28 0.03 

10% 81.21 100.00 80.75 10.61 81.57 76.06 75.54 0.03 
20% 77.85 100.00 77.83 13.75 79.37 68.87 75.06 0.03 

 

  
Fig. 3. Average noise-cleaning accuracy for unpruned trees 

in the dataset at different noise ratios 
Fig. 4. Average noise-cleaning accuracy for unpruned 
trees in the binarized dataset at different noise ratios 
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Fig. 6. Noise filtering size in the binarized dataset at 
different noise ratios 

Fig. 5. Noise filtering size in non-binarized dataset at 
different noise ratios 

 

Feature selection 
 

Evolutionary feature selection 
 
We used the EvoloPy-FS tool for feature selection (Khurma et al., 2020) aims to provide a feature selection engine and 
continues our journey toward developing an optimized optimization environment, which began with EvoloPy for global 
optimization problems. The selection features were based on PSO as shown in Table 6 for binarized and non-binarized 
datasets with noises. 
 
Table 6  
Selected and Non-selected features using EvoloPy-FS and PSO in non-binarized datasets with all noise ratio 

Feature Non-Binarized Binarized 
0% 5% 10% 20% 0% 5% 10% 20% 

android.os.SystemProperties No Yes Yes Yes No Yes Yes Yes 
android.app.SharedPreferencesImpl$EditorImpl Yes No Yes No Yes Yes Yes Yes 
libcore.io.IoBridge Yes Yes Yes No Yes No No No 
android.os.Debug Yes No Yes Yes Yes Yes Yes Yes 
java.lang.reflect.Method Yes No No No No No No Yes 
android.app.ContextImpl Yes Yes Yes Yes No Yes Yes Yes 
android.content.ContentValues No Yes Yes No Yes Yes Yes Yes 
android.app.ActivityThread Yes Yes Yes Yes Yes Yes Yes Yes 
android.telephony.TelephonyManager Yes Yes Yes Yes Yes No Yes Yes 
android.util.Base64 Yes Yes Yes No Yes Yes Yes No 
android.content.ContentResolver Yes Yes No Yes No No No Yes 
android.accounts.AccountManager No Yes Yes Yes Yes Yes Yes Yes 
dalvik.system.BaseDexClassLoader Yes Yes Yes No No No Yes No 
java.net.URL Yes Yes No Yes Yes Yes Yes Yes 
dalvik.system.DexFile Yes Yes Yes Yes No Yes Yes No 
dalvik.system.PathClassLoader No Yes No No Yes No Yes Yes 
android.app.Activity Yes No Yes Yes Yes Yes Yes Yes 
javax.crypto.Cipher Yes Yes Yes Yes Yes No Yes Yes 
javax.crypto.spec.SecretKeySpec Yes Yes Yes Yes No Yes Yes No 
dalvik.system.DexClassLoader No Yes Yes Yes Yes Yes No Yes 
java.lang.Runtime Yes Yes Yes Yes Yes Yes Yes Yes 
android.net.wifi.WifiInfo Yes Yes Yes Yes Yes Yes No Yes 
javax.crypto.Mac Yes Yes Yes Yes Yes Yes No Yes 
android.app.NotificationManager Yes No Yes Yes No No Yes Yes 
java.io.FileInputStream Yes Yes No Yes Yes No No Yes 
android.app.ApplicationPackageManager No Yes No Yes No Yes Yes Yes 
java.lang.ProcessBuilder Yes Yes Yes Yes Yes No Yes No 
java.io.FileOutputStream No No Yes No Yes No Yes Yes 
android.os.Process Yes Yes Yes No Yes Yes Yes No 
android.location.Location Yes Yes Yes Yes No Yes Yes Yes 
org.apache.http.impl.client.AbstractHttpClient Yes No Yes No Yes No Yes No 
android.media.AudioRecord No Yes Yes Yes Yes Yes No Yes 
android.app.ActivityManager Yes Yes Yes Yes Yes Yes Yes No 
android.media.MediaRecorder Yes Yes Yes Yes Yes Yes Yes Yes 
android.telephony.SmsManager No Yes Yes Yes No No Yes No 
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We noted that some of the features had been selected in four runs for noise ratios for non-binarized and binarized datasets, 
we list the most important API calls in Table 7 for non-binarized datasets which appear in noise ratios. For binarization, 
Table 8 shows selected features appear in noise ratios. 

Table 7  
Selected features in all runs for non-binarized datasets 

SN Feature 
1 android.app.ContextImpl 
2 android.app.ActivityThread 
3 android.telephony.TelephonyManager 
4 dalvik.system.DexFile 
5 javax.crypto.Cipher 
6 javax.crypto.spec.SecretKeySpec 
7 java.lang.Runtime 
8 android.net.wifi.WifiInfo 
9 javax.crypto.Mac 

10 java.lang.ProcessBuilder 
11 android.location.Location 
12 android.app.ActivityManager 
13 android.media.MediaRecorder 

 

 
 
 
 
Table 8  
Selected features in all runs for binarized datasets 

SN Feature 
1 android.content.ContentValues 
2 android.app.ActivityThread 
3 android.accounts.AccountManager 
4 android.app.Activity 
5 java.lang.Runtime 
6 android.media.MediaRecorder 

 

 

 

Statistical feature selection 

In this paper, we used Correlation-based Feature Selection (CFS) as statistical feature selection. Table 9 shows the selected 
features for all noise ratios running 0%, 5%, 10% and 20%. 

Table 9  
Selected and Non-selected features using CFS algorithm in the non-binarized dataset with all noise ratios 

Feature Non-Binarized Binarized 
0% 5% 10% 20% 0% 5% 10% 20% 

android.os.SystemProperties Yes No No No No No No No 
android.app.SharedPreferencesImpl$EditorImpl Yes No No No No No No No 
libcore.io.IoBridge Yes No No No Yes No No No 
android.os.Debug No No No No Yes Yes Yes Yes 
java.lang.reflect.Method Yes No No No No No No No 
android.app.ContextImpl Yes No No No No No No No 
android.content.ContentValues No No No No No No No No 
android.app.ActivityThread Yes No Yes Yes No No No No 
android.telephony.TelephonyManager Yes No No No No No No No 
android.util.Base64 Yes No No No No No No No 
android.content.ContentResolver Yes No No No No No No No 
android.accounts.AccountManager No No No No No No No No 
dalvik.system.BaseDexClassLoader Yes No No No No No No No 
java.net.URL Yes Yes Yes Yes No No No No 
dalvik.system.DexFile Yes No No No No No No No 
dalvik.system.PathClassLoader No No No No No No No No 
android.app.Activity Yes Yes Yes Yes No No No No 
javax.crypto.Cipher Yes No No No No No No No 
javax.crypto.spec.SecretKeySpec Yes Yes Yes Yes No No No No 
dalvik.system.DexClassLoader Yes Yes Yes Yes No No No No 
java.lang.Runtime Yes Yes No No Yes Yes Yes Yes 
android.net.wifi.WifiInfo Yes Yes Yes Yes Yes Yes Yes Yes 
javax.crypto.Mac No No No Yes No No No No 
android.app.NotificationManager No No No No No No No No 
java.io.FileInputStream Yes Yes Yes Yes No No No No 
android.app.ApplicationPackageManager Yes Yes No No No No No No 
java.lang.ProcessBuilder Yes Yes Yes Yes No No No No 
java.io.FileOutputStream Yes No No No No No No No 
android.os.Process Yes Yes Yes Yes No No No No 
android.location.Location Yes No No No No No No No 
org.apache.http.impl.client.AbstractHttpClient Yes Yes Yes Yes Yes Yes Yes Yes 
android.media.AudioRecord Yes Yes Yes Yes No No No No 
android.app.ActivityManager No No No Yes No No No No 
android.media.MediaRecorder No Yes Yes Yes No No No No 
android.telephony.SmsManager Yes Yes Yes Yes No No No No 
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CFS selects some features in all runs and we consider this very important to help in detecting malware calls such as Table 
10. 
Table 10  
Selected features using CFS algorithm in non-binarized datasets 

SN Feature 
1 java.net.URL 
2 android.app.Activity 
3 android.accounts.AccountManager 
4 javax.crypto.spec.SecretKeySpec 
5 dalvik.system.DexClassLoader 
6 android.net.wifi.WifiInfo 
7 java.io.FileInputStream 
8 java.lang.ProcessBuilder 
9 android.os.Process 

10 org.apache.http.impl.client.AbstractHttpClient 
11 android.media.AudioRecord 
12 android.telephony.SmsManager 

 

Classification 

After applying feature selection using evolutionary and statistical optimizers, we classified the data based on noise ratio, 
optimizer, and ML algorithms as IBK, Decision Tree (J48), and Multilayer Perception (MLP). Table 11 reports the 
classification accuracy. The average accuracy, recall, Precision, and Time to build, were reported at different noise ratios 
and different optimizers. At a 0% ratio and no optimizer, MLP has better accuracy than IBK and finally DT(J48). At a 5% 
ratio and no optimizer accuracy, MLP has better performance than IBK where performance is less, and DT(J48) as well. At 
a 10% ratio and no optimizer, MLP has the worst accuracy in all runs, but DT(J48) performance has been improved, and 
IBK not doing better was the accuracy of less than 5% and 0%. At a 20% ratio and no optimizer, MLP accuracy is the best. 
It has a higher gap than previous runs, and then DT(J48) performance gets lower, whereas at 20% it has the worst 
performance. Moreover, IBK accuracy is getting better as shown in Fig . 7. 
Table 11  
Classification result for optimizers in the binarized dataset 

Noise Ratio Optimizer ML Algorithm Accuracy Recall Precision Time 

0% 

No Optimizer IBK 82.7138 % 0.827 0.830 0 
Decision Tree (J48) 82.6208 % 0.826 0.828 0.17 

MLP 83.0855 % 0.831 0.834 26.55 
PSO IBK 80.4833 % 0.805 0.812 0.01 

Decision Tree (J48) 80.6227 % 0.806 0.812 0.12 
MLP 81.1338 % 0.811 0.818 13.46 

CFS IBK 75.2788 % 0.753 0.773 0 
Decision Tree (J48) 75.2788 % 0.753 0.773 0.04 

MLP 75.2788 % 0.753 0.773 1.51 

5% 

No Optimizer IBK 82.1561 % 0.822 0.823 0 
Decision Tree (J48) 82.5279 % 0.827 0.825 0.16 

MLP 83.2714 % 0.833 0.835 25.09 
PSO IBK 80.1115 % 0.801 0.806 0.01 

Decision Tree (J48) 80.2974 % 0.803 0.808 0.12 
MLP 80.9944 % 0.810 0.815 11.55 

CFS IBK 75.2788 % 0.753 0.773 0.76 
Decision Tree (J48) 75.2788 % 0.753 0.773 0.02 

MLP 75.2788 % 0.753 0.773 1.28 

10% 

No Optimizer IBK 81.4591 % 0.815 0.816 0 
Decision Tree (J48) 82.6208 % 0.826 0.828 0.17 

MLP 82.4349 % 0.824 0.827 24.32 
PSO IBK 78.4387 % 0.784 0.786 0 

Decision Tree (J48) 77.881 % 0.779 0.780 0.18 
MLP 78.7639 % 0.788 0.791 16.57 

CFS IBK 67.6115 % 0.676 0.732 0 
Decision Tree (J48) 67.6115 % 0.676 0.732 0.02 

MLP 67.6115 % 0.676 0.732 1.26 

20% 

No Optimizer IBK 82.1097 % 0.821 0.822 0 
Decision Tree (J48) 82.4349 % 0.824 0.826 0.16 

MLP 83.5502 % 0.836 0.838 22.57 

PSO IBK 80.2974 % 0.803 0.808 0 
Decision Tree (J48) 81.4591 % 0.815 0.821 0.13 

MLP 81.2732 0.813 0.820 11.29 

CFS IBK 75.3717 % 0.754 0.772 0 
Decision Tree (J48) 75.3717 % 0.754 0.772 0.02 

MLP 75.4182 % 0.754 0.773 1.18 
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At 0% ratio and PSO optimizer, MLP has the best accuracy than IBK and finally DT(J48). At a 5% ratio and PSO optimizer 
accuracy, IBK has the worst performance than DT(J48) where performance is less and MLP still has the best accuracy. At 
a 10% ratio and PSO optimizer, MLP has the worst accuracy in all runs, the same as for DT(J48) performance getting 
worse, and IBK not doing better where the accuracy was less than 5% and 0% and it is considered as a common issue for 
all classifiers in this run were they have the worst accuracy in all runs. At 20% ratio and PSO optimizer, DT(J48) accuracy 
is the best. It has a higher gap than previous runs, so both DT(J48) and MLP have the same performance. Moreover, all 
classifiers' accuracies are getting better as shown in Fig. 8. 
 

  
Fig. 7. ML algorithm accuracy at no optimizer in binarized 
datasets 

Fig. 8. ML algorithm accuracy at PSO optimizer in 
binarized datasets 

 
For statistical runs, the accuracy was nearly the same but it is not doing well with statistical optimization as shown in Fig. 
9. The reason behind this is that equal runs have statistically chosen the same feature for all noise ratios and at 5% noise 
ratio which choose one more feature than already chosen by other runs on noise ratios. At 10% run accuracy is the worst 
and in general classifiers do not work accurately with statistical optimization.  
 

 
Fig. 9. ML algorithm accuracy at CFS optimizer in binarized datasets 

 
The results for the classification of optimizers in non-binarized datasets are reported in Table 12. Average accuracy, recall, 
Precision, and Time to build, were reported at different noise ratios and different optimizers. At a 0% ratio and no optimizer, 
DT(J48) has better accuracy than IBK and MLP. At a 5% ratio and no optimizer, the accuracy of DT(J48) has better 
performance than IBK and MLP has the same performance. At a 10% ratio and no optimizer, DT(J48) has lower accuracy 
than a 5% ratio, but it is looking to have robust performance. At 20% ratio and no optimizer, DT(J48) accuracy is the best 
and it seems to have a robust performance. The gap between DT(J48) is more than 30% which has a considerable effect 
that leads to DT(J48) being the best, as shown in Fig. 10. 
For PSO optimizers, the classifiers have good performance. At a 0% ratio, DT(J48) has the best accuracy than IBK and 
finally, MLP has the worst performance. At a 5% ratio, the accuracy of DT(J48) was affected but still performed way better 
than IBK and MLP which have the same performance. At 10% ratio and no optimizer, DT(J48) has better accuracy than 
5% ratio but it is looking to have robust performance. At 20% ratio and no optimizer, DT(J48) accuracy is the best and it 
seems to have a robust performance in all noise ratios. The gap between DT(J48) is more than 30% which has a considerable 
effect that leads to that DT(J48) is the best, as shown in Fig. 11. 
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For the Statistical optimizer (CFS), the classifiers have good performance in general, as shown in Fig. 12. At a 0% ratio, 
DT(J48) has the best accuracy than IBK and finally, MLP has the worst performance. At a 5% ratio, the accuracy of DT(J48) 
was affected but still performed better than both IBK and MLP who nearly have the same performance. At a 10% ratio and 
no optimizer, DT(J48) accuracy is affected where it is going lower but it looks to have a robust performance. At a 20% 
ratio and no optimizer, DT(J48) accuracy is the best among all classifiers. It seems to have a robust performance in all noise 
ratios with a small effect of noise data. The gap between DT(J48) is more than 30% which has a considerable effect that 
leads to DT(J48) being the best. 
The non-binarized dataset is the best dataset to help in detecting malware and the PSO optimizer is the best optimizer that 
selects features that affect the classifier where DT(J48) is robust to noise or tolerant to noise whereas MLP and IBK were 
not affected by noise. Moreover, the time to build the model in DT(J48) is less than 1 second in all runs. IBK has the best 
time where it is 0 in all but it has bad accuracy.  
Table 12  
Classification result for optimizers in non-binarized datasets 

Noise Ratio Optimizer ML Algorithm Accuracy Recall Precision Time 
0% No Optimizer IBK 50.1394 % 0.501 0.650 0 

Decision Tree (J48) 82.3885 % 0.824 0.828 0.3 
MLP 50.3717 % 0.504 0.592 25.9 

PSO IBK 53.9498 % 0.539 0.705 0 
Decision Tree (J48) 82.4814 % 0.825 0.827 0.22 

MLP 50.5576 % 0.506 0.585 16.45 
CFS IBK 50.1859 % 0.502 0.750 0 

Decision Tree (J48) 81.1338 % 0.811 0.814 0.22 
MLP 49.7677 % 0.498 0.467 16.66 

5% No Optimizer IBK 50.1394 % 0.501 0.650 0 
Decision Tree (J48) 82.5743 % 0.826 0.829 0.26 

MLP 50.4182 % 0.504 0.619 24.91 
PSO IBK 50.0929 % 0.501 0.750 0.21 

Decision Tree (J48) 81.7379 % 0.817 0.819 16.98 
MLP 49.9535 % 0.500 0.488 0 

CFS IBK 50.0465 % 0.500 0.750 0 
Decision Tree (J48) 78.7639 % 0.788 0.809 0.11 

MLP 54.2286 % 0.542 0.642 5.95 
10% No Optimizer IBK 50.1859 % 0.502 0.667 0 

Decision Tree (J48) 81.7379 % 0.817 0.821 0.23 
MLP 50.2788 % 0.503 0.651 23.93 

PSO IBK 50.1859 % 0.502 0.750 0 
Decision Tree (J48) 82.0167 % 0.820 0.823 0.18 

MLP 50.0465 % 0.500 0.508 16.57 
CFS IBK 50.0929 % 0.501 0.750 0 

Decision Tree (J48) 77.277 % 0.773 0.797 0.1 
MLP 50.2323 % 0.502 0.560 4.65 

20% No Optimizer IBK 50.1394 % 0.501 0.650 0 
Decision Tree (J48) 81.4591 % 0.815 0.820 0.22 

MLP 50.1859 % 0.502 0.600 20.44 
PSO IBK 50.0465 % 0.500 0.750 0 

Decision Tree (J48) 80.0651 % 0.801 0.810 0.16 
MLP 50.1394 % 0.501 0.750 11.22 

CFS IBK 50.0929 % 0.501 0.750 0 
Decision Tree (J48) 77.277 % 0.773 0.797 0.07 

MLP 50.2323 % 0.502 0.560 4.76 

 

   
Fig. 10. ML algorithm accuracy at no 
optimizer in non-binarized datasets 

Fig. 11. ML algorithm accuracy at PSO 
optimizer in non-binarized datasets 

Fig. 12. ML algorithm accuracy at CFS 
optimizer in non-binarized datasets 
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6. Conclusions and Future Work 
After reviewing all APIs from the first release of Android OS until API level 23. An approach was conducted to build an 
AI model to detect malware by analyzing API calls in Android applications. The used dataset has been prepared through 
different phases which are noise insertion and filtering, evolutionary and statistical feature selection, and classification. This 
analysis was aimed to examine AI model robustness through different noise ratios on datasets. Additionally, the 
investigation of using optimizers to select the feature that may be considered as security threats that may open the OS to 
various attacks. 
In conclusion, this paper found that Decision Trees (J48) and particle swarm optimizer for non-binarized dataset is the most 
robust and tolerant classifier in different noise ratios.  
In future work, more datasets are to be tested such as the IEEE Dataport dataset. Additionally, building an AI tool to examine 
API calls in Android apps through testing the apps and returning results reports for (.APK) files and applying higher noise 
ratios to run more classifiers. Furthermore, a wider selection of optimizers could be used to find the best optimizer that 
helps in choosing the most important features taking into consideration more than only API calls where permission and 
intent play a good role in detecting malware. 
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