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 Theselection of an optimal supplier is a critical and open challenge in supplychain management. 
While experts' assessments significantly influence thesupplier selection process, their subjective 
interactions can introduceunpredictable uncertainty. Existing methods have limitations in 
effectivelyrepresenting and handling this uncertainty. The paper aims to address thesechallenges 
by proposing a novel approach that leverages q-rung orthopair fuzzysets (q-ROFSs). The novelty 
of the proposed approach lies in its ability toaccurately capture experts' preferences through the 
use of q-ROFSs, which offermembership and non-membership degrees, providing a broader 
expression spacecompared to conventional fuzzy sets. Additionally, it incorporates social 
networkanalysis (SNA) to effectively consider the trust relationships among experts.The 
proposed approach is divided into three stages. The first stage presents anovel method to 
determine experts' weights by combining SNA, the Bayesianformula, and the maximum entropy 
principle. This approach allows for a moreprecise representation of varying levels of expertise 
and influence amongexperts, addressing the uncertainty arising from subjective interactions. 
Thesecond stage introduces a hybrid weight determination method to determinecriteria weights 
within the context of q-ROFSs. Entropy plays a crucial role incapturing fuzziness and uncertainty 
in q-ROFSs, while the projection measuresimultaneously provides information about the 
distance and angle between alternatives.By employing both objective weights estimated using 
entropy and normalizedprojection measure and subjective weights derived using an aggregation 
operatorand a score function, the presented approach achieves a comprehensiveassessment of 
criteria importance. To incorporate both subjective and objectiveweights effectively, game 
theory is applied which allows us to aligndecision-making with both quantitative and qualitative 
aspects, making themethod more versatile and applicable. The third stage redefines thetraditional 
Combined Compromise Solution (CoCoSo) method using Bonferroni meanoperators which 
captures interrelationships among arguments to be aggregated. Furthermore, in recognition of 
theimportance of an expert risk preferences and psychological behaviors, we applyregret theory, 
ensuring that the chosen solutions align more effectively withtheir underlying preferences and 
aspirations. The applicability andeffectiveness of the proposed approach are demonstrated 
through a numericalexample of green supplier selection. The comparative analysis illustrates 
thepracticality and real-world relevance while the sensitivity analysis confirmsthe stability and 
robustness of the proposed approach. 
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1. Introduction 
 

The socioeconomic framework of any country is profoundly shaped by the progress of its industrial sectors (Digalwar et 
al., 2020). Given the growing environmental awareness and mounting pressure from governments, stakeholders, and 
competitors, industrial organizations must embrace the principles of green supply chain management (GSCM) in their 
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organizational strategies (Ghosh et al., 2021). GSCM aims to minimize environmental impact and reduce waste at every 
stage of the supply chain, encompassing product sourcing, design, manufacturing, packaging, transportation, distribution, 
and post-consumption disposal (Ghosh et al., 2022). Previous research has revealed that implementing GSCM practices 
such as green purchasing, green design, green manufacturing, green transportation, and green marketing can yield 
substantial improvements in both financial and environmental performance (Rupa & Saif, 2022; Sahoo & Vijayvargy, 2021; 
Samad et al., 2021). The effectiveness of a company's GSCM is influenced by both internal green efforts and the green 
practices of its suppliers (Ghosh et al., 2022). Given that businesses frequently outsource a wide range of tasks, green 
supplier selection (GSS), which is a crucial component of GSCM, plays a crucial role in assisting businesses in maintaining 
their strategic positioning in the marketplace (Ghosh et al., 2023).  It has been demonstrated that GSS may significantly 
lessen an organization's environmental costs in terms of trash output and carbon dioxide emissions (Coskun et al., 2022). 
Therefore, it is vital to evaluate and choose green providers. 

The information available for an alternative throughout the green supplier selection process may be of a qualitative linguistic 
value, imprecise, or incomplete nature. (Zadeh 1965) introduced the idea of fuzzy set and used it to multiple decision-
making applications by taking into account different viewpoints in order to handle the ambiguous and imprecise data. Later 
many variants, of fuzzy sets came into existence such as the intuitionistic fuzzy set (IFS) (Atanassov & Stoeva, 1986), 
hesitant fuzzy set (HFS) (Torra 2010), Pythagorean fuzzy set (PFS) (Yager 2013), etc., to better manage these uncertainties. 
Researchers have resolved supplier selection problems under various fuzzy sets (Bisht 2023; Bonab et al., 2023; Chai et al., 
2023). A thorough examination of fuzzy decision-making is provided in (Kahraman et al., 2016; Liu & Liao, 2017), which 
unambiguously illustrates the need for a generalized fuzzy set that is better able to manage ambiguity and vagueness. Due 
to the boundary constraint, IFS and PFS have the major drawback of being unable to give a wider/flexible field for 
preference elicitation. (Yager 2016) developed a generalized fuzzy set called q-rung orthopair fuzzy set, which offers a 
broader field for preference elicitation, to deal with the problem and to minimize the shortcoming of IFS and PFS.  

Existing decision models often overlook the objective trust relationships among experts due to their reliance on the 
assumption that decision-making experts are independent (Wu et al., 2017). However, with the advent of online social 
networks, this assumption no longer holds true in many cases. During group decision-making (GDM), personal opinions 
are often supported by family, friends, or like-minded individuals within the social network context (Liang et al., 2017; 
Perez et al., 2016). Social networks foster interactions that are built on trust, and the application of social network analysis 
(SNA) has been proven to simplify the complexity of GDM and improve decision-making quality (Chu et al., 2016). 

Additionally, behavioral experiments demonstrate that under uncertainty and risk, decision-makers frequently exhibit 
bounded rationality (Camerer 1998). Therefore, when making decisions, decision-makers psychological tendencies should 
be taken into account. The regret theory was separately proposed by (Loomes & Sugden, 1982; Bell 1982), in which rejoice 
and regret aspects were incorporated into the utility values to more accurately portray intuitive judgments. The regret theory 
has been utilized in numerous disciplines. (Ali et al., 2022) employed q-rung model based on regret theory to stock selection 
problem. (Liu et al., 2022) developed a framework for collective decision-making that incorporates the regret theory. 

The literature has introduced a plethora of MCDM techniques aimed at addressing the challenge of selecting green suppliers 
in a q-ROFSs environment. (Pinar et al., 2021) extended fuzzy TOPSIS to q-rung orthopair fuzzy environment for solving 
GSS problem. (Krishankumar & Ecer, 2023) employs q-rung orthopair fuzzy CRADIS approach for selection of IoT service 
provider. (Guneri & Deveci, 2023) evaluates the GSS problems in the defense industry using the extended EDAS approach 
in q-ROF environment. (Krishankumar et al., 2023) proposed an integrated approach for biomass location selection in q-
ROF environment. But there is no study in the literature about an integrated framework that takes into account the 
relationship of trust between experts and psychological behavior. Additionally, no one has calculated the objective weights 
of criteria for the assessment of the green supplier selection problem using the concepts of entropy and projection measure. 
Here, we create a hybridized technique using q-ROFS, and we use it to evaluate the GSS problem using completely 
ambiguous knowledge regarding the standards and subject matter experts.   

Following a review of the literature above, we note the following difficulties: 
1. Inability to manage subjectivity and ambiguity. 
2. Ineffective modeling of attribute relationships. 
3. Weights of experts are a crucial element in the aggregation process that must be computed methodically to 

reduce subjective randomness caused by human interaction. Determining the weights of experts is a vital 
concern in the MCDM procedure. However, in the existing literature, the assignment of weights to each expert 
has often been explicitly determined by the authors (Garg & Chen, 2020; Arsu & Aycin, 2021; Kumar & Chen, 
2022; Deveci et al., 2022), introducing potential subjective ambiguity. 

4. Many researchers have used social network analysis (SNA) to control the GDM process. Due to their impact 
on experts' decision-making behavior, trust relationships in SNA have garnered more research attention in last 
years, hence the use of SNA to determine experts’ weights in q-ROF environment is an important issue to be 
addressed. 

5. Uncertainty and ambiguity in preference elicitation must be correctly taken into account in order to calculate 
attribute weights in a reasonable way under the q-ROFS framework. The direct values for criterion weights 
have been taken into consideration by the researchers in the past (Kumar & Chen, 2022; Deveci et al., 2022; 
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Bakir et al., 2021; Kakati & Rahman, 2022). Conversely, different weights of the criteria would result in 
different decisions. As a result, computing the criterion weights in actual MCDM issues is crucial. 

6. Decision analysis should take into consideration the psychological behaviors of decision-makers since 
decisions and behaviors are frequently correlated.  

7. Prioritizing alternatives by expanding well-known ranking techniques under q-ROFS is an intriguing problem 
that should be prioritized. 

8. The validation of the proposed decision framework's application in practice and a discussion of its strengths 
and weaknesses in the context of q-ROFS are both very desirable. 

 
The literature highlights the versatility and effectiveness of q-ROFS, a generalized fuzzy set, in handling ambiguity and 
uncertainty. To promote logical and systematic decision-making, it is critical to address the aforementioned issues and 
minimize direct human involvement in the decision-making process. The second challenge involves developing a decision-
making approach that accurately models the relationships among the arguments to be integrated. This is crucial for capturing 
the complexities and interdependencies among different factors. The third and fourth challenges emphasize the need for a 
systematic method to determine the weights of experts. This enables the systematic collection of preferences from each 
DM, ensuring their contributions are appropriately considered. The fifth challenge require a systematic approach to 
determine the weights of attributes. The sixth and seventh challenges involves the proper establishment of ranking order of 
alternatives, taking into account the psychological behavior of experts. This ensures a comprehensive and well-informed 
decision-making process. Methodically assigning weights to attributes, encourages the sensible prioritization of alternatives, 
which reduces decision-making errors. Finally, the last challenge is crucial because it exhorts the proposed framework's 
actual application and suggests its stability and coherence by contrasting it with alternative approaches. 

In response to these difficulties and in an effort to mitigate them, we make the following significant contributions: 
• The utilization of q-ROFS (Yager 2016), is widely preferred due to its flexibility in enabling experts to express 

their preferences while reducing uncertainty and subjective randomness. q-ROFS provides a comprehensive 
framework for handling uncertainty by adjusting the parameter q, allowing for enhanced flexibility in preference 
articulation and modeling uncertainty across three dimensions: membership, non-membership, and hesitancy 
grade. The versatility of q-ROFS is evident from its definition, which accommodates various scenarios and allows 
for effective management of uncertainty. 

• Additionally, past researches made it abundantly evident that the systematic computation of expert’s weights 
lowers errors in the decision-making process and moderates subjective randomness from human interaction.  The 
value of expert weights is rigorously assessed by taking into account their trust relationships with each other. Thus, 
instead of assigning each expert the same weight, an optimization model is built using maximum entropy principle 
and Bayesian principle to determine the expert weights in the setting of social networks. 

• To mitigate the adverse impacts of subjective and objective factors, an integrated weighting model is developed. 
This model combines an objective weight determination process that utilizes projection and entropy measures with 
a subjective weighing process that employs aggregation operators and score functions. By incorporating q-ROF 
data, this approach effectively estimates the weights of criteria, effectively balancing both subjective and objective 
considerations. 

• Bonferroni mean operators are employed to account for the interrelationships among arguments. 
• As mentioned earlier, decision-makers often exhibit bounded rationality when faced with uncertainty and risk. 

Therefore, it is crucial to incorporate the psychological behaviors of decision-makers into decision analysis. In this 
article, the regret theory is presented within the decision-making system under the q-ROF framework. 
Subsequently, a novel approach to decision analysis is proposed.  

• To make the fuzzy set more useful and suitable for MAGDM, it is necessary to expand common ranking techniques 
under q-ROFS. As a result, to prioritize alternatives in a logical way within the q-ROFS context, a popular and 
effective CoCoSo ranking approach is enhanced in response to its flexibility and application. 

• To validate the viability of the proposed framework, a green supplier selection problem is employed as a practical 
test case. This evaluation aims to assess the strengths and weaknesses of the proposed approach in comparison to 
existing methodologies. By subjecting the framework to this real-world scenario, we can effectively analyze its 
performance, advantages, and potential limitations. 

The paper is systematized as follows: 

Section 2 provides a comprehensive overview of the fundamentals of IFS and q-ROFS. In Section 3, we present the proposed 
decision structure, which includes a detailed explanation of the systematic weight calculations for attributes and experts. 
Section 4 introduces the MAGDM technique based on the suggested model. To establish the applied application of the 
proposed framework, Section 5 presents a case study on green supplier selection. In Section 6, a comparative analysis is 
conducted to evaluate the advantages and disadvantages of the suggested framework in contrast to other existing approaches. 
The reliability of the proposed framework is further demonstrated in Section 7 through sensitivity analysis. Lastly, Section 
8 concludes the paper by summarizing the findings and discussing future directions for research. 
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2.   Preliminaries 
 

An overview of key ideas utilized in the present study can be found in the section below.  

2.1. q-Rung Orthopair fuzzy set 

Definition 1. (Yager 2016) A q-rung orthopair fuzzy (q-ROF) set M in the universe of discourse X is categorized by three 
functions namely degree of membership, degree of non-membership and degree of indeterminacy and is represented as: 𝑀 = ሼ⟨𝑥,𝑢ெሺ𝑥ሻ,𝑣ெሺ𝑥ሻ⟩|𝑥 ∈ 𝑋ሽ 
where 𝑢ெ:𝑋 → [0,1] denotes the membership degree, 𝑣ெ:𝑋 → [0,1] denotes the non-membership degree, and satisfy the 
following condition 0 ≤ 𝑢ெሺ𝑥ሻ௤ + 𝑣ெሺ𝑥ሻ௤ ≤ 1 , 𝑞 ≥ 1 and the degree of indeterminacy is given by: 𝜋ெሺ𝑥ሻ =(𝑢ெ(𝑥ሻ௤ + 𝑣ெ(𝑥ሻ௤ − 𝑢ெ(𝑥ሻ௤𝑣ெ(𝑥ሻ௤)భ೜. 

Definition 2. (Yager 2016) Let 𝑎 = (𝑢௔, 𝑣௔) be a q-ROFN, the score function 𝑆 of 𝑎 is given as: 𝑆(𝑎) = 𝑢௔௤ − 𝑣௔௤ 
 

(1) 

The value of 𝑆(𝑎) lies between the closed interval [−1,1]. 
Definition 3. (Yager 2016) Let 𝑎 = (𝑢௔, 𝑣௔) be a q-ROFN, the accuracy function 𝐻 of 𝑎 is given as: 𝐻(𝑎) = 𝑢௔௤ + 𝑣௔௤ 

 
(2) 

The value of 𝐻(𝑎) lies between the closed interval [0,1]. 
The following q-ROFNs comparison rules are Based on the score and accuracy functions. 

Definition 4. (Yager 2016)  Let 𝑎 = (𝑢௔,𝑣௔) and 𝑏 = (𝑢௕, 𝑣௕) be two q-ROFNs, 𝑆(𝑎), 𝑆(𝑏) and 𝐻(𝑎),𝐻(𝑏) be the score 
and accuracy functions for 𝑎 and 𝑏, then: 

1. If 𝑆(𝑎) > 𝑆(𝑏), then 𝑎 > 𝑏. 
2. If 𝑆(𝑎) = 𝑆(𝑏), then 

• If  𝐻(𝑎) > 𝐻(𝑏) then 𝑎 > 𝑏. 
• If  𝐻(𝑎) = 𝐻(𝑏) then 𝑎 = 𝑏. 

2.2 The regret theory 

Regret theory, initially introduced by (Zhang et al., 2016), captures the remorse decision-makers feel when they choose a 
suboptimal solution instead of the optimal one. Conversely, rejoice represents the elation experienced when the optimal 
alternative is selected. 

Definition 7. As per (Zhang et al., 2016), provides the utility function v(x) for attribute value x: 𝑣(𝑥) = 𝑥ఈ , 0 < 𝛼 < 1 (3) 

where 𝛼 is the risk aversion coefficient of decision makers and utility function satisfies, 𝑣ᇱ(𝑥) > 0, 𝑣ᇱᇱ(𝑥) < 0. 
Definition 8. (Zhang et al., 2016) The definition of the regret-rejoice function is as follows: 𝑅(𝛥𝜈) = 1 − 𝑒ିఋ௱௩,𝛿 > 0 (4) 

where 𝛥𝜈 denotes the difference in utility value of two alternatives and 𝑅(𝛥𝜈) denotes the regret-rejoice function with 
respect to 𝛥𝜈 . 𝛿  is the regret aversion coefficient of decision makers and regret-rejoice 𝑅(𝛥𝜈)  function satisfies, 𝑅ᇱ൫(𝛥𝜈)൯ > 0,𝑅ᇱᇱ൫(𝛥𝜈)൯ < 0.  When 𝑅(𝛥𝜈) > 0, it represent rejoice function otherwise it represents regret function. 

Definition 9. (Zhang et al., 2016) By considering the evaluation values of X and Y as x and y respectively, the perceived 
utility value for an alternative X can be derived by combining the utility function of X with the regret-rejoice function. 𝑈(𝑋) =  𝑣(𝑥) + 𝑅(𝛥𝜈), 𝛥𝜈 = 𝑣(𝑥) − 𝑣(𝑦) (5) 
 

2.3. Social Network Analysis 

Social Network Analysis (SNA) is a valuable tool for studying the connections between enterprises and other social entities 
(Liu et al., 2019). It allows for the exploration of various aspects, including location attributes and structural balance (Perez 
et al., 2016), such as centrality, trust, and prestige. In traditional Group Decision Making (GDM) processes, decision-makers 
are often assumed to be independent of each other, overlooking the trust relationships that exist among experts. However, 
in real-life scenarios, experts' individual opinions can be influenced by the trust they place in others. Thus, trust relationships 
among experts play a crucial role in shaping the final decisions in GDM problems. A social network can be defined as a 
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social structure consisting of a set of edges (L) and a set of nodes (E). The edges represent the trust relationships among 
experts, with each relationship represented by a node. 

3. Proposed Framework 
 

3.1. Method for expert weight determination in q-ROFNs 

Social network matrix: For a set of experts 𝐸 = ሼ𝑒ଵ, 𝑒ଶ … 𝑒௠ሽ under the social network, the trust degree of expert 𝑒௜ to expert 𝑒௝ can be represented with linguistic terms to represent the ambiguous nature of experts. Therefore, we can construct a trust 
relationship matrix, 𝑊௠×௠ = ൫𝑤௜௝൯ where 𝑤௜௝  refers to the trust degree of expert 𝑒௜ to expert 𝑒௝. Thus, 𝑊௠×௠ = ൫𝑤௜௝൯ can 
be regarded as a directed matrix.  𝑊 = ൥𝑤ଵଵ … 𝑤ଵ௠⋮ ⋱ ⋮𝑤௠ଵ … 𝑤௠௠൩  
where 𝑤௜௝  represents the linguistic terms. Table 1, represents the linguistic terms and their corresponding q-ROFNs to 
measure the trust relationship among experts. 

Table 1  
Linguistic terms to q-ROFNs  

Linguistic terms q-ROFNs 
Extremely high (EH) (0.98,0.01) 

Very high (VH) (0.9,0.6) 
High (H) (0.75,0.6) 

Moderate (M) (0.55,0.45) 
Low (L) (0.7,0.8) 

Very low (VL) (0.6,0.9) 
Extremely low (EL) (0.01,0.98) 

 
Considering the real-world problems, it is not always true that the trust degree of expert 𝑒௜ to expert 𝑒௝ is equal to the trust 
degree of expert 𝑒௝ to expert 𝑒௜. Thus, for a 𝑊௠×௠ = ൫𝑤௜௝൯,𝑤௜௝ = 𝑤௝௜ cannot generally be established. 

Convert the trust degree of experts 𝑤௜௝ into crisp numbers using the score function. 

Bayesian network, also referred to as a belief network, is a well-known concept in probability theory. It can be visualized 
as a Directed Acyclic Graph (DAG) consisting of nodes that represent variables, interconnected by directed edges. These 
edges symbolize the interdependence and influence between the nodes. The trust relationship among experts is expressed 
using conditional probability within the framework of a Bayesian network. 

Let's assume that the decision-making process involves m experts.  𝐸 = ሼ𝑒ଵ, 𝑒ଶ … 𝑒௠ሽ. The conditional probability 𝑃𝑟𝑜𝑏 ൬௘೔௘ೕ൰ is used to represent the trust of expert 𝑒௝ on expert 𝑒௜ , and 𝑃(𝑒௜) is used to represents the weight of experts. 

𝑃𝑟𝑜𝑏(𝑒௜) = 𝑃𝑟𝑜𝑏 ൬𝑒௜𝑒ଵ൰ .𝑃𝑟𝑜𝑏(𝑒ଵ) + 𝑃𝑟𝑜𝑏 ൬𝑒௜𝑒ଶ൰ .𝑃𝑟𝑜𝑏(𝑒ଶ) + ⋯𝑃𝑟𝑜𝑏 ൬ 𝑒௜𝑒௠൰ .𝑃𝑟𝑜𝑏(𝑒௠) 

𝑃𝑟𝑜𝑏(𝑒௜) = ෍ 𝑃𝑟𝑜𝑏 ൬𝑒௜𝑒௞൰ .𝑃𝑟𝑜𝑏(𝑒௞)௠
௜ୀଵ,௜ஷ௞  

Finally, we utilize the maximum entropy principle to obtain the weight of experts. The optimization model is constructed 
as: 

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ max 𝑓 =  ෍− 𝑤(𝑒௜) ln( 𝑤(𝑒௜))௠

௔ୀଵ𝑠. 𝑡.  𝑤(𝑒௜) = ෍ 𝑤൬𝑒௜𝑒௞൰ .𝑤(𝑒௞)௠
௜ୀଵ,௜ஷ௞  0 ≤  𝑤(𝑒௜) ≤ 1, 𝑖 = 1,2, … .𝑚෍  𝑤(𝑒௜) = 1௠

௜ୀଵ

 

3.2. Integrated attribute weight determination model in q-ROFNs 

3.2.1. Estimate the objective weights of attributes 

Definition 10. (Liu et al., 2021) Let 𝑎 = (𝑎ଵ,𝑎ଶ…. 𝑎௡) and 𝑏 = (𝑏ଵ,𝑏ଶ…. 𝑏௡) be two q-ROFS. Then the normalized 
projection of 𝑎 on 𝑏 is given as:  



  72𝑁𝑝𝑟𝑜𝑗௕(𝑎) =  𝑎𝑏𝑎𝑏 + ||𝑏|ଶ − 𝑎𝑏| 
 

(6) 

where 𝑎𝑏 =  ∑ 𝜆௔೔௤௡௜ୀଵ 𝜆௕೔௤ + 𝜂௔೔௤ 𝜂௕೔௤ + 𝜋௔೔௤ 𝜋௕೔௤ , |𝑏௜|ଶ = (𝜆௕೔௤ )ଶ + (𝜂௕೔௤ )ଶ + (𝜋௕೔௤ )ଶ and |𝑏| = ඥ∑ |𝑏௜|ଶ௡௜ୀଵ  

The objective weights of attribute are calculated by combining the normalized projection and entropy method. The entropy 
value of each attribute is determined as follows: 𝑝௜ = 1 − ℎ௜∑ 1௠௜ୀଵ − ℎ௜ (7) 

where ℎ௜ represents the entropy of jth attribute and is calculated as: 

ℎ௝ = −1ln (𝑛)෍ቈ 𝑁𝑝𝑟𝑜𝑗௑ೝ(𝑋௜)∑ 𝑁𝑝𝑟𝑜𝑗௑ೝ(𝑋௜)௡௜ୀଵ ln ( 𝑁𝑝𝑟𝑜𝑗௑ೝ(𝑋௜)∑ 𝑁𝑝𝑟𝑜𝑗௑ೝ(𝑋௜)௡௜ୀଵ )቉௡
௜ୀଵ  (8) 

here 𝑁𝑝𝑟𝑜𝑗௑ೝ(𝑋௜) represents the normalized projection of 𝑋௜  on positive ideal reference point 𝑋௥ , and 𝑛 represents the 
number of alternatives. 

3.2.2. Estimate the subjective weights of attributes 

Each expert gives the weight of attributes according to their knowledge and understanding, which are represented in the 
form of matrix as: 

⎣⎢⎢⎢
⎡𝜗ଵ𝜗ଶ𝜗ଷ⋮𝜗௦⎦⎥⎥

⎥⎤ = ⎣⎢⎢⎢
⎢⎡𝑤ଵଵ 𝑤ଶଵ 𝑤ଷଵ … 𝑤௠ଵ𝑤ଵଶ 𝑤ଶଶ 𝑤ଷଶ … 𝑤௠ଶ𝑤ଵଷ 𝑤ଶଷ 𝑤ଷଷ … 𝑤௠ଷ⋮ ⋮ ⋱ ⋱ … ⋮𝑤ଵ௦ 𝑤ଶ௦ 𝑤ଷ௦ … 𝑤௠௦ ⎦⎥⎥

⎥⎥⎤ 
Combine the attribute weights by each expert using the q-ROFWA. 𝑧௜ = 𝑞 − 𝑅𝑂𝐹𝑊𝐴(𝑤௜ଵ,𝑤௜ଶ … … . .𝑤௜௦) (9) 
Finally, determine the subjective weights of attributes using score function as: 𝜔௜ = 𝑆(𝑧௜)∑ 𝑆(𝑧௜)௠௜ୀଵ  

 

(10) 

3.2.3. Estimate the combined weights of attributes 

Objective weighing methods neglects the decision makers experience and knowledge and, on the contrast, the subjective 
weighing methods includes high subjectivity and hence hybrid weighing methods are preferred over objective and subjective 
weighing methods and provides reasonable and effective results. Therefore, the final attribute weights are determined by 
integrating the objective and subjective weights through the application of game theory. 

In order to address multiple conflicts or entities, game theory is employed to find an optimal solution that achieves 
equilibrium. By considering different weighting methods as individual players, the comprehensive weight is determined 
using the concept of Nash equilibrium. The calculations steps of the procedure are: 

Consider there are 𝑘 attribute weights using 𝑘 different weighing methods. A weight set of 𝑘 vectors can be formed using 
the linear combination expressed as: 

𝑊 = ෍𝛼௜𝑤௜்௞
௜ୀଵ ,    𝛼௜ > 0 (11) 

In line with the principles of game theory, the attainment of an optimal equilibrium weight vector occurs when 𝑘 entities 
reach a consensus. This consensus can be viewed as the fine-tuning of the weight coefficient 𝛼𝑖. The objective behind this 
optimization process is to minimize the disparity between W and 𝑤𝑖, which can be achieved by employing the following 
formula: 

𝑚𝑖𝑛 ะ෍𝛼௜𝑤௜்௞
௜ୀଵ − 𝑤௜் ะଶ     (𝑖 = 1,2,3 … .𝑘) (12) 
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Based on the differentiation property of the matrix the requirement for the optimal first-order derivative of the equation is 
established. 

෍𝛼௜ × 𝑤௜ × 𝑤௜்௞
௜ୀଵ = 𝑤௜ × 𝑤௜்  (13) 

Thus, we have 

⎣⎢⎢
⎡𝑤ଵ.𝑤ଵ் 𝑤ଵ.𝑤ଶ் … 𝑤ଵ.𝑤௞்𝑤ଶ.𝑤ଵ் 𝑤ଶ.𝑤ଶ் … 𝑤ଶ.𝑤௞்⋮𝑤௞ .𝑤ଵ் ⋮𝑤௞.𝑤ଶ் ⋮… ⋮𝑤௞ .𝑤௞் ⎦⎥⎥

⎤ ൦𝛼ଵ𝛼ଶ⋮𝛼௞൪ = ⎣⎢⎢
⎡𝑤ଵ × 𝑤ଵ்𝑤ଶ × 𝑤ଶ்⋮𝑤௞ × 𝑤௞் ⎦⎥⎥

⎤
 

Solving these 𝑘 equations in 𝑘 variables we get the values of 𝛼௜. Finally, normalized the values of 𝛼௜  𝛼௜∗ = 𝛼௜∑ 𝛼௜௞௜ୀଵ  (14) 

such that ∑ 𝛼௜∗௞௜ୀଵ = 1. 

The optimal attribute weight is determined using eq. (15).   

𝑊∗ = ෍𝛼௜∗𝑤௜்௞
௜ୀଵ  (15) 

3.3. Regret theory under q-ROFNs 

Based on section (2.2) of regret theory, for calculating perceived utility function we need to select an ideal reference possible 
point with maximum outcome to calculate the regret values of other alternatives, hence we select the positive ideal 
alternative as the reference point. The difference between the 𝐾௜ு value as obtained by the CoCoSo method of the alternative 
and reference point is considered as the utility function, the less the difference the less in the regret of selecting the 
alternative over the optimal one. 

For a MCDM problem with n alternatives and m attributes the weighted distance of alternative from the ideal reference 
point is defined as: 𝑑(𝐴௜ ,𝐴௥) = 𝐾௥ு − 𝐾௜ு (16) 

The utility value of alternative 𝐴௜ is calculated as: 𝑣(𝐴௜) = ൫𝑑(𝐴௜ ,𝐴௥)൯ఈ (17) 

Variation of the utility function with different value of 𝛼 is shown in Fig.1. From Fig.1. It is evident that the utility function 
exhibits a monotonically increasing trend as the value of 𝛼 increases. 

 
Fig.1. Utility function 
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The regret-rejoice function of alternative 𝐴௜ is obtained as: 𝑅(𝐴௜ ,𝐴௥) = 1 − 𝑒ିఋ௱௩ ,𝛿 > 0 (18) 

where 𝛥𝑣 = ൫𝑑(𝐴௜ ,𝐴௥)൯ఈ − ൫𝑑(𝐴௥ ,𝐴௥)൯ఈ ≥ 0, since 𝑑(𝐴௥ ,𝐴௥) = 0, 𝛥𝑣 = ൫𝑑(𝐴௜ ,𝐴௥)൯ఈ 

The defined regret-rejoice function reduces computing cost by avoiding pair-wise comparison of all options. Remorse is 
less likely to happen if the alternative is closer to the reference point, which is shown by a smaller value of 𝑑(𝐴𝑖, 𝐴𝑟). Fig. 
2 depicts how the regret rejoice function changes in relation to 𝛿. 
 
Based on Eq. (1) and Eq. (2), the perceived utility function for alternative 𝐴𝑖 is calculated as: 
 𝑈(𝑋) = ൫𝑑(𝐴௜ ,𝐴௥)൯ఈ + 1 − 𝑒ିఋ(ௗ(஺೔,஺ೝ)) (19) 

 

 
Fig. 2. Regret-rejoice function 

 
4. MAGDM method based on proposed approach 
 

This segment illustrates the decision-making problem in PHF environment with detailed steps to solve the problem.  

4.1 Problem description   

Let P = {𝑃ଵ,𝑃ଶ … .𝑃௡} be the set of n alternatives, C = {𝐶ଵ,𝐶ଶ … .𝐶௠} be the set of m attributes and D = {𝐷ଵ,𝐷ଶ … .𝐷௞} be 
the set of k decision-makers. The decision-makers evaluate the alternative in the form of PHFS. The attribute weights are 
indicated by (𝑤ଵ,𝑤ଶ ⋅ ⋯𝑤௠) such that ∑ 𝑤௜௠௜ୀଵ = 1, and the weights of decision-makers are indicated by (𝜔ଵ,𝜔ଶ ⋅ ⋯𝜔௞) 
such that ∑ 𝜔௜௞௜ୀଵ = 1.  

4.2 Steps of proposed approach 
 

To solve the MAGDM in q-ROF environment with unknown expert and attribute weights, the following steps are used.   

Step.1. Formulate the decision-making matrix based on the evaluation of alternatives by individual expert in terms of q-
ROFNs. 

Step.2. Normalize the decision matrix given by each expert. 

Step.3. Compute the expert weights using the procedure defined in section 3.1. 

Step.4. Aggregate the decision matrix into a single matrix by means of q-ROFWA operator. 𝑞 − 𝑅𝑂𝐹𝑊𝐴(𝑎ଵ,𝑎ଶ, … .𝑎௡) = ቆ1 − ൫𝛱௜ୀଵ௡ ൫1 − 𝑢௜௤൯௪೔൯భ೜,𝛱௜ୀଵ௡ 𝑣௜௪೔ቇ 

where 𝑤௜ represents the weight of experts. 

Step.5. Determine the attribute weights using the procedure defined in section 3.2. 
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Step.6. Calculate the weighted sequences 𝑆𝐻𝑖 and 𝑃𝐻𝑖 using q-ROFWBA and q-ROFWGBM operators to fully capture the 
correlations among decision attributes. 

𝑆𝐻௜ = ቌ 1𝑚(𝑚 − 1) ෍ (𝑤௜௠
௜,௝ୀଵ,௜ஷ௝ 𝑎௜) ⊗ (𝑤௝𝑎௝)ቍ భೞశ೟

 

 

= ⎝⎜
⎛ቆ1 − ቀ𝛱௜,௝ୀଵ,௜ஷ௝௠ ൫1− (1 − (1 − 𝑢௜௤)௪೔)௦(1 − (1 − 𝑢௝௤)௪ೕ)௧൯ቁ భ೘(೘షభ)ቇ భ೜(ೞశ೟) ,⎝⎛1− ቌ1 − ቆ𝛱௜,௝ୀଵ,௜ஷ௝௠ (2 − ൫1 −

𝑣௜௤௪೔൯௦ − ቀ1 − 𝑣௝௤௪ೕቁ௧ − ൫1 − ൫1 − 𝑣௜௤௪೔൯௦൯ ൬1− ቀ1 − 𝑣௝௤௪ೕቁ௧൰ቇ ೜೘(೘షభ)ቍ భೞశ೟
⎠⎞

భ೜

⎠⎟
⎞  

𝑃𝐻௜ = ଵ௦ା௧  ⊗௜,௝ୀଵ,௜ஷ௝௠ ቀ𝑠𝑎௜௪೔ ⊕ 𝑡𝑎௝௪ೕቁ భ೘(೘షభ) 

= ⎝⎜
⎛⎝⎛1− ቌ1 − ቆ𝛱௜,௝ୀଵ,௜ஷ௝௠ (2 − ൫1 − 𝑢௜௤௪೔൯௦ − ቀ1 − 𝑢௝௤௪ೕቁ௧ − ൫1 − ൫1 − 𝑢௜௤௪೔൯௦൯ ൬1 − ቀ1 −

𝑢௝௤௪ೕቁ௧൰ቇ ೜೘(೘షభ)ቍ భೞశ೟
⎠⎞

భ೜ ,ቆ1 − ቀ𝛱௜,௝ୀଵ,௜ஷ௝௠ ൫1 − (1 − (1 − 𝑣௜௤)௪೔)௦(1 − (1 − 𝑣௝௤)௪ೕ)௧൯ቁ భ೘(೘షభ)ቇ భ೜(ೞశ೟)
⎠⎟
⎞  

Step.6. Calculate the relative significance of three pooling strategies using the following equations.  𝐾௜ு௔ = 𝑆𝐻௜ + 𝑃𝐻௜∑ 𝑆𝐻௜ + 𝑃𝐻௜௡௜ୀଵ  (20) 𝐾௜ு௕ = 𝑆𝐻௜𝑚𝑖𝑛௜𝑆𝐻௜ + 𝑃𝐻௜𝑚𝑖𝑛௜𝑃𝐻௜ (21) 𝐾௜ு௖ = 𝜆𝑆𝐻௜ + (1 − 𝜆)𝑃𝐻௜𝜆𝑚𝑎𝑥௜𝑆𝐻௜ + (1 − 𝜆)𝑚𝑎𝑥௜𝑆𝐻௜ (22) 

Step.7. Combining all three strategies, a common value is calculated. 𝐾௜ு = (𝐾௜ு௔ + 𝐾௜ு௕ + 𝐾௜ு௖)3 + (𝐾௜ு௔ × 𝐾௜ு௕ × 𝐾௜ு௖)భయ (23) 

Step.8. Compute the utility, regret-rejoice, perceived utility value for alternatives using eq. (16) - eq. (19) as defined in 
section. 
Step.9. Finally rank the alternatives in ascending order of perceived utility value. 
 
5. An illustrative example 
 

This section verifies the proposed framework by applying it into case study of green supplier selection adopted from 
(Krishankumar et al., 2020). A group of three decision-makers are invited to rank four green suppliers based on five criteria: 
speed to deliver the product, the use of green design practices, the quality and service of the product, the overall cost, and 
the consumption of energy and resources. The latter two attributes are of the cost kind, while the first three are of the benefit 
type. To get at the solution, the suggested MAGDM approach's steps are used. 

The evaluations of green suppliers by different experts in terms of q-ROFNs are represented by the decision matrices as 
shown in Table 2, Table 3 and Table 4. 

Table 2  
Evaluation by expert 1  

 𝐴𝑡𝑡ଵ 𝐴𝑡𝑡ଶ 𝐴𝑡𝑡ଷ 𝐴𝑡𝑡ସ 𝐴𝑡𝑡ହ 𝐼ଵ (0.25,0.12) (0.70,0.12) (0.24,0.38) (0.58,0.17) (0.41,0.89) 𝐼ଶ (0.19,0.21) (0.64,0.27) (0.65,0.78) (0.17,0.20) (0.40,0.32) 𝐼ଷ (0.19,0.67) (0.18,0.26) (0.56,0.51) (0.54,0.34) (0.70,0.28) 𝐼ସ (0.26,0.31) (0.55,0.13) (0.19,0.56) (0.69,0.84) (0.49,0.76) 
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Table 3 
Evaluation by expert 2 

 𝐴𝑡𝑡ଵ 𝐴𝑡𝑡ଶ 𝐴𝑡𝑡ଷ 𝐴𝑡𝑡ସ 𝐴𝑡𝑡ହ 𝐼ଵ (0.54,0.48) (0.57,0.13) (0.81,0.75) (0.89,0.33) (0.29,0.88) 𝐼ଶ (0.62,0.82) (0.24,0.42) (0.48,0.27) (0.83,0.38) (0.18,0.64) 𝐼ଷ (0.68,0.55) (0.45,0.62) (0.55,0.54) (0.16,0.25) (0.76,0.36) 𝐼ସ (0.31,0.84) (0.41,0.43) (0.25,0.54) (0.22,0.57) (0.85,0.49) 
 
Table 4  
Evaluation by expert 3  

 𝐴𝑡𝑡ଵ 𝐴𝑡𝑡ଶ 𝐴𝑡𝑡ଷ 𝐴𝑡𝑡ସ 𝐴𝑡𝑡ହ 𝐼ଵ (0.83,0.49) (0.76,0.27) (0.81,0.75) (0.68,0.32) (0.32,0.24) 𝐼ଶ (0.38,0.74) (0.57,0.57) (0.36,0.72) (0.83,0.61) (0.83,0.46) 𝐼ଷ (0.89,0.41) (0.40,0.16) (0.43,0.51) (0.76,0.74) (0.89,0.25) 𝐼ସ (0.68,0.23) (0.89,0.27) (0.18,0.90) (0.36,0.83) (0.34,0.70) 
 
1. Normalize the decision matrices by each expert. The normalized decision matrices as shown in Table 5, Table 6 and 

Table 7. 
 
Table 5  
Normalized decision matrix by expert 1  

 𝐴𝑡𝑡ଵ 𝐴𝑡𝑡ଶ 𝐴𝑡𝑡ଷ 𝐴𝑡𝑡ସ 𝐴𝑡𝑡ହ 𝐼ଵ (0.25,0.12) (0.70,0.12) (0.24,0.38) (0.17, 0.58) (0.89, 0.41) 𝐼ଶ (0.19,0.21) (0.64,0.27) (0.65,0.78) (0.20, 0.17) (0.32, 0.40) 𝐼ଷ (0.19,0.67) (0.18,0.26) (0.56,0.51) (0.34, 0.54) (0.28, 0.70) 𝐼ସ (0.26,0.31) (0.55,0.13) (0.19,0.56) (0.84, 0.69) (0.76, 0.49) 
 
Table 6 
Normalized decision matrix by expert 2  

 𝐴𝑡𝑡ଵ 𝐴𝑡𝑡ଶ 𝐴𝑡𝑡ଷ 𝐴𝑡𝑡ସ 𝐴𝑡𝑡ହ 𝐼ଵ (0.54,0.48) (0.57,0.13) (0.81,0.75) (0.89, 0.33) (0.88, 0.29) 𝐼ଶ (0.62,0.82) (0.24,0.42) (0.48,0.27) (0.38, 0.83) (0.64, 0.18) 𝐼ଷ (0.68,0.55) (0.45,0.62) (0.55,0.54) (0.25, 0.16) (0.36, 0.76) 𝐼ସ (0.31,0.84) (0.41,0.43) (0.25,0.54) (0.57, 0.22) (0.49, 0.76) 
 
Table 7  
Normalized decision matrix by expert 3  

 𝐴𝑡𝑡ଵ 𝐴𝑡𝑡ଶ 𝐴𝑡𝑡ଷ 𝐴𝑡𝑡ସ 𝐴𝑡𝑡ହ 𝐼ଵ (0.83,0.49) (0.76,0.27) (0.81,0.75) (0.32, 0.68) (0.24, 0.32) 𝐼ଶ (0.38,0.74) (0.57,0.57) (0.36,0.72) (0.61, 0.83) (0.46, 0.83) 𝐼ଷ (0.89,0.41) (0.40,0.16) (0.43,0.51) (0.74, 0.76) (0.25, 0.89) 𝐼ସ (0.68,0.23) (0.89,0.27) (0.18,0.90) (0.83, 0.36) (0.70, 0.34) 
 
2. The weight of experts are evaluated using the proposed method in section 3.1. The weights of experts are obtained as: 𝜔௘భ = 0.30418,𝜔௘మ = 0.41776,𝜔௘య = 0.27806 
3. Aggregate the decision matrices given by each expert into a single decision matrix using the q-ROFWA as shown in 

Table 8. 
 
Table 8 
Aggregated decision matrix  

 𝐴𝑡𝑡ଵ 𝐴𝑡𝑡ଶ 𝐴𝑡𝑡ଷ 𝐴𝑡𝑡ସ 𝐴𝑡𝑡ହ 𝐼ଵ (0.644,0.316) (0.678,0.155) (0.744,0.609) (0.295, 0.724) (0.831, 0.331) 𝐼ଶ (0.497,0.526) (0.523,0.399) (0.528,0.489) (0.453, 0.512) (0.534, 0.351) 𝐼ଷ (0.732,0.538) (0.387,0.326) (0.526,0.522) (0.532, 0.357) (0.312, 0.774) 𝐼ସ (0.487,0.432) (0.702,0.262) (0.217,0.629) (0.765, 0.357) (0.663, 0.557) 
 
4. For subjective weights, the evaluation of attributes by different experts are given in Table 9. Based on the evaluations 

given in Table 9 and using q-ROFWA and score function the subjective weights of attributes are obtained as: (0.19437, 
0.09946, 0.27244, 0.24875, 0.18498). 

 
Table 9  
Evaluation of attributes 

 𝐴𝑡𝑡ଵ 𝐴𝑡𝑡ଶ 𝐴𝑡𝑡ଷ 𝐴𝑡𝑡ସ 𝐴𝑡𝑡ହ 𝑒ଵ (0.9,0.1) (0.75,0.15) (0.95,0.05) (0.91,0.12) (0.8,0.2) 𝑒ଶ (0.67,0.32) (0.65,0.55) (0.89,0.2) (0.84,0.2) (0.6,0.1) 𝑒ଷ (0.8,0.3) (0.54,0.3) (0.79,0.3) (0.87,0.35) (0.9,0.3) 
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5.  The objective weights are evaluated using the proposed method in section 3.2. The attribute weights are obtained as: 
(0.02384, 0.01308, 0.01029, 0.27977, 0.67302). 

6. Using eq. (15) the combined attribute weights are obtained as: (0.0426, 0.02258, 0.03912, 0.27636, 0.61934). 
7. The weighted sequences 𝑆𝐻𝑖 and 𝑃𝐻𝑖 have been obtained using q-ROFWBA and q-ROFWGBM for the values of the 

parameters s = t = 1. Using s = t = 1 not only make calculation easier, but also fully capture the correlations among the 
specified decision criteria. The values for alternatives are shown in Table 10. To convert the negative score values of 𝑆𝐻𝑖 into positive, it has been modified as: Crisp 𝑆𝐻𝑖 = score (𝑆𝐻𝑖)+1. 

 
Table 10  𝑆𝐻𝑖 and 𝑃𝐻𝑖 values for alternatives 

 𝑆𝐻𝑖 P𝐻𝑖 Crisp 𝑆𝐻𝑖 Crisp P𝐻𝑖 𝐼ଵ (0.390, 0.785) (0.851, 0.301) 0.57535 0.59006 𝐼ଶ (0.307, 0.759) (0.778, 0.258) 0.59097 0.45456 𝐼ଷ (0.273, 0.814) (0.772, 0.330) 0.48119 0.42491 𝐼ସ (0.426, 0.751) (0.845, 0.284) 0.65294 0.58123 
 
8. Relative significance of alternatives is obtained using eq. (20), eq. (21) and eq. (22) with the value of 𝜆 as 0.5 and is 

shown in Table 11. 
 
Table 11  
Relative significance of alternatives 

 𝐾௜ு௔ 𝐾௜ு௕ 𝐾௜ு௖ 𝐾௜ு 𝐼ଵ 0.267837 2.584349 0.937581 2.12904 𝐼ଶ 0.240283 2.297891 0.841127 1.90084 𝐼ଷ 0.208242 2 0.728965 1.65117 𝐼ସ 0.283638 2.724806 0.992896 2.2493 
 
9. For the final ranking of alternatives, the utility, regret-rejoice and perceived utility values for alternatives are calculated 

and shown in Table 12. 
 
Table 12 
Ranking of alternatives 

 𝑣(𝐼௞) 𝑅(𝐼௞ , 𝐼௥) 𝑈(𝐼௞) Rank 𝐼ଵ 0.8485 0.3457 1.194 2 𝐼ଶ 0.9737 0.3854 1.359 3 𝐼ଷ 1.0944 0.4214 1.515 4 𝐼ସ 0.7744 0.3210 1.095 1 
 
6. Comparative analysis and discussions 
 
This section presented a comparison from both a numerical and theoretical standpoint. The proposed structure is compared 
to a number of innovative approaches. The techniques (Liu & Liu, 2018), (Pinar et al., 2021), (Krishankumar & Ecer, 2023), 
(Guneri & Deveci, 2023) are used for comparison with the suggested framework in order to ensure uniformity in 
comparison. The methodology for all of these techniques uses q-ROFNs. Table 13 lists the proposed and state-of-the-art 
methodologies' prioritization orders. Although there is a minor variation in the ranking order, the best option is the same 
for all approaches. The primary steps involved in the different approaches may result in these fine distinctions. 
 
Table 13  
Ranking from different methods 

Methods Ranking Optimal alternative 
Proposed method 𝐼ସ > 𝐼ଵ > 𝐼ଶ > 𝐼ଷ 𝐼ସ 
q-ROFBWA operator (Liu & Liu, 2018) 𝐼ସ > 𝐼ଶ > 𝐼ଵ > 𝐼ଷ 𝐼ସ 
q-ROFBWG operator (Liu & Liu, 2018) 𝐼ସ > 𝐼ଵ > 𝐼ଶ > 𝐼ଷ 𝐼ସ 
q-ROF-TOPSIS (Pinar et al., 2021) 𝐼ସ > 𝐼ଶ > 𝐼ଵ > 𝐼ଷ 𝐼ସ 
Method by (Krishankumar & Ecer, 2023) 𝐼ସ > 𝐼ଵ > 𝐼ଶ > 𝐼ଷ 𝐼ସ 
Method by (Guneri & Deveci, 2023) 𝐼ସ > 𝐼ଶ > 𝐼ଵ > 𝐼ଷ 𝐼ସ 

 
Table 14 clearly outlines the benefits of the proposed approach. We may conclude the following from the analysis: 
 
1. q-ROF preference information as the data representation approach is efficient and provides a wide range of 

opportunities to elicit preferences. 
2. The proposed framework offers ways for analytically estimating attribute weights and DM weights, in contrast to 

existing approaches used in the q-ROFS context. These methods efficiently capture reluctance and ambiguity in the 
preference information and minimize errors in the decision-making process. (Koksalmis & Kabak 2019) asserted that 
weights of DMs must be computed methodically in order to decrease subjective randomness from social involvement 
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and mistakes in the decision-making process, while (Kao 2010) offered explicit reasons regarding the significance of 
characteristics' weight computation. 

3. Trust ties between experts are crucial in problems involving collective decision-making in the real world. Thus, the 
expert weights are determined considering the trust relationship among them in the form of social trust network. 

4. By accurately capturing the correlation between attributes, the q-ROFBWM operator successfully aggregates q-
ROFNs, whereas the BM operator is more flexible than the HM (Heronian mean) operator. The DMs' weights, a 
crucial aggregation parameter, are computed systematically in contrast to state-of-the-art aggregation operators in the 
q-ROFS context.  

5. Furthermore, for logical prioritization of green providers, the well-known CoCoSo technique is expanded to the q-
ROFS environment based on the regret theory, which hasn’t been discussed in the existing literature. The proposed 
approach considers how other options will turn out and steers clear of making a regrettable decision.  A logical 
justification for the prioritizing order is provided by the CoCoSo method’s ability to prioritize alternatives while taking 
into account various compromise solution forms and ranking criterion categories, which encourages the research’s 
current focus.  

6. Based on the sensitivity analysis of both equal and unequal weights of attributes, it is evident that the proposed decision 
framework is stable and can efficiently capture the competitiveness that exists among green providers. The proposed 
framework is also clearly shown to be stable in Fig. 6 even after the weights of the attributes have been correctly 
modified. 

7. It is apparent from the Spearman correlation coefficient values (see Table 15) that the proposed decision framework 
is compatible with previous approaches in the q-ROF environment. 

 
Table 14  
Comparative analysis of different methods 

Factors Proposed method Method by (Liu & Liu, 
2018) 

Method by (Pinar et 
al., 2021) 

Method by 
(Krishankumar & Ecer, 
2023) 

Method by (Guneri 
& Deveci, 2023) 

Attribute weight Projection + Entropy 
+ Score function 

No AHP Cronbach AHP 

Expert weight SNA No No CRITIC No 
Trust relationships 
among experts 

Yes No No No No 

Attributes interactions Yes Yes No No No 
Ranking method CoCoSo No TOPSIS CRADIS EDAS 
Psychological 
behavior of experts  

Yes No No No No 

Compromise solution Yes No No No No 
 
The ranking generated through the new approach and existing approaches are compared in order to calculate the Spearman's 
correlation coefficient, which helps to create a more compelling case for the viability of the proposed strategy, and is shown 
in Table 15. SSC greater than 0.75 between two ranking implies that the correlation between two models is significant and 
it can be easily observed from Table 15 that the SSCs of the ranking by proposed model and the ranking by other models is 
greater than 0.75, which shows the ranking by proposed model is highly correlated with the ranking by other models. Thus, 
the proposed model can provide effective and reliable results to MADM problems. 
 

Table 15  
The SCCs between the ranking results 

 Proposed method q-ROFBWA 
operator 

q-ROFBWG 
operator 

(Pinar et al., 2021) (Krishankumar & 
Ecer, 2023) 

(Guneri & Deveci, 
2023) 

Proposed method 1 0.8 1 0.8 1 0.8 
q-ROFBWA 
operator 

- 1 0.8 1 0.8 1 

q-ROFBWG 
operator 

- - 1 0.8 1 0.8 

(Pinar et al., 2021) - - - 1 0.8 1 
(Krishankumar & 
Ecer, 2023) 

- - - - 1 0.8 

(Guneri & Deveci, 
2023) 

- - - - - 1 

 
7. Sensitivity analysis 
 

This section explores the effect of various parameters on the final ranking of alternatives. For this we study the ranking 
order for different values of 𝛼, 𝛿, 𝜆. 
 

7.1 Sensitivity analysis of 𝜆 

The value of the parameter λ must be defined in order to calculate the integrated score functions in the q-ROF Bonferroni 
CoCoSo model. The value λ = 0.5 was used for the initial solution calculation. This made it possible for weighted Bonferroni 
functions to define different trade-offs in an equal manner. In order to replicate the change in the parameter 0 ≤ λ ≤ 1, many 
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scenarios were created. Fig.3 illustrates how changing the parameter can affect the utility value. Table 16 shows the ranking 
results, which demonstrates that altering parameter 0 ≤ λ ≤ 1 does not affect the initial ranking of alternatives and that the 
initial ranking 𝐼ସ > 𝐼ଵ > 𝐼ଶ > 𝐼ଷ is credible. But it's interesting to observe that the optimal alterative never changes, proving 
the isotonicity of the proposed method. DMs are able to choose a suitable value for λ depending on their preferences. 

 

 

 

 

 

 

 

Fig. 3. Utility value for different λ 
Table 16 
Ranking with different λ λ Ranking Optimal alternative 

0 𝐼ସ > 𝐼ଵ > 𝐼ଶ > 𝐼ଷ 𝐼ସ 
0.1 𝐼ସ > 𝐼ଵ > 𝐼ଶ > 𝐼ଷ 𝐼ସ 
0.2 𝐼ସ > 𝐼ଵ > 𝐼ଶ > 𝐼ଷ 𝐼ସ 
0.3 𝐼ସ > 𝐼ଵ > 𝐼ଶ > 𝐼ଷ 𝐼ସ 
0.4 𝐼ସ > 𝐼ଵ > 𝐼ଶ > 𝐼ଷ 𝐼ସ 
0.5 𝐼ସ > 𝐼ଵ > 𝐼ଶ > 𝐼ଷ 𝐼ସ 
0.6 𝐼ସ > 𝐼ଵ > 𝐼ଶ > 𝐼ଷ 𝐼ସ 
0.7 𝐼ସ > 𝐼ଵ > 𝐼ଶ > 𝐼ଷ 𝐼ସ 
0.8 𝐼ସ > 𝐼ଵ > 𝐼ଶ > 𝐼ଷ 𝐼ସ 
0.9 𝐼ସ > 𝐼ଵ > 𝐼ଶ > 𝐼ଷ 𝐼ସ 
1 𝐼ସ > 𝐼ଵ > 𝐼ଶ > 𝐼ଷ 𝐼ସ 

 

7.2 Sensitivity analysis of 𝛼 

As seen in Fig. 4, the ranking order of alternatives is persistent for all values of 𝛼 . The utility function increases 
monotonically with varying values of 𝛼, which is the cause. As a result, the ranking order of utility function for alternatives 
is constant for different values of 𝛼, 𝑣(𝐴ସ) < 𝑣(𝐴ଵ) < 𝑣(𝐴ଶ) < 𝑣(𝐴ଷ). The regret-rejoice function is independent of 𝛼, 
hence the perceived utility value of alternatives is ranked in a consistent manner 𝑈(𝐴ସ) < 𝑈(𝐴ଵ) < 𝑈(𝐴ଶ) < 𝑈(𝐴ଷ). 
 

 

 

 

 

 

 

 

 

Fig. 4. Perceived utility value for different 𝛼 
7.3 Sensitivity analysis of 𝛿 

As shown in Fig. 5, the ranking order of alternatives is constant for all values of 𝛿. The regret-rejoice function monotonically 
increases with varying values of, which is the cause. Thus the ranking of regret- rejoice function for options is consistent 
for different values of 𝛿, 𝑅(𝐴ସ,𝐴௥) < 𝑅(𝐴ଵ,𝐴௥) < 𝑅(𝐴ଶ,𝐴௥) < 𝑅(𝐴ଷ,𝐴௥). The utility function is independent of 𝛿, hence 
the perceived utility value of alternatives is ranked in a consistent manner 𝑈(𝐴ସ) < 𝑈(𝐴ଵ) < 𝑈(𝐴ଶ) < 𝑈(𝐴ଷ).  This 
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research illustrates that the proposed approach produces reasonable findings and offers suitable outputs to aid DM in 
decision-making, in accordance with the sensitivity analysis. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Perceived utility value for different 𝛿 

 

7.4 Sensitivity analysis for attribute weights 

The sensitivity assessment is carried out in this part to validate that the suggested weight determination approach produces 
rankings that are stable. Table 17 and Fig.6. shows the ranking results for different attribute weights obtained by subjective 
method, objective method, equal weights and proposed approach. For subjective weight and equal weight, the ranking order 
is 𝐼ସ > 𝐼ଵ > 𝐼ଷ > 𝐼ଶ and the optimal alternative is 𝐼ସ, while for the objective weight and proposed approach the ranking 
order is 𝐼ସ > 𝐼ଵ > 𝐼ଶ > 𝐼ଷ and the optimal alternative is 𝐼ସ. Although the rankings produced by the various methods change 
slightly, the best option is always the same, hence the proposed approach is stable in terms of optimal selection. For the 
better visualization of the results the correlation coefficients of the weights obtained by the proposed approach and other 
approaches are depicted in Table 18.  

Table 17 
Ranking of alternatives for different attribute weights 

 Combined weights Subjective weights Objective weights Equal weights 𝐼ଵ 2 2 2 2 𝐼ଶ 3 4 3 4 𝐼ଷ 4 3 4 3 𝐼ସ 1 1 1 1 
 

 

 

 

 

 

 

 

 

 

Fig.6. Sensitivity analysis for attribute weights 

Table 18  
Spearman correlation coefficients between ranking results with varying attribute weights 

 Combined weights Subjective weights Objective weights Equal weights 
Combined weights 1 0.8 1 0.8 
Subjective weights - 1 0.8 1 
Objective weights - - 1 0.8 
Equal weights - - - 1 
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8. Conclusions 
 

Green supplier selection is becoming a crucial topic for discussion as a result of growing environmental concerns and the 
subjectivity of human thought. In the context of q-ROFS, a novel decision-making framework is proposed for this aim. In 
comparison to other regular orthopair fuzzy sets, q-ROFSs give decision makers more choice in how they express their 
ideas because they support a wider variety of membership and non-membership grades. The projection and entropy measure 
were used in this technique to obtain the objective weights of the criterion, while the experts' knowledge and the score 
function were used to estimate the subjective weights of the criteria. A combined weighting game theory-based model is 
then used to establish the final weights of the criteria. Additionally, the framework offers a way to determine expert weights 
considering the social trust network among them. By accurately recording the interrelationship between attributes, 
preferences are compiled. The CoCoSo technique is broadened in the framework of q-ROFS based on the regret theory, 
which effectively takes expert psychology into account, for the logical prioritization of alternatives. By varying the attribute 
weights and strategy values, the sensitivity analysis is carried out. Finally, the framework's viability is proved via the use 
of green supplier selection, and its advantages and disadvantages are evaluated through comparison to existing approaches. 
The findings demonstrate that, in comparison to the many existing approaches, the proposed framework is more reliable 
and consistent. 

For the future work, the proposed framework can be combined with different theories like prospect theory, rough set theory 
etc. to get effective results, also it can be extended to the new decision framework which can handle the partial expert and 
attribute information. It would be fascinating to use the proposed approach to address a variety of further real-world 
decision-making issues. 
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