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 Today, improving machine availability is vital for industries to compete in the global market. 
Spare parts play an essential role in the maintenance and repair of equipment, but planning an 
extensive network in strategic industries with various spare parts can be very challenging due to 
the existence of different decision factors. The spare parts supply chain deals with inventory 
management issues, which necessitates considering the related decisions such as determining the 
stock level and order quantity. Moreover, demand uncertainty and long supply time make 
decision-making more complex. This paper presents a repair and supply planning model for 
repairable spare parts while considering a modified formulation of demand uncertainty to 
minimize costs. The model determines the optimal stock level, lateral transshipment, assignment 
of spare part orders to suppliers, equipment to repair centers, and the number of intervals over 
the planning horizon used in demand estimation. This research contributes to the literature by 
integrating recent decisions, using demand approximation by piecewise linearization, and 
considering backorder in warehouses evaluated by queuing models. A hybrid approach, 
including heuristic and genetic algorithms, is used to optimize the model using data from an oil 
company. The results show that using piecewise linearization and integrated repair and supply 
planning decisions optimizes costs and improves performance. Also, the availability is affected 
by the demand estimation, which necessitates precision prediction. 
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1. Introduction 

Maintenance is a significant cost factor, accounting for about 25% of total costs (Hora, 1987). Also, it is a crucial area that 
is necessary to guarantee quality (Taji et al., 2022). Therefore, it is vital to maintain a significant stock level of spare parts 
to support maintenance systems and avoid downtime (Öner et al., 2007). Planning a complex network necessitates 
integrating various planning decisions to minimize total costs while maintaining service levels (Melo et al., 2009). 
(Kosanoglu et al., 2018) declare that the shortages of spare parts are the reason for more than 80% of downtimes. Besides 
the importance of availability, it is necessary to consider both the stock level and inventory costs  (González-Varona et al., 
2020; Wang et al., 2015) although uncertainty makes the estimations more complex (Yousefi-Babadi et al., 2021). 
 
Spare parts in strategic industries are high-value inventories (KIM & PARK, 1985; Schulze & Weckenborg, 2012). Still, 
many challenges in supplying spare parts can be addressed, such as long lead time, shortage in warehouses, and low-quality 
spare parts (Gehret et al., 2020; Jiang et al., 2021). Sherbrooke is one of the pioneers who studied repair and supply planning 
using the METRIC1 model to optimize the stock level of repairable spare parts in warehouses considering order queues 
(Sherbrooke, 1968); however, existing studies consider lead-time demand and formulate it by using a stand-alone 
probability distribution that does not give a good fit for low-demand2 spare parts.  

 
1 Multi-Echelon Technique for Recoverable Item Control 
2 Low-demand is relative not absolute number 
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The competition motivates industries to increase production, affecting the machines' lifetime (L. Liu & Cheung, 1997; 
Shastri et al., 2013). Managers in industries, especially in strategic industries, are concerned about the maintenance and 
repair operation costs due to limitations in budget and the way it affects the company's performance. Therefore, demand 
estimation is critical in inventory management, indeed, inventory subordinates the demand (Shaikh et al., 2020). Muckstadt 
(1973) addressed a two-echelon, multi-item, and multi-indenture model for spare part inventory management in which the 
demand follows the Poisson process. The spare parts are repairable, and unlimited repair capacity is considered. Following 
the basic models, Wong et al. (2005) presented an aircraft spare part inventory management model that is single-item, and 
pooling is considered as well as delayed lateral transshipment. (Wingerden et al., 2019) examined the effect of the 
emergency warehouse in the two-echelon network considering emergency shipment to extend the previous models. The 
results show that the emergency warehouse can reduce costs by up to 30%.  Moini et al. (2021) developed a mathematical 
model for an integrated forward-reverse spare parts network that considers stochastic demand and assignment of equipment 
to disassembly centers. Indeed, they redesigned the basic supply chain network by adding inspection centers, which 
determine the repair or purchase policy by considering multiple factors. 
 
Zammori et al. (2020) focus on risky missions that make repairing the spare parts essential, but the objective function is 
maximizing the probability of completing the operations by considering the limitation of space for the selection of spare 
parts. They used two distributions of exponential and Weibull to estimate the demand. The problem under the second 
distribution is solved by approximation, which results in better results. These researches focus on issues such as I) 
optimizing the decisions involving the stock level, emergency supply, lateral transshipment, and spare part order assignment 
to repair centers, II) deterministic and stochastic models are studied that the latter one analyses the uncertainty in demand 
over the lead-time, III) capacity and budget constraints are considered to embrace the real-world problems IV) These works 
address the capacity, performance, and multi-indenture models, but none of them considered the supply with other decisions 
such as repair. Also, most works just consider the lead-time demand in formulating the uncertainty. To examine the queuing 
models for performance evaluation, the following papers are reviewed. 
 
He and Hu (2014) investigated the emergency supply formulated by a queuing model for minimizing the response time 
considering the M/M/1 model. To solve the developed model, a genetic algorithm is implemented. The repair cost is also 
considered in the model. Gholamian and Heydari (2017) examined a location-inventory problem that specifies the location 
of distribution centers. They also utilized the METRIC model considering (s-1, s) inventory replenishment policy. Guo et 
al. (2019) considered a repairable spare part network so that there is a correlation between the shortage of these parts. The 
spare parts in the single-echelon, multi-item supply network are repaired or replaced in case of breakdown. The Markov 
model is used to formulate the system. The inventory replenishment policy (-1, s+1) is used in this model. Liu et al. (2020) 
published a paper on the location-inventory problem considering the supply disruption. The supply network includes 
suppliers, depots, and retailers. The inventory level of depots is formulated using the continuous-time Markov process. The 
proposed mathematical model is solved using a hybrid genetic algorithm. Qin et al. (2021)  considered a two-echelon spare 
part network under performance-based service. The model includes profit- and cost-centric objective functions. The greedy 
algorithm solves the model. Babaveisi et al. (2022) considered two models for integrating forecasting and planning 
decisions. They used a piecewise linearization technique which improves the forecasting accuracy and cost while back 
ordering and availability are not considered in their research. 
 

Although the above researchers considered queuing models, they did not discuss capacity and possible backorders in 
warehouses. Also, demand is usually defined as a parameter while we consider it as a variable that improves the degree of 
decision integration. In this paper, the research gaps are as follows. Also, a brief comparison of the reviewed papers is 
presented in Table 1. 

• The existing spare part planning models focus on separate decisions that may result in sub-optimality. An integrated 
planning model to consider inventory management and supply and repair decisions are not sufficiently investigated. 

• The demand (i.e., equipment failure rate) is uncertain in real-world problems, but it is almost discussed by a 
predefined distribution that may not sufficiently fit the demand pattern for all problems. A piecewise linearization 
technique for approximating the demand in each interval over the planning horizon can enhance planning accuracy. 

• Lateral transshipment is critical to reducing shortages in both central and local warehouses. The inventory 
management models for repairable spare parts, such as the METRIC model, usually focus on shortages in local 
warehouses while considering shortages in central warehouses is vital to formulate the lateral transshipment. 

• The supply capacity, defects, and delivery time constraints are considered for the assignment of spare part orders to 
suppliers, while other research does not focus on supply decisions to be integrated with other planning decisions. 

 
The state-of-the-art shows that spare part repair and supply planning models did not simultaneously consider planning 
decisions (stock level, spare part order assignment to suppliers, repair assignment, and lateral transshipment). Additionally, 
repair constraints such as expertise, capacity, and time are not considered in supply decisions such as capacity, defect rate, 
and supply time. Another issue is performance evaluation which other works did not focus on queuing model from the 
aspect of lateral transshipment planning in a multi-period model. Also, we consider stochastic demand which is formulated 
through piecewise linearization. We seek to find the answers to these questions: 1) what is the optimal number of intervals 
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obtained by the piecewise linearization? 2) what are the optimal spare part stock levels? 3) what are the optimal flows 
between the facilities? 4) what and how many spare parts to order?  
 

In this paper, a mathematical model is developed integrating the supply and repair decisions of spare parts with (s-1, s) 
policy, validated by a case study in an Iranian oil company. The model determines inventory management decisions, lateral 
transshipment, equipment assignment to repair centers, spare parts assignment to repair centers from central warehouses 
used in repairing the equipment, and supply decisions. A piecewise linearization technique determines the number of 
intervals over the planning horizon used in demand estimation. Also, a queuing model assesses the performance in 
warehouses and reflects the real performance of the system. Finally, sustainability analyses are performed. Since the 
inventory management model accounts for the np-hard ones, a hybrid approach is used to solve such a model. 

This paper includes the following sections: First, the problem is explained and the model is presented followed by the case 
study, computations, and results. Next, sensitivity analyses are provided. Finally, conclusions and future research 
opportunities are expressed. 

 

Table 1  
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 ✓    ✓  ✓   IM (Muckstadt, 1973) 
 ✓  ✓    ✓   IM, A (Wong et al., 2005) 
 ✓    ✓    ✓ IM, A (Wingerden et al., 2019) 
 ✓ ✓ ✓      ✓ IM, A (Moini et al., 2021) 
    ✓   ✓   IM (He & Hu, 2014) 
 ✓  ✓ ✓     ✓ IM (Gholamian & Heydari, 2017) 
     ✓ ✓    IM (Guo et al., 2019) 
    ✓     ✓ IM, A (Y. Liu et al., 2020) 
✓ ✓ ✓   ✓   ✓  IM (Qin et al., 2021) 
 ✓ ✓ ✓      ✓ IM (Babaveisi et al., 2022) 
✓  ✓  ✓ ✓    ✓ S, R, A, IM Present paper 

*    Min. : Minimizing, **  Max. : Maximizing, S: supply, R: repair, A: Assignment, IM: inventory management 
  

2. Problem statement 
 
This study discusses the repairable spare part planning model which considers inventory management decisions. The queues 
of orders of spare parts in warehouses affect the system's performance since it impacts the availability, so we formulate the 
order queues to apply this effect. There are two flows in the network: equipment and spare parts—the failed equipment 
transfers from the operational bases where it is installed. Defective equipment is inspected in the inspection center where 
the experts are gathered. The equipment is technically examined to determine if it is repairable or not. This decision highly 
depends on the company's policy, spare part lifetime, and the tradeoff between repair and purchase costs that are considered 
as the repairability probability. A general perspective of the network is shown in Fig. 1. 
 
Two terms are defined: equipment (LRU3) and spare parts (SRU4). Each LRU can be an expensive component of a machine 
composed of SRUs. The LRU is assigned to either inner or outer-company repair centers. The company owns Inner-
company repair centers, so the company supplies the resources such as materials, workers, and investments. Outer-company 
repair centers are independent of the company resources, such as tools, and physical assets. The failed LRU requires SRU 
in the repair operation that is supplied from central warehouses. The SRU in central warehouses is supplied by the suppliers 
based on the capacity, defect rate, and delivery time. The repaired equipment is assigned to local warehouses, central 
warehouses, and operational bases. Both central and local warehouses may confront shortages that can be enhanced by 
planning the lateral transshipment. 

 
3 Line-Replaceable Unit 
4 Shop-Replaceable Unit 



  242

 

Fig. 1. Repairable spare part inventory system  

Spare parts examined in this research follow (S-1, S) replenishment policy. METRIC model is used to handle the spare parts 
inventory management decisions such as stock level in local and central warehouses and order quantity. The model considers 
repair and supply planning decisions and inventory management to make optimal decisions such as: determining stock level 
in central and local warehouses and equipment assignment to repair centers based on repair time, expertise, and capacity. 
Also, we specify the inventory planning of spare parts for inner-system repair centers and the number of time intervals over 
the planning horizon for demand estimation by piecewise linearization. 

3. Model 
 
The notations including sets and indices, parameters, and variables are illustrated in the following. Then, objective functions, 
constraints, and formulations are presented. 

 
3.1.  Sets and indices 𝑠 ∈ 𝑆 where 𝑠ଵ, 𝑠ଶ ⊆ 𝑠 Equipment (LRU) and spare parts (SRU) 𝑘 ∈ 𝑁 Number of time intervals 𝑗, 𝑗ᇱ ∈ 𝐽 where 𝑤, 𝑟, 𝑖 , 𝑐, 𝑠ᇱ ⊆ 𝑗, 𝑗ᇱ All nodes 𝑤,𝑤ᇱ ∈ 𝑊 Warehouses 𝑤ଵ ⊆ 𝑤 Central warehouses 𝑤ଶ ⊆ 𝑤 Local warehouses 𝑟 ∈ 𝑅 Repair centers 𝑟ଵ ∈ 𝑟  Inner-company repair centers 𝑟ଶ ∈ 𝑟  Outer-company repair centers 𝑖 ∈ 𝐼 Inspection center 𝑐 ∈ 𝐶 Operational bases 𝑠ᇱ ∈ 𝑆ᇱ Suppliers  
 
3.2.  Parameters 

 𝑡𝑐௦௝௝ᇲ  Transportation cost between node j and 𝑗ᇱ  𝑐௦௦′௪భ Ordering cost in central warehouse 𝑤ଵ to supplier 𝑠′  𝑐௦௪௪ᇲ௟௔௧  Lateral transshipment cost for spare part s between warehouse w and 𝑤 ′ 𝑟𝑡௦௥ Equipment s repair time in repair center r 𝑐𝑎𝑝௥ Repair center r capacity (Man-Hour) 𝑐𝑝௥௦ 1, if repair center r has the repair expertise for equipment s, else 0  𝑠𝑐௦௦′ Capacity of supplier 𝑠′ to supply spare part s 𝐺௦௜ Repairability probability of equipment s in inspection center i 𝑝𝑟௦௦′ Spare part s purchase cost from supplier 𝑠′ 𝑝𝑢௦భ௦మ Probability of demand for spare part 𝑠ଵ in equipment 𝑠ଶ ∈ 𝑠 ℎ௦௝ Spare part s holding cost in facility j (warehouse w or repair center r) 𝑑𝑒𝑓௦௦′ Spare part s defect rate of supplier 𝑠′ 
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243𝑑𝑒𝑙௦௦′ Spare part s delivery time from supplier 𝑠′ 𝑚𝑑𝑒𝑓௦ Maximum mean defect of spare part s 𝑚𝑑𝑒𝑙௦ Minimum acceptable mean delivery time of spare part s 𝑑௦௖ Demand rate of spare part s in operational base c 𝐼௦௪଴  Spare part s initial inventory of warehouse w 𝐼௦௥ோ଴ Spare part s initial inventory in repair center r 𝜏௦௪భ௪మ  Travel time of LRU s from central warehouse 𝑤ଵ to local warehouse 𝑤ଶ 𝜋 ′௦ Spare part s backorder cost  𝜇௦௦′௪భ  Spare part s supply time from supplier 𝑠′ to central warehouse 𝑤ଵ 𝜏௦௪భ = ෍𝜇௦௦′௪భ௦′  Supplier 𝑠′ cumulative travel time for Spare part s to central warehouse 𝑤ଵ 𝑟𝑐௦௥ Repair cost of LRU s is repair center r 
 

3.3.  Decision variables 
 𝑥௦௖௜௞ᇱ  Number of LRU s from operational base c to inspection center i in interval k 𝑦௦௜௥௞ᇱ  Number of LRU s from inspection center i to repair center r in interval k 𝑥(ଵ)௦௦ᇲ௪భ௞ Number of SRU s from supplier 𝑠ᇱ to central warehouse 𝑤ଵ in interval k 𝑥(ଶ)௦௥௪భ௞ Number of LRU s from repair center r to central warehouse 𝑤ଵ in interval k 𝑦(ଵ)௦௪భ௪మ௞ Number of LRU s from central warehouse 𝑤ଵ to local warehouse 𝑤ଶ in interval k 𝑦(ଶ)௦௥௪మ௞ Number of LRU s from repair center r to local warehouse 𝑤ଶ in interval k 𝑧(ଵ)௦௪మ௖௞ Number of LRU s from local warehouse 𝑤ଶ to operational base c in interval k 𝑧(ଶ)௦௥௖௞ Number of LRU s from repair center r to operational base c in interval k 𝐴௦௖௞ Availability of SRU s in interval k 𝐼௦௪௞ା  Expected on-hand inventory of LRU/SRU s in warehouse w in interval k 𝐼௦௪௞ି  Expected shortage of LRU/SRU s in warehouse w in interval k 𝑠𝑡௦௝௞ SRU s stock level in facility j (warehouse w or repair center r) in interval k 𝑤𝑎௦௪భೖ SRU s waiting time in the central warehouse 𝑤ଵ in interval k 𝑙𝑎𝑡௦௪௪ᇲ௞ Number of LRU/SRU s from central(local) warehouse 𝑤 to central(local) warehouse 𝑤ᇱ in 

interval k 𝑤𝑠௦௪భ௥௞ Number of SRU s from central warehouse 𝑤ଵ to repair center r in interval k 
 

3.4.  Model Assumptions 
 

• Each equipment (LRU) has several spare parts (SRU), but each SRU only exists in one LRU. 

• The demand for equipment (LRUs) depends on spare parts (SRUs), 

•  (S-1, S) replenishment policy is used.  
 

3.5.  Model formulation 
 
A two-echelon repairable spare part network is discussed in this paper for inventory management decisions. The equipment 
failure rate follows the renewal process which is adopted from (Jin & Tian, 2012). It is assumed that there are 𝑁௦௖(𝑡) random 
failures of spare part s for operational base c in the period [0, t]. The events are addressed as independent and identically 
distributed arrivals since the repaired equipment is technically the same as the new one. Considering 𝑀௦௖(t) as the average 
number of arrivals up to time t > 0, that is, the number of failures where the first arrival occurs at time s (s ≤ t). Also, 𝑍௦௖(𝑡) 
and 𝐾௦௖௝ denote the total failures and its occurrence time.  𝑍௦௖(𝑡) is calculated in Eq. (1). 



  244𝑍௦௖(𝑡) = 𝑀௦௖(𝑡) + ෍ 𝑀௦௖(𝑡 − 𝐾௦௖௝)ேೞ೎(௧)
௝ୀଵ  (1) 

Time-varying demands of spare parts make the planning complicated due to significant fluctuations in various operational 
bases. The planning horizon is divided into intervals to simplify the complexity since the estimation would be more exact 
for shorter ranges. In this way, a stepwise form is used to approximate the expected stationary demand. So, the length of 
each interval and the planning horizon is respectively L and T. Let consider 𝑡௞ as the length of interval k where k ∈ {1, … , N}. 
Assuming the exponentially distributed time-to-failure, the Poisson process estimates the average demand distribution in 
each interval. The time between the renewals follows the exponential distribution with the parameter 𝛼௦. Finally, the average 
demand in [0, t] is computed by Eq. (2). The expected demand (𝑑̅௦௖௞)  of spare part s in operational base c in interval k is 
calculated by Eq. (3). 𝐸(𝑍௦௖(𝑡)) = 𝛼௦𝑡 + 𝛼௦𝑑௦௖𝑡ଶ2  

(2) 

𝑑̅௦௖௞ = 𝐸(𝑍௦௖(𝑡௞) − 𝑍௦௖(𝑡௞ିଵ))𝑡௞ − 𝑡௞ିଵ = 𝛼 + 𝛼𝜆(𝑡௞ + 𝑡௞ିଵ)2 , 
 𝑘 = 1, … ,𝑛   𝑤ℎ𝑒𝑟𝑒    𝑛 = 𝑡𝐿௞ 

(3) 

The objective function  𝐶𝑜𝑠𝑡௞ is defined as minimizing the total costs for each interval k. Eqs. (1 – 7) relates to transportation 
costs. Eq. (1) shows the transportation cost between the central warehouses and suppliers. Eq. (2) presents the transportation 
cost of repair centers and other facilities. Eq. (3) is the related cost among the warehouses. Eq. (4) calculates the 
transportation cost from local warehouses to operational bases. Eq. (5) shows the transportation cost of operational bases to 
inspection centers. The transportation cost from inspection centers to repair centers can be seen in Eq. (6), and the 
transportation cost from central warehouses to repair centers is defined in Eq. (7). The ordering cost and purchase costs are 
shown in Eq. (8). Holding costs in warehouse and repair centers are respectively expressed in Eq. (9) and Eq. (10). Shortage 
and repair costs are computed by Eq. (11) and Eq. (12). Shortage cost is the equipment shutdown cost when the spare part 
is not available. The lateral transshipment costs are shown in Eq. (13). 𝑀𝑖𝑛 𝐶𝑜𝑠𝑡௞ = ෍෍෍𝑡𝑐௦௦ᇲ௪భ𝑥(ଵ)௦௦ᇲ௪భ௞௪భ௦ᇲ௦  (4)  +෍෍෍𝑡𝑐௦௥௪భ𝑥(ଶ)௦௥௪భ௞௪భ௥௦ + ෍෍෍𝑡𝑐௦௥௪మ𝑦(ଶ)௦௥௪మ௞௪మ௥௦ + ෍෍෍𝑡𝑐௦௥௖𝑧௦௥௖௞(ଶ)௖௥௦  (5) +෍෍෍𝑡𝑐௦௪భ௪మ𝑦(ଵ)௦௪భ௪మೖ௪మ௪భ௦  (6) +෍෍෍𝑡𝑐௦௪మ௖௖௪మ௦ 𝑧௦௪మ௖௞(ଵ)  (7) +෍෍෍𝑡𝑐௦௖௜௜௖௦ 𝑥௦௖௜௞ᇱ  (8) +෍෍෍𝑡𝑐௦௜௥𝑦௦௜௥௞ᇱ௥௜௦  (9) +෍෍෍𝑡𝑐௦௪భ௥భ௥భ௪భ௦ 𝑤𝑠௦௪భ௥భೖ (10) +෍෍෍(𝑐௦௦ᇲ௪భ+𝑝𝑟௦௦ᇲ)𝑥(ଵ)௦௦ᇲ௪భೖ௦ᇲ௪భ௦  (11)  +෍෍ℎ௦௪𝐼௦௪௞ା௪௦  (12) +෍෍ℎ௦௥𝑠𝑡௦௥௞௥௦  (13) +෍෍𝜋ᇱ௦𝐼௦௪௞ି௪௦  (14) +෍෍෍𝑟𝑐௦௥𝑦௦௜௥௞ᇱ௜௥௦  (15) 
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+𝑐௦௪భ௪భᇲ௟௔௧ ቌ෍෍෍𝑙𝑎𝑡௦௪భ௪భᇲ௞௪భᇲ௪భ௦ ቍ + 𝑐௦௪మ௪మᇲ௟௔௧ ቌ෍෍෍𝑙𝑎𝑡௦௪మ௪మᇲ௞௪మᇲ௪మ௦ ቍ (16) 

 
The flow of failed equipment from operational bases to inspection centers is computed using Eq. (14) which the demand 
in each interval is calculated by Eq. (3) is used to compute the total demand in each interval. Eq. (15) ensures the equality 
of reverse flow and the number of failures.   ෍𝑥௦௖௜௞′௜ = 𝐿௞ . 𝑑̅௦௖௞ ∀𝑠, 𝑐,𝑘 (17)  ෍𝑧(ଵ)௦௪మ௖௞௪మ + ෍𝑧(ଶ)௦௥௖௞௥ = 𝐿௞. 𝑑̅௦௖௞ ∀𝑠, 𝑐,𝑘 (18)  

 
Since the warehouses do not have an infinite capacity for storing spare parts, the performance of the warehouse is formulated 
through a queuing model. Given the queuing model of the Erlang loss system as M/G/S/S, the stock level is specified by S. 
The expected shortage and fill rate in local warehouses are as follows, respectively shown by  𝐿  and 𝛽 which is reproduced 
from the previous models (Karush, 1957). The variable 𝜌௦௪௞ accounts for the utilization rate. 
 

(19) 𝐿(𝑠𝑡௦௪௞,𝜌௦௪௞) = ෍ (−𝑖) × 𝑝(𝑋 = 𝑖)ିଵ
௜ୀି௦௧ೞೢೖ = ఘೞೢೖೞ೟ೞೢೖ௦௧ೞೢೖ!∑ ఘೞೢೖ೔௜!௦௧ೞೢೖ௜ୀ଴  

(20)  𝛽(𝑠𝑡௦௪௞,𝜌௦௪௞) = 1 − ఘೞೢೖೞ೟ೞೢೖ௦௧ೞೢೖ!∑ ఘೞೢೖ೔௜!௦௧ೞೢೖ௜ୀ଴  

It is assumed that the state variable is defined as 𝑥௦௦ᇲ௪భ௞ ≤ 𝑠𝑡௦௪௞  which presents the inventory level and the maximum 
shortage 𝑠𝑡ഥ ௦௞ = ∑ 𝑠𝑡௦௪௞௪  as the upper bound. The demand for local warehouses from central and other local warehouses is 
obtained using the fill rate in local warehouses. Assuming 𝜆௦௞ as the demand for spare parts in the central warehouse in 
interval k, when no shortage exists, the demand is calculated in Eq. (18).  Also, the demand in central warehouses (𝜆௦௞ᇱ ) in 
case of shortage is presented in Eq. 19, which is the demand of local warehouses when no stock is on-hand. Demand in each 
local warehouse is calculated by 𝛾௦௪మ௞ = ∑ 𝑧(ଵ)௦௪మ௖௞௖ + ∑ 𝑙𝑎𝑡௦௪మ௪మᇲ௞௪మᇲ  i.e. the total demand (including the operational 
bases and other local warehouses). The steady-state equations (Özkan et al., 2015), shown in Eq. (20), then we adapt it to 
our model. 
 

(21)  ∀𝑠, 𝑘 𝜆௦௞ = ෍𝛾௦௪మ௞ ௪మ  

(22)  ∀𝑠, 𝑘 𝜆௦௞ᇱ = ෍𝛽௦௪మ௞௪మᇲ . 𝛾௦௪మ௞ 

 

(23)  𝜋(௫ೞೞᇲೢభೖ) = ⎩⎪⎨
⎪⎧ 𝜆௦௞ᇱ൫𝑠𝑡௦௪భ௞ − 𝑥௦௦ᇲ௪భ௞൯. (1/𝜇௦௦ᇲ௪భ)𝜋(௫ೞೞᇲೢభೖାଵ),     − 𝑠𝑡ഥ ௦௪భ௞ ≤ 𝑥௦௦ᇲ௪భ௞ < 0𝜆௦௞൫𝑠𝑡௦௪భ௞ − 𝑥௦௦ᇲ௪భ௞൯. (1/𝜇௦௦ᇲ௪భ)𝜋(௫ೞೞᇲೢభೖାଵ),      0 ≤ 𝑥௦௦ᇲ௪భ௞ < 𝑠𝑡௦௪భ௞  

 
Eqs. 21-26 are the METRIC model formulations used for computing the expected on-hand inventory, backorder, and waiting 
time. This model was proposed by (Sherbrooke, 1968) and is developed more by other researchers (Axsäter, 1993; Rappold 
& Van Roo, 2009). The expected on-hand inventory is presented in Eqs. (21) and Eq. (25), and the average shortage is 
calculated in Eq. (22) and Eq. (26). The average waiting time is calculated by Eq. (23) using the little law; then, the 
replenishment time in local warehouses is computed by adding the travel time to the waiting time which is presented in Eq. 
(24). 
 𝐼௦௪భ௞ା = ෍ 𝑗.𝑃(𝑋 = 𝑗)௦௧ೞೢభೖ

௝ୀଵ = ෍ 𝑗𝑒ିఒೞೖ ఛೞೢభ(𝜆௦௞ 𝜏௦௪భ)௦௧ೞೢభೖି௝(𝑠𝑡௦௪భ௞ − 𝑗)!௦௧ೞೢభೖ
௝ୀଵ ∀𝑠,𝑤ଵ,𝑘 

(24) 

𝐼௦௪భ௞ି = ෍ ෍ −𝑗.𝑃(𝑋 = 𝑗)ିଵ
ି௦௧ೞೢభೖ

ௌᇲ
௦ᇲୀଵ = ෍ ෍ −𝑥௦௦ᇲ௪భ௞𝜋௫ೞೞᇲೢభೖିଵ

ି௦௧ೞೢభೖ
ௌᇲ
௦ᇲୀଵ  (25) 
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𝜏̄௦௪మ௞ = ෍(𝜏௦௪భ௪మ + 𝑤𝑎௦௪భ௞)௪భ  

∀𝑠,𝑤ଶ,𝑘 

(27) 

𝐼௦௪మೖା = ෍ 𝑗௦ × 𝑒ିఊೞೢమೖఛ̄ೞೢమ(𝛾௦௪మ௞𝜏̄௦௪మೖ)௦௧ೞೢమೖି௝ೞ(𝑠𝑡௦௪మ௞ − 𝑗௦)!௦௧ೞೢమೖ
௝ೞୀଵ  (28) 𝑠𝑡௦௪మ௞ ≥ 𝐼௦௪మ௞ା − 𝐼௦௪మ௞ି + 𝛾௦௪మ௞𝜏̄௦௪మ௞ (29) 

 
Balance equations in inspection and repair centers are presented in Eq. (27) and Eq. (28). 

 ෍𝑦௦௜௥௞′௥ = ෍𝐺௦௜ × 𝑥௦௖௜௞′௖  ∀𝑠, 𝑖, 𝑘 (30)  ෍𝑦௦௜௥௞′௜ = ෍𝑥(ଶ)௦௥௪భ௞௪భ + ෍𝑦(ଶ)௦௥௪మ௞௪మ + ෍𝑧(ଶ)௦௥௖௞௖  ∀𝑠, 𝑟, 𝑘 (31)  

 
The repair of equipment in repair centers is divided into two types. The first type comes in inner-company repair centers, 
which use company resources,  but the second type is the outer-company repair centers that operate independently, often 
through a contract. Eq. 29 shows the spare parts which are needed for repairing each equipment in the inner-company repair 
center. The repair expertise and capacity constraint are also expressed in Eq. (30) and Eq. (31).    
 𝐼௦௥భோ଴ + ෍𝑤𝑠௦௪భ௥భ௞௪భ ≥ 𝑝𝑢௦௦భ × ෍𝑦௦భ௜௥భ௞′௜ + 𝑠𝑡௦భ௥భ௞ ∀𝑠, 𝑟ଵ, 𝑘 (32) ෍𝑟𝑡௦௥ × 𝑦௦௜௥௞′௜ ≤ 𝑐𝑎𝑝௥ ∀𝑠, 𝑟 (33)  ෍𝑦௦௜௥௞′௜ ≤ 𝑀 × 𝑐𝑝௥௦ ∀𝑠, 𝑟, 𝑘 (34)  

 
The supply capacity from suppliers, maximum allowed defect, and delivery time constraints are listed in Eqs. (32-34). ෍𝑥(ଵ)௦௦′௪భ௞௪భ ≤ 𝑠𝑢𝑝௦௦′ ∀𝑠, 𝑠′,𝑘 (35) ෍෍𝑑𝑒𝑓௦௦′𝑥(ଵ)௦௦′௪భ௞ ௪భ௦′ ≤ 𝑚𝑑𝑒𝑓௦෍෍𝑥(ଵ)௦௦′௪భ௞௦′௪భ  ∀𝑠,𝑘 (36)  ෍෍𝑑𝑒𝑙௦௦′𝑥(ଵ)௦௦′௪భ௞௦′௪భ ≤ 𝑚𝑑𝑒𝑙௦෍෍𝑥(ଵ)௦௦′௪భ௞௦′௪భ  ∀𝑠,𝑘 (37)  

Eqs. 35 and 36 present the balance equations in local and central warehouses.  
 𝐼௦௪మ଴ + ෍𝑦(ଵ)௦௪భ௪మ௞௪భ + ෍𝑦(ଶ)௦௥௪మ௞௥ + ෍ 𝑙𝑎𝑡௦௪మ′ ௪మ௞௪మ′ ஷ௪మ  

= 𝑠𝑡௦௪మ௞ + ෍𝑧(ଵ)௦௪మ௖௞௖ + ෍ 𝑙𝑎𝑡௦௪మ௪మ′ ௞௪మ′ ஷ௪మ  
∀𝑠,𝑤ଶ, 𝑘 (38) 

𝐼௦௪భ଴ + ෍𝑥(ଵ)௦௦′௪భ௞௦′ + ෍𝑥(ଶ)௦௥௪భ௞௥ + ෍ 𝑙𝑎𝑡௦௪భ′ ௪భ௞௪భ′ ஷ௪భ  
= 𝑠𝑡௦௪భ௞ + ෍𝑦(ଵ)௦௪భ௪మ௞௪మ + ෍𝑤𝑠௦௪భ௥௞௥ + ෍ 𝑙𝑎𝑡௦௪భ௪భ′ ௞௪భ′ ஷ௪భ  

∀𝑠,𝑤ଵ, 𝑘 (39) 

 
The availability in each time interval is calculated by Eq. (37). Finally, the domains of variables are shown. 𝐴௦௖௞ = 1 − ∑ 𝐼ି௦௪௞௪𝑑௦௖ ∑ 𝐿௞௞  ∀𝑠,𝑘 (40) 𝑥௦௖௜௞′ ,  𝑦௦௜௥௞′ ,  𝑥௦௦′௪భೖ(ଵ) , 𝑥௦௥௪భ௞(ଶ) ,  𝑦௦௪భ௪మ௞(ଵ) ,  𝑦௦௥௪మ௞(ଶ) ,  𝑧௦௪మ௖௞(ଵ) ,  𝑧௦௥௖௞(ଶ) ,  𝑠𝑡௦௪௞ ℤା ;   𝐼௦௪௞ା ,  𝐼௦௪௞ି ∈  ℝା 
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4. Computations and solution procedure 
 

The case study and solution approach is presented in this section; then, the results are obtained. Iran, one of the biggest 
countries in the world, possesses a prominent share of global reserves. The National Iranian South Oilfields Company 
(NISOC) is a major Iranian oil company including Aghajari, Marun, Kranj, Bibi Hakimeh, Rag Sefid, Ahwaz, and 
Gachsaran. Three central warehouses and six local warehouses exist in this area. The inner-company repair centers are 
assumed to be close to operational bases, while the outer-company repair centers are far away, so they are charged with 
prominent transportation costs. Three repair centers include two inner-company repair centers, and the other one is outer-
company—two equipment with their spare parts, listed below.  

• Rotary pump 
o Idlers 
o Retainer 
o Seal 
o Power Rotor 
o Bearing Snap Rings 

• Ball valve 
o Bearing plate 
o Thrust bearing 
o Stem bearing 
o Gland packing 
o Seat seal 

 

The minimum mean delivery time and maximum mean defect are 100 and 40 days for the rotary pump and ball valve. The 
inner-company and outer-company repair centers have a maximum repair capacity of 2000 man-hours. Additionally, the 
repair time for repairing the rotary pump and ball valve is 70 and 50 man-hours. The rotary pump and ball valve repair costs 
are 500 and 200. Table 2 involves the failure rate of the equipment and spare parts in operational bases (operational bases). 
The rotary pump and ball valve repairability probability are 0.85 and 0.9, respectively. This value determines the input of 
the repair centers, and the rest are disposed out of the network. 

Table 2  
Demands of operational bases 
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1 7 2 2 1 1 1 3 1 0 0 1 1 
2 3 3 1 1 1 0 5 2 1 1 0 1 
3 5 1 1 1 0 2 7 2 2 0 1 2 
4 5 5 3 1 1 0 1 0 0 1 0 0 

5 2 1 0 1 0 0 2 0 1 0 1 0 

 
4.1.  Solution approach 
 

To solve the non-linear mathematical model, the heuristic is shown below—the main complexity of the model comes from 
the queuing formulation. Figure 2 illustrates the heuristic approach used for solving the inventory model.  

 

 

Fig. 2. A heuristic approach for the inventory model 
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The pseudo-code is presented as follows. The heuristic involves four stages that are described below. The two-year planning 
horizon includes five intervals. It is initially assumed that there is no shortage in local warehouses so no lateral transshipment 
exists. The procedure continues until the waiting time does not change more than epsilon (small amount). When the results 
of the heuristic is obtained, the Genetic Algorithm (GA) is used to solve the rest of the model by MATLAB R2019a with 
Intel(R) Core (TM) i5-9400F CPU @ 2.90GHz and 16 GB Ram Personal Computer. 

While k ≤ N 
 

Stage one: Initialisation 𝑤𝑎௦௪భ௞ = 0                                                      ∀𝑠 ∈ 𝑆,∀𝑤ଵ ∈ 𝑊ଵ,∀𝑘 ∈ 𝐾 
 𝑠𝑡ഥ ௦௞ = ෍𝑠𝑡௦௪௞௪                                               ∀𝑠 ∈ 𝑆,∀𝑘 ∈ 𝐾 𝜆௦௞ = ෍𝜆௦௪మ௞ᇱ௪మ                                                 ∀𝑠 ∈ 𝑆,∀𝑘 ∈ 𝐾  

𝜏̄௦௪మ௞ = ෍(𝜏௦௪భ௪మ + 𝑤𝑎௦௪భ௞)௪భ                        ∀𝑠 ∈ 𝑆,∀𝑤ଶ ∈ 𝑊ଶ 
 𝑙𝑎𝑡௦௪మ′ ௪మ௞ = 0                                                   ∀𝑠 ∈ 𝑆,∀𝑤,𝑤ᇱ ∈ 𝑊,𝑤 ≠ 𝑤ᇱ 𝛽௦௪మ௞ = 1 − 𝐿൫𝑠𝑡௦௪మ௞𝜏̄௦௪మ௞. 𝛾௦௪మ௞൯                 ∀𝑠 ∈ 𝑆,∀𝑤ଶ ∈ 𝑊ଶ,∀𝑘 ∈ 𝐾 

Stage two: Local warehouse performance evaluation 𝑙𝑎𝑡௦௪మᇲᇲ௪మ௞ = (1 − 𝛽௦௪మ′ ௞) 𝑙𝑎𝑡௦௪మ′ ௪మ௞                  ∀𝑠 ∈ 𝑆,∀𝑤ଶ ∈ 𝑊ଶ,∀𝑘 ∈ 𝐾, 1 ≤ 𝑤ଶ,  𝑤ଶ′ ≤ 𝑊ଶ′  
  𝛾௦௪మ௞ = ෍𝑙𝑎𝑡௦௪మ௪మᇲ௞௪మᇲ                                         ∀𝑠 ∈ 𝑆,∀𝑤ଶ ∈ 𝑊ଶ,∀𝑘 ∈ 𝐾 𝛽௦௪మ௞ = 1 − 𝐿൫𝑠𝑡௦௪మ௞, 𝜏̄௦௪మ௞. 𝛾௦௪మ௞൯                  ∀𝑠 ∈ 𝑆,∀𝑤ଶ ∈ 𝑊ଶ,∀𝑘 ∈ 𝐾 

 
Stage three: Central warehouse performance evaluation 𝜆௦௞ᇱ = ෍𝛽௦௪మ௞௪మᇲ . 𝛾௦௪మ௞ 

𝜋(௫ೞೞᇲೢభೖ) = ⎩⎪⎨
⎪⎧ 𝜆௦௪భ௞ᇱ൫𝑠𝑡௦௪భ௞ − 𝑥௦௦ᇲ௪భ௞൯. (1/𝜇௦௦ᇲ௪భ)𝜋(௫ೞೞᇲೢభೖାଵ),     − 𝑠𝑡ഥ ௦௪భ௞ ≤ 𝑥௦௦ᇲ௪భ௞ < 0𝜆௦௪భ௞൫𝑠𝑡௦௪భ௞ − 𝑥௦௦ᇲ௪భ௞൯. (1/𝜇௦௦ᇲ௪భ)𝜋(௫ೞೞᇲೢభೖାଵ),      0 ≤ 𝑥௦௦ᇲ௪భ௞ < 𝑠𝑡௦௪భ௞  

 𝐼௦௪భ௞ି = ෍ ෍ −𝑗.𝑃(𝑋 = 𝑗)ିଵ
ି௦௧ೞೢభೖ

ௌᇲ
௦ᇲୀଵ = ෍ ෍ −𝑥௦௦ᇲ௪భ௞𝜋௫ೞೞᇲೢభೖିଵ

ି௦௧ೞೢభೖ
ௌᇲ
௦ᇲୀଵ  

 𝑤𝑎௦௪భ௞ = 𝐼௦௪భ௞𝜆௦௞ , 𝜆௦௞ ≠ 0 

Stage four: Iterative procedure 
Repeat the stage two and three until 𝑤𝑎௦௪భ௞ does not change significantly Set k = k+1 

End 
 
Considering M and N as the number of sources and the depots, the chromosome is filled with a random permutation of 
(M+N). A representation is considered for each stage of the network. The crossover operators is used to generate new 
solutions. Due to the chromosome structure, order crossover (OX) is used. One or two cut points can be used to generate 
new offspring. In the case of mutation, two random genes are replaced (Paydar et al., 2017). According to priority-based 
encoding representation, a chromosome is encoded, then each generated solution by the priority-based decoding algorithm 
justifies the feasibility. The search in the chromosome starts from the maximum priority value. Sources and depots are 
limited by the capacity or demand, which determines the flow between the nodes. The pseudo-code of the priority-based 
algorithm is shown below. 
 
 
 
 
 

Inputs:  



V. Babaveisi et al.  / Decision Science Letters 12 (2023) 
 

249

S:    Set of sources, D: set of depots, 
tc:   Transportation cost from sources to depots, 
cap: Capacity of 𝑠𝑜𝑢𝑟𝑐𝑒𝑠, 𝑑𝑒:   Demand of 𝑑𝑒𝑝𝑜𝑡𝑠 
chromosome(S*D)  

Outputs: 𝑋: The flow between sources and depots   
While  𝑎𝑙𝑙൫chromosome(: )൯ ≠ 0  

Step1.Chromosome generation:  𝑟𝑎𝑛 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑐ℎ(𝑢), u ∈ (|𝐷| + |𝑆|)} ;  
Step2. Selecting node:  𝑘∗ = ቒ ௥௔௡|஽|ା|ௌ|)ቓ,  

Step3.determining sources and depots  
 𝑣∗ = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑡𝑐| ch ≠ 0}, 

selecting a resource and depots with minimum transportation cost

 

Step4. calculate the flow between the resource and depot 𝑋 = 𝑚𝑖𝑛{ 𝑐𝑎𝑝,𝑑𝑒},  
Step5. Updating capacities  𝑐𝑎𝑝 = 𝑐𝑎𝑝 − 𝑋,   𝑑𝑒 = 𝑑𝑒 − 𝑋,    

End 
 
5. Numerical study and analyses 
 

Using the above solution procedure, the model is solved by the procedure. The case study is used to validate the model. The 
accuracy of the evaluation heuristic for the inventory management model is declared by (Wingerden et al., 2019). Various 
instances are also provided in Appendix A. The results are presented in the below tables to shed light on the results. The 
cost per interval is shown in Table 3.  

Table 3  
Cost per interval 

Time interval Cost 
1 1.3 × 10଺ 
2 1.27 × 10଺ 
3 1.25 × 10଺ 
4 1.26 × 10଺ 
5 1.28 × 10଺ 

We present sensitivity analyses to investigate the effect of changing the parameters on decision variables. 

5.1. The multi-period planning  
 

Fig. 3 illustrates the changes in the number of intervals and the relation with cost. By increasing the number of intervals, 
the total cost first reduces to a minimum value; then, the costs start to rise with more than three intervals. The fluctuations 
come from the practical and theoretical context. Practically, this behavior could be justified by risk-sharing and inventory 
management costs since the supply will be continued through the planning horizon and the average shortage decreases.  

 
Fig. 3. Cost as the number of time intervals changes 

5.2.  The relation of availability and stock level with repair and demand rate 
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The relation between repair capacity and demand with availability is illustrated in Fig. (4-a). The availability rises when the 
repair capacity enhances by increasing the failure rate. The performance-based servicing causes an increase in availability 
since it guarantees the lifetime of the equipment. The increase in repair capacity continues until it reaches the peak, then 
minor changes in the availability occur. Fig. (4-b) shows the relation between the stock levels and these parameters for 
interval one. The stock level increases as the probability of repairability (PR) falls, resulting from a rise in supply. In other 
words, as the output of the repair centers decreases, the system starts to compensate for the shortage in operational bases, 
especially in the case of stochastic demand. The rotary pump is too sensitive to PR compared with the ball valve, which 
could be interpreted as a limitation in supply, such as a long lead time or high purchase cost.  

 
a) Equipment availability as the repair capacity and demand fluctuate 

  
I) Rotary pump II) Ball valve 

b) Central warehouse stock level 
Fig. 4. Relation of availability (a) and stock level (b) with repair capacity and probability of repairability  

The demand rate, i.e., the failure rate of the equipment, affects the optimal number of intervals. The more the demand rate 
is, the higher the number of planning intervals will be.  

 
Fig. 5: The number of time intervals as the demand changes 
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Fig. 5 illustrates the relation between the optimal number of time intervals and the demand. We can also observe when the 
demand for the ball valve is fixed and the demand for the rotary pump increases, the number of intervals rises. Conversely, 
the positive change in ball valve demand for a fixed rotary pump demand does not significantly affect the optimal number 
of intervals. This behavior can be interpreted from the point of view of the ordering cost. The increase in rotary valve 
demand sharply affects the number of optimal intervals, while the number of intervals is not significantly affected by the 
demand of the ball valve. 

5.3.  The performance analysis in warehouses 
 

The queuing model in the central warehouses is formulated as M/G/S/S to evaluate the performances and reduce shortages 
and inventory costs. In this section, the arrival and service rates are analyzed to observe the effects of changes on the average 
waiting time and costs over the planning horizon. The  computations are in all the operational bases for each time interval. 
The results show the deviation from the optimized solution due to demand and supply time changes. The stock level highly 
correlates with lead time and demand, so as demand and supply time increase, the average waiting time and the shortages 
rise. Additionally, the costs are strongly affected in this situation due to unexpected shutdown and inventory costs. The less 
the demand is, the less the stock level and holding costs will be. In some cases, the waiting time is not significant, close to 
zero. It is noteworthy that some spare parts may not respond to waiting time as the other spare parts due to different demand 
patterns. In this case, it is vital to consider a family group for similar patterns that can be useful in inventory management. 

Table 4  
The effect of changes in queuing model parameters 

Time 
interval 

 (k) 

parameters variables 𝜆௦௞ 𝜏௦௪ଵ 𝑤𝑎௦௪భ௞ cost ∆cost (%) 
s=1 s=7 s=1 s=7 s=1 s=7 s=1 s=7 s=1 s=7 

1 
20 10 100 60 0.03 0.00 9.200E+05 5.000E+04 -0.26 -0.96 
40 25 120 75 0.13 0.05 6.453E+06 2.438E+06 4.16 0.95 

2 
12 12 90 50 0.10 0.00 2.189E+06 5.500E+05 0.75 -0.56 
35 30 125 80 0.26 0.05 1.024E+07 2.610E+06 7.19 1.09 

3 
22 18 80 45 0.11 0.00 3.749E+06 1.279E+06 2.00 0.02 
20 35 130 75 0.22 0.11 5.566E+06 4.962E+06 3.45 2.97 

4 
14 12 95 60 0.08 0.00 1.937E+06 6.500E+05 0.55 -0.48 
30 40 135 75 0.21 0.06 7.503E+06 3.813E+06 5.00 2.05 

5 
17 14 90 60 0.10 0.00 2.421E+06 4.500E+05 0.94 -0.64 
25 26 135 100 0.19 0.12 5.933E+06 4.411E+06 3.75 2.53 

 
Additionally, Fig. 6 illustrates changes in waiting time over the planning horizon. It can be seen that as the demand increases, 
the waiting time and total costs increase since the stock level in central warehouses cannot cover the demand of local 
warehouses. 

 
Fig. 6. The average waiting time in the central warehouse and cost vs. time interval 

 
 

The multi-period planning impacts the stock levels since the supply is affected. The fluctuations are shown for the rotary 
pump and ball valve in Fig. 7 in interval one.  Given the rotary pump, the stock level increases when the demand rises. 
Consequently, the total cost roughly increases with the demand, which is crucial to guarantee the minimum shortage. The 
stock level at the central and local warehouses rises as the demand, i.e., failure rate, increases, but this effect is stronger for 
the rotary pump. Another reason for rising the stock level by demand can be justified for obtaining a stable performance 
whole the chain. The repair time may be higher for achieving an optimal quality that can affect the stock levels.  



  252

  
(a)Rotary pump (b)Ball valve 

Fig.7: Stock levels in warehouses 
 

In addition to previous discussions, some managerial insights are presented below: 

• The demand fluctuation, i.e .,  the failure rate, affects the optimal number of intervals. More changes cause a higher 
number of planning intervals to smooth the demand for more accurate approximation. 

• Industries usually use the repair costs based on a predetermined value, but using an effective repair cost by a 
performance-based policy can enhance the repair quality and optimize the repair costs; e.g., the payment can be 
proper to repair performance. 

• Repair and supply time are two significant factors that affect the stock level. The higher value of these two factors 
leads to a higher probability of shortages which increases costs.  

• Stock levels highly affect inventory costs and shortages, so the integrated supply and repair decisions improve the 
number of orders and optimize the total cost. An optimized tradeoff between the stock level and cost is crucial. 

• Each spare part has a specific characteristic; therefore, the inventory management policies should be compatible 
with the demand pattern, supply limitation, and working conditions. 

• Notably, processing the data is mandatory before feeding the model since some parts of the data may include noisy 
observations which cause errors in results.  

 
 
6. Conclusion and future research opportunity 
 

This research develops a model for planning a repairable spare part supply chain network considering the performance 
evaluation in warehouses which is formulated by queuing model. A stepwise linearisation approach is used to approximate 
the uncertain demand. Due to the complexity of the inventory management model (METRIC), a heuristic algorithm is used 
which solves the model in four stages by initializing the parameters and evaluating the performance of the inventory model 
in each stage so that the iteration continues until it meets the termination condition. A genetic algorithm is used to optimize 
the solution in which a priority-based algorithm is implemented to deal with the edge and node network of the supply chain. 
Indeed, this method assigns the nodes to each other by minimizing the transportation cost between them. The developed 
model determines the optimal number of intervals to obtain the almost linearized demand over each time interval, the 
optimal stock level in warehouses, spare part order assignment to suppliers, and the assignment of failed equipment to repair 
centers. The case study of the oil industry is used to validate the model's applicability. The model considers the repair 
constraints such as repair expertise, capacity, and repair time. Also, back ordering is formulated through the queuing model 
which obtains a criterion for the performance evaluation. 

The findings are described in the following: 1) the number of intervals over the planning horizon affects the costs 
significantly due to demand estimation in each interval, which differs by fluctuating the length of intervals, 2) demand 
fluctuations impact costs, so demand forecasting prominently enhances the planning accuracy and optimize the stock level.  
3) repair probability and capacity strongly correlate with order planning and stock level; moreover, shortages and 
unexpected shutdowns are affected, 4) the performance-based evaluation enhances the processes and optimizes the costs; 
e.g., the repair cost based on the availability enables the companies to achieve the maximum lifetime from the repaired 
equipment besides optimizing payment to repair centers. 5) Filtering the data is crucial when discussing the model since it 
affects the solutions. It should be pointed out that the weight of under-study items should be significant so that the 
optimization makes sense. The weight can be either value-based or volume-based. Future research can focus on various 
replenishment policies, formulating the performance in repair centers, considering the network design decisions, and 
developing the solution procedures through artificial intelligence or data-driven methods. Moreover, it is precious to discuss 
the reasoning process which can apply the effects of existing attributes and make the model more practical. 
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Appendix 
 
 

#NO Operational 
bases 

Warehouse Repair 
centers 

Demand  
Cost Optimal time 

interval 

Stock level 

Centra
l 

loca
l 

Rotary 
pump 

Ball 
valve 

Rotary 
pump 

Ball 
valve 

1 10 7 5 3 10 5 1.03E+05 1 2 1 

2 15 2 4 3 12 7 1.80E+05 2 5 2 

3 20 2 5 3 15 9 2.06E+05 3 4 2 

4 22 3 7 5 20 10 3.23E+05 3 10 3 

5 25 3 10 5 22 10 4.35E+05 3 12 4 

6 27 3 12 5 25 12 2.00E+06 3 15 3 

7 30 5 15 7 25 15 2.13E+06 5 15 5 

8 32 5 17 7 25 17 2.52E+06 5 10 5 

9 35 5 20 7 25 20 2.70E+06 5 10 3 

10 40 7 22 10 25 25 2.71E+06 5 10 2 

11 45 7 23 10 30 25 3.13E+06 6 14 4 

12 50 7 25 10 35 27 3.34E+06 6 15 4 

13 52 10 28 12 38 30 4.01E+06 6 15 8 

14 54 10 30 12 40 32 4.52E+06 6 18 6 

15 57 10 32 12 40 35 4.80E+06 7 22 10 
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