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 Life insurance is designed to reduce the risk of financial loss due to unforeseen consequences 
related to the insured's death. In life insurance, the insurer provides death benefits as a claim 
when the insured suffers death. The claim is the compensation for a risk loss. Individual claim 
in one-period insurance is called aggregation claim, while aggregation claim is a collective risk. 
Collective risk is usually measured using a variance. However, the variance risk measure cannot 
often accommodate any event risk because there is a risk of claims beyond the amount of 
variance. Using the proposed method CVaR and confidence level are taken from α = 0.25% until 
4%. This study found that the proposed method CVaR scored more fairly than Collective Risk. 
In conclusion, this study indicated that the collective risk model is just included using mean and 
variance without any confidence level. Therefore, only one result for the Collective Risk model, 
which automatically shows the model using mean, variance and standard deviation, could not 
accommodate all risk events. 
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1. Introduction 
 

Insurance can be defined as the undertaking of risks by an insurance company which agrees to indemnify the insured or the 
risk transferor for specified losses upon their occurrence, subject to the payment of insurance premiums by the insured 
(Albrecher, 2008). Bon et al.  (2018) and Dionne (2013) mentioned that insurance can be seen from two points of view 
which are first as protection for the finances provided by the insurer and second, as a risk pooling tool of two or more 
persons or companies through promised donations to establish funds to pay. Insurance is one of the methods of managing 
risks, in particular, one of the methods of risk transfer. Risk is generally measured by variance and standard deviation 
(Dickson, 2016). It should be highlighted that variance and standard deviations measure the average risk size and do not 
accommodate all of the risks, thus, there is a need to find an alternative measure. The variance or standard deviation is a 
measure of the average deviation, which is often not able to accommodate all events deviation (risk) (Andreas de Vries, 
2000). Therefore, the idea emerged to quantify the risk carried by the quintile or better known as Value-at-Risk (VaR) (Li, 
2000; Aktas & Sjostrand, 2011; Diers et al., 2012; Dowd & Blake, 2006; Meyers, 2008).  
 
According to Riaman et al. (2013), there is much research on the collective risk model conducted for instance the application 
of collective risk theory to estimate variability in deciding loss of savings, and the collective risk model for savings claim 
distribution. They also studied Collective Risk Models Analysis in Life Insurance Credit By Using Claim Model Aggregate. 
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In his research, he applied the Collective Risk Model to decide and anlayze the claim number of risk borne by the insurance 
company where the object is the credit life insurance (Bortoluzzo et al., 2011). Bon et al.  (2018) had propose a development 
model of Collective Value-at-Risk (CVaR) (Dokov et al., 2007). The development model is based on the collective risk 
model contained in research by Dickson (2016) and Kahn (1992). This paper will discuss a proposed method called 
Collective Value-at-Risk (CVaR). We will apply the Collective Value-at-Risk (CVaR) in real data analysis. Data obtained 
is from Bank Negara Malaysia (BNM) period from 2009 until 2017.  
 
2. Literature review  
 
Agustini et al. (2020) applied Bayes method to estimate risk premiums for critical disease insurance. Further, Sukono et al. 
(2017) determined and estimated the risk premium to be paid to the insurance company using the method of Empirical 
Bayes Credibility Theory (EBCT). Also, Sukono et al. (2017) estimated the risk model of life insurance claims for cancer 
patients by using the Bayesian method. In this research, there were two models of risk discussed namely Collective and 
Individual Risks. The problem found is that the cost of cancer treatment is higher, and the number of claims from year to 
year is increasing which will affect the insurer in estimating future claims trends to determine the risk premium. Therefore, 
they did research on the risks claims, particularly in cancer patients (Buckham et al., 2010; Masci, 2011; Nino & 
Paolo,2010).   
 
In addition, Sukono et al. (2018) estimated the risk model and premium for motor vehicle insurance by using the Bayesian 
method. They studied how to assess Collective Risk Models and non-life insurance by using the Bayesian method. The 
Bayesian method is used to estimate the parameters of the claim frequency model and the amount of the claim, in order to 
be used in the calculation of risk, and also to determine the premiums the insured must pay to the insurer (Djuric, 2013). 
Saputra et al. (2018) have done the research on risk adjustment model of credit life insurance by using a genetic algorithm. 
They have proposed the Algorithm to determine the distribution of life insurance claims and certain to minimize risk. 
Sukono et al. (2019) also have done another study about the Estimation of Value-at-Risk Adjusted under the Capital Asset 
Pricing Model Based on the ARMAX-GARCH Approach. They analyzed the measure of the risk identified as Value-at-
Risk Adjusted or Modified Value-at-Risk (MVaR) (Guarda et al., 2012; Naufal et al., 2018), in which the shares analyzed 
are assumed to follow the CAPM form (Polanski et al., 2013).  
 
Sidi et al. (2019) examined the Estimation of the Aggregate Claim Risk Model. The study is to examine the Aggregate 
Claim Risk Model on insurance and the case study is on the damaged buildings due to the flooding of the Citarum River in 
Bandung Indonesia. In the research, they examined by applying the Collective Risk Model as mentioned in equation (2.5). 
Another study by Sukono et al. (2019) is Supply Chain Strategy for Managing Risk for Health Insurance: An Application 
of Bayesian Model.  In this study, they propose to estimate the health insurance claims for people who live in the south 
Bandung area, West Java, Indonesia. They have mentioned that the research is important to get a Mathematical model which 
can predict the amount of health insurance claims so that insurance companies do not suffer any losses. Also, it can be used 
to determine the amount of net premium of health insurance reasonably. The study was conducted using the Bayesian 
method because they believe this method is suitable to estimate the health insurance risk model.  
 
Sukono et al. (2020) used Risk Surplus Analysis in credit life insurance using the Bayesian method. Their study aimed to 
determine the credit life insurance surplus obtained by companies using the Bayesian method. The Bayesian method is used 
to estimate the model parameters of many claims and the size of the claims used for the calculation of the risk model and is 
useful for determining the price of premiums that must be paid by the insured to the insurance company. Brahmantyo et al. 
(2021) used logistic regression model with parameters estimated Maximum Likelihood Estimation (MLE) based on Newton 
Raphson approximation to generate Willingness top Pay (WTP) insurance to the fishermen. 
 
2.2 Collective Risk 
 
Referring to Sukono et al.  (2019), Bon et al.  (2018) and Dickson (2016) 𝑆 is defined as the sum of a collection of random 
variables total of claims incurred within one year of the risk. In this case, that 𝑁 random variable is assumed to indicate the 
number of claims of risks this year and let the random variable 𝑋௜ be used to declare the amount of the claims. The aggregate 
claim amount is the sum of the number of individual claims, can therefore written as: 

1

N

i
i

S X
=

=  
 

(1) 

Next, two important assumptions are made. First, it is assumed ሼ𝑋௜ሽ௜ୀଵஶ  a that the random variable is a sequence of 
independent and identically distributed, and second, it is assumed that the random variable 𝑁 is independent of ሼ𝑋௜ሽ௜ୀଵஶ .   
These assumptions reveal that the amount of any claim does not depend on the number of other claims, and that the 
distribution of the number of claims do not change throughout the year. The assumption also states that the number of claims 
has no effect on the amount of the claim (Dickson, 2016; Bowers et al., 1997). Bon et al.  (2018) that moments and the 
moment generating function of 𝑆 can be calculated using conditional expectation argument. The key result is that for any 
two random variables 𝑌 and 𝑍, there is a relevant moment: 
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[ ] [ ( | )]E Y E E Y Z=  (2) 
 
and 
 

[ ] [ ( | )] [ ( | )]V Y E V Y Z V E Y Z= +   (3) 
 
As the closest application of Eq. (2) is obtained  
 

[ ] [ ( | )]E S E E S N=  
Then suppose that [ ]k

k im E X=  for  1, 2,3,...; 1, 2,...,k i n= = , is the kth moment. Therefore, obtained  
 

1 1
1 1 1

[ | ] [ ]
n n n

i i
i i i

E S N n E X E X m nm
= = =

 = = = = = 
 
    

and since it was formed for 0,1, 2,...n =  . Therefore 1[ | ]E S N Nm=    and therefore 
 

[ ] [ ]1 1[ ( | )] [ ]E S E E S N E Nm E n m= = =  (4) 

 Bon et al.  (2018) mention by using a similar method, with 1{ }i iX ∞
=  is independent random variables,  

( )2 2 2
2 1

1 1 1
[ | ] [ ] [ ] ( [ ]) ( )

n n n

i i i i
i i i

V S N n V X V X E X E X n m m
= = =

 = = == = − = −  
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Thus 
 

2
2 1[ | ] ( )V S N N m m= − . 

 
Then, by applying Eq. (3) is obtained 
 

2 2 2
2 1 1 2 1 1[ ] [ ( | )] [ ( | )] [ ( )] [ ] ( ) [ ] [ ].V S E V S N V E S N E N m m V Nm m m E N m V N= + = − + = − +  (5) 

 
Eq. (5) is called Collective Risk, where it is measured using a variance claim (Cunningham, et al., 2006; Dickson, 2016). 
 
3. Materials and methods  
 
3.1 Material 
 
The data used in the research in the development of the Collective Value-at-Risk (CVaR) model, is the claim data from 
Bank Negara Malaysia (BNM) from the year 2009 until 2017. These claims data are secondary data, which can be grouped 
into two types, namely claims frequency or numbers, and claim severity or amount. 
 
3.2 Method 
 
3.2.1 Claims Distribution Model 
 
According to Iqbal et al.  (2021), Poisson distribution has some interesting properties that makes it easy to be used in various 
actuarial applications (Cunningham et al., 2006). Therefore, Iqbal et al.  (2021), used the Poisson distribution (Yates and 
Goodman, 2014) to analyze the number of claims denoted by N, using the following equation: 
 

( ) ,
!

neP N n
n

λλ−

= = 0,1, 2,...., 0,n λ= >  
 

where λ is the average number of events per interval, e is the Euler's number used as the base of the natural logarithms 
which approximately equal to 2.71828... and  ! ( 1) ( 2)...3 2 1k k k k⋅ − ⋅ − ⋅ ⋅ . This equation is also known as the probability 
mass function (PMF) for a Poisson distribution. Iqbal et al.  (2021) defined a moment-generating function of Poisson 
distribution (Yates & Goodman, 2014). 
 

  
0
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where X is a discrete random variable with a Poisson distribution, the moment generating function MN of Poisson distribution 
N is given by 
 

( ) 1

0 0 0
( ) [ ] ( ) ( ) exp{ ( 1)}

! !

ntn
tN tn tn t t

N
n n n

eeM t E e e P N n e e e e e
n n

λ
λ λ

λλ λ
−∞ ∞ ∞

− −

= = =

= = = = = = = −    
 

(6) 

 

   and its probability-generating function is given by ( ) ( ){ }
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( ) exp 1 .
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= =
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moments of N can be found from the moment generating function because by the definition that the kth moment of N is the 
kth derivative of MN(t). Therefore, for example, from the moment generating function of Poisson distribution which is given 
by 
 

( ) exp{ ( 1)},t
NM t eλ= −  

From the relationship between ( )NM t  and [ ]tNE e given by 
2( ) ( )( ) [ ] 1 ...

2! !
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tN

N
tN tNM t E e E tN
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Since  

0(0) exp{ ( 1} 1NM eλ= − = , 0' (0) (0)N NM e Mλ λ= =  and ( )20 0 2'' (0) ( ) (0)N NM e e Mλ λ λ λ= + = + . Thus,  
 
 [1] 1E = , [ ]E N λ= and 2 2[ ]E N λ λ= +  so that 2 2 2 2[ ] [ ] ( [ ]) .V N E N E N λ λ λ λ= − = + − = Furthermore, the notation 

( )P λ  is used to denote a Poisson distribution with parameter λ (Cunningham et al., 2006; Dickson, 2016). Also, Iqbal et 
al.  (2021) in insurance, claim the amount is assumed to a continuous random variable. Suppose that X is the claim amount 
assumed lognormal distribution with parameters Xμ  and Xσ , where Xμ−∞ < < ∞  and 0Xσ >  , its density function is 
given by   

                         ( )
2

log1( ) exp
22

X

XX

x
f x

x
μ

σσ π
−  = − 

  
, 0x >    

The distribution function can be obtained by integrating the density function as follows (Dutang, et al., 2009). 

( )2

2
0 0

log1( ) ( ) exp
22

x x
X

XX

y
F x f y dy dy

y
μ

σσ π

 − = = − 
  

  . 

By logz y= , we have z = −∞  when 0y = , logz x=  when y x= and / (1/ )dz dy y= . Therefore, the function ( )F x  can 
be written as 
 

( )2log

2

1( ) exp
22

x
X

XX

z
F x dz

μ
σσ π−∞

 − = − 
  

 . 

As the integrand is the 2( , )X XN μ σ  density function,  

log( ) X

X

xF x μ
σ

 −
= Φ  

 
 

Thus, probabilities under a lognormal distribution can be calculated from the standard normal distribution function (Dutang, 
et al., 2009; Eling, 2011).  This relationship between normal and lognormal (LN) distributions is extremely useful, 
particularly in deriving moments. If ~ ( )X XX LN μ σ  and log iY X= , then by some manipulation and perfect square, we 
can derive 
 

log log[ ] [ ] [ ] [ ] ( ).
k
i iX k Xk kY

i YE X E e E e E e M k= = = =  
  
But, 
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being the integral of normal density with mean 2( )X Xkμ σ+ and variance 2
Xσ . The Eq. (7) is followed by the moment of 

normal distribution (Dickson, 2016; Dutang, et al., 2009). If the moment generating function is generally used, then the 
moment generating function obtained is as follows:  
 

( ) [ ] [ ( | )]tS tS
SM t E e E E e N= =    and 

1 2
1 1

[ | ] exp [exp{ } exp{ }...exp{ }] [exp{ }],
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  = = = ⋅ =  
  
 ∏  

where the obtained result is yielded by using the properties of independence 1{ }i iX ∞
= . Furthermore, because 1{ }i iX ∞

=   is 
identically distributed, 
 ( )[ | ] ( ) ntS

XE e N n M t= =  
where ( ) [exp{ }]X iM t E tX= , ( 1, 2,..., )i n= . Based on these, 

( ) ( ){ } ( ){ } ( )( ) [ ] [ ( | )] ( ) exp log ( ) exp log ( ) log( ( )) .N NtS tS
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Thus, ( )SM t  expressed in the tribes of ( )NM t   and ( )XM t , (Constantinescu, 2013; Dickson, 2016). Poisson distribution 
has a probability function as: 
 

6.212 6.212( ) 0,1, 2,...
!

neP N n n
n

−

= = =                                                                                                                  

We obtain [ ] [ ] 6.212E N V N λ= = = . Meanwhile, the claims amount data that match lognormal distribution LN (6.267, 
21.42). Claims amount lognormal distribution results has the probability density function as: 

21 (log 6.267)( ) exp , 0.
2(6.267)(21.42) 2
xf x x

x π
 −= − > 
 

In addition,   

11 21 34
1 2 3 414423.89, 1.74 10 , 1.76 10  and 1.49 10 .m m m m= = × = × = ×                         

 
3.2.2  Collective Value-at-Risk 
 
Bon et al.  (2018) defined Collective Value-at-Risk to be considered as the following 
 

1/2{ ( ) ( [ ] }CVaR N E S Z V Sα= − +           

with N  many claim they want to know of the level of risk, and Zα  percentile of the standard normal distribution when 
given a level of significance α . Due to the risk of claims related to the issue, the value of Zα   selected which is located on 
the left tail (Andreas, 2000; Casiglio et al., 2002; Manganelli & Engle, 2001). Bon et al.  (2018) then substituted Eq. (4) 
and Eq. (5) into Eq. (6), and the Collective Value-at-Risk model obtained as the following equation:  
 

( ){ }2 2 1/2
1 2 1 1[ ] [ ] [ ]CVaR N E N m Z m m E N m V Sα= − + − +  (8) 
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4.  Results and discussion  
 
4.1 Collective Risk Calculation 
 
Using the values of [ ]E N  and [ ]V N , and values 1m and 2m . Value of collective risk can be calculated using Eq. (5) as 
follows: 
 

11 2 2 12[ ] (6.212){1.741 10 (14423.89) } (6.212)(14423.89) RM2.05 10V S = × − + = × .  
Also, use values 11

1 26.212, 14423.89 and 1.74 10m mλ = = = × , can obtain the values 2 1289601.21 and 1.082.10 .S Sμ σ= =   
 
4.2  Collective Value at Risk Calculation 
 
Further, if the specified significance level of 0.005α = , then percentile of the standard normal distribution is obtained 

0.005 2.576.z = −  

 ( )12
1

82250 2.576 1.082 10 89601.213 RM6.30 10CVaR
  = − − × + = × 
  

 

Table 1 summarizes the results of CvaR for other confidence levels. 
 
Table 1  
Results of CVaR 

Confidence level Result 
0.5% RM6.30×108 

1 RM5.67×108 
1.5% RM5.27×108 

2 RM4.98×108 
2.5% RM4.74×108 
3% RM4.54×108 

3.5% RM4.36×108 
4% RM4.21×108 

 
Table 1 shows the maximum potential claim risk by using the CVaR approach model with confidence level 𝛼 = 0.5%, for 
250 claim events, the claim is RM6.30×108 while at the maximum potential claim 𝛼 = 1% , the amount claim is 
RM5.67×108 while at the maximum potential claim risk at confidence level 𝛼 = 1.5%, the claim is  RM5.27×108 while at 
the maximum potential claim risk at 𝛼 = 2% the claim amount is RM4.98×108,- while at the maximum potential claim risk 
at confidence level 𝛼 = 2.5% the claim amount is RM4.74×108,- while at the maximum potential claim risk at confidence 
level 𝛼 = 3% the claim amount is RM4.54×108,- while at the maximum potential claim risk at confidence level 𝛼 = 3.5% 
the claim amount is RM4.36×108,- while at the maximum potential claim risk at confidence level 𝛼 = 4% the claim amount 
is RM4.21×108. 

 

 
Fig. 1. Graph of CVaR Results. 
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Fig. 1 displays the potential risk claims from a straight line, showing that it decreases at every confidence level. The higher 
confidence level will be given effect the lower the potential risk claims. It means that the results are good. 
 
5. Conclusion  
 
In conclusion, this study indicated that the collective risk model is just included using mean and variance without any 
confidence level. Therefore, there are only one results for the Collective Risk model, which is automatically shown, and the 
model using mean, variance and standard deviation could not accommodate all risk events. While the proposed method 
CVaR, confidence levels are taken from α = 0.25% until 4%. As a result, Table 1 shows that the proposed method CVaR 
scores fairly more than Collective Risk.  
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