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 In this paper, a memory-based simulated annealing algorithm called the Dual Memory Simulated 
Annealing Algorithm (DMSA) is presented to solve multi-line facility layout problems. The 
objective is to minimize the total material handling cost. Two memory buffers and a restart 
mechanism are considered. Two benchmark problems were selected from the literature review 
papers and solved using the standard simulated annealing (SA) algorithm and the DMSA. The 
obtained results show that solutions provided by the DMSA algorithm are cost-effective 
compared to the standard SA algorithm and the other algorithms used for solving these test cases. 
Moreover, to further evaluate the performance of the DMSA algorithm in large scale problems, 
eleven test cases were selected from the benchmark library of the quadratic assignment problem 
(QAP). According to the results, the performance of the algorithm in finding solutions to 
complex problems is exemplary. 
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1. Introduction 
 

Many industries and service providers face different forms of facility layout problem (FLP) including but not confined to 
designing the layout for hospitals, schools, landing fields, stock, circuit boards, and backboard wiring (Feng & Che, 2018). 
A facility may be a machinery tool, a workstation, a warehouse, a department, or a manufacturing unit, etc. (Besbes et al., 
2019). A FLP is about determining the most effective department arrangement inside a facility while considering certain 
goals and limitations (Hasda, 2017). There is no accurate and common definition of layout problems due to the vaiety of 
published articles. For example, in Lee and Lee (2002), the FLP is introduced as the arrangement of multiple facilities with 
unequal areas in a general space such that they are placed along the length and width of a factory in a way that minimizes 
the total costs of material handling and slack area.  

According to McKendall Jr et al. (2006), an effective arrangement inside a facility leads to a good workflow among 
resources. An effective establishment helps other operations that rely on workflow have a better performance. For example, 
in a manufacturing factory, an effective arrangement can be defined as the flow of materials among machinery in a way that 
a correct amount of raw materials is supplied to machinery at the precise time in such a way that worker safety is observed 
and the accumulation of materials in the manufacturing flow is prevented. Moreover, an effective arrangement reduces the 
cost of material handling. According to Kheirkhah and Bidgoli (2016), given that in past studies the cost of material handling 
constitutes about 20 to 50 percent of the total operating cost and 15 to 70 percent of the total manufacturing cost, therefore, 
the minimization of material cost is one of the most common objective functions in FLP.  
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In the QAP, it is assumed that the areas of the facilities are equal, and the distance between them is considered equal to the 
distance between the center of facilities (C. Chen & Tiong, 2019). In most papers concerning the FLP, centers of 
departments are assumed to be the distance between two departments. Still, other cases can also be found in the literature 
review, such as considering loading and unloading points (Xiao et al., 2019). 

Since FLP is NP-hard, different models and algorithms have been presented  in the recent decade (Neghabi et al., 2014), and 
several exact and approximate methods have been used by researchers to solve it (Kothari & Ghosh, 2014). Since exact 
methods require huge memory capacity and computations, these methods are not efficient to solve large-scale problem 
instances, therefore, heuristic and meta-heuristic approaches have been used increasingly (J. Guan & Lin, 2016). Methods 
used to solve FLP mainly include exact methods (Ahmadi & Jokar, 2016; Hammad et al., 2016; Neghabi & Ghassemi Tari, 
2015), heuristic methods (Armour & Buffa, 1963; Drezner, 1987; Kumar et al., 1995)  and meta-heuristic methods such as 
genetic algorithm (GA) (Aiello et al., 2012; Paes et al., 2017), tabu search algorithm (McKendall Jr & Liu, 2012; 
Samarghandi & Eshghi, 2010), simulated annealing algorithm (SA) (Matai, 2015; Şahin, 2011), particle swarm optimization 
(Asl & Wong, 2017; Hu & Yang, 2019), and ant colony (Baykasoglu et al., 2006; Kulturel-Konak & Konak, 2011b). 

If the facility has a regular area with a rectangular shape, the FLP can be classified into one-row, multi-row, open field, 
loop, and multi-floor layouts according to the material flow path between facilities (Hu & Yang, 2019). One method to 
represent the layout of irregular facilities with unequal areas is the space-filling curve method, where departments are joined 
in a cascaded mode with no disconnections (C. Guan et al., 2019; Wang et al., 2005). 

The single-row FLP (SRFLP) includes several rectangular facilities arranged on a line. The multi-row FLP (MRFLP) also 
tries to arrange departments on the plant floor so that the material handling cost is minimized (Neghabi et al., 2014). Precise 
methods using mathematical methods seek the best solution and generally employ a mathematical programming formulation 
(Vázquez-Román et al., 2019). Unlike heuristics, metaheuristics are a general form of the search process in the solution 
space regardless of the considered problem, without guaranteeing finding the optimal solution. However, they can provide 
desirable solutions in less computational time in comparison to full space search methods (de Sousa Junior et al., 2020). 
The meta-heuristic algorithm used here is the simulated annealing algorithm, which is one of the well-known local search 
algorithms, developed in the early 1980s (Pan et al., 2019). This algorithm is a stochastic memoryless approach that uses a 
completely random rule in each iteration and doesn’t withdraw the information obtained among searching. Thus, the quality 
of the final solution may be reduced (Rabbouch et al., 2019). Regarding these weaknesses and by using an auxiliary memory, 
the proposed algorithm tries to use the search information and improve the quality of the final result.  

In this research, the FLP has been analyzed in the form of a multi-line facility layout (MLFLP). The objective is to minimize 
the material handling cost, which has been used in most research conducted on the FLP. Also, a memory-based SA algorithm 
is utilized as a near-optimal solution to solve the test cases mentioned in related papers. 

The contribution of this research can be stated as follows: 

• The standard SA algorithm was extended, and a new algorithm, namely DMSA, was proposed in which two auxiliary 
memories and a restart mechanism were used. 

• Two MLFLP benchmark test cases were solved via the DMSA algorithm, and the solutions obtained were better than 
the results of other algorithms in previous research. 

• Eleven QAP benchmark problems were selected to assess the efficiency of the proposed algorithm in large-scale 
problems. The results of implementing these problems by the proposed method were compared with the results of the 
standard SA algorithm and three other approaches, showing that the proposed algorithm outperformed other methods. 

 

In the next section, past studies conducted about FLPs will be reviewed. The Problem definition is described in section 3. 
The proposed algorithm will be evaluated in section 4 and examined using numerical examples in section 5. Finally, section 
6 offers conclusions. 

2. Literature review 

Facility layout is a problem that focuses on the way departments are arranged in the work area. Since a suitable layout 
design leads to increased operational performance, effective use of space and reduction of handling, it is a strategic problem 
and has a major effect on the performance of a production system. For this reason, companies usually aim to evaluate current 
layout designs and try to design an appropriate layout for their facilities (Domschke & Krispin, 1997). According to 
Balakrishnan et al. (2003), an FLP falls under the category of NP-hard problems. For example, in a dynamic facility layout 
problem (DFLP), if 𝑁 is the number of facilities and 𝑇 is the planning horizon, the number of layouts that must be examined 
to reach the optimal solution is (𝑁!)். Hence, it is practically impossible to find an optimal solution for problems with large 
dimensions via existing commercial software. Accordingly, it is recommended to employ heuristic algorithms to solve this 
problem. 
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Armor and Buffa (1963) formulated the unequal area FLP (UA-FLP) by considering the factory floor in the blocked form. 
In the study, a modified form of the QAP was utilized, in which departments were divided into blocks of the same areas. If 
the length and width of departments are not assumed constant in the UA-FLP, the shape of departments will be flexible. 
Kulturel-Konak and Konak (2011a) used the representation of a flexible bay structure to find location and size of 
departments in the model. Researchers have utilized a variety of representations for the UA-FLP. Meller and Bozer (1996) 
used an SA algorithm and space-filling curve to address the problem of one-floor and multi-floor facility layout. Asef-
Vaziri et al. (2017) used a flexible bay structure, and Scholz et al. (2009) employed the slicing tree method. Li and Mashford 
(1990) utilized the GA to solve the quadratic assignment problem (QAP). The GA is a heuristic optimization algorithm 
introduced by Holland (1975), and is used to solve hybrid optimization problems.  

In a research by Tam (1992), the GA was employed to solve an FLP with departments with unequal areas. The SA was 
presented by Kirkpatrick et al. (1983) to solve hybrid optimization problems. This algorithm is a probability method 
obtained from the physical concept of annealing metals. If metal is cooled too rapidly, a defect may appear in it. The SA 
algorithm is a random pair-swap heuristic that avoids getting stuck in a local optimum by considering non-optimal swaps. 
The first research that used SA to solve the QAP was conducted by Burkard and Rendl (1984). Some researchers have used 
a memory buffer and/or a restart mechanism to optimize the SA algorithm. For example, Zou et al. (2017) utilized a triple-
memory buffer to solve the problem of fixed outline floor-planning with soft blocks which periodically stores the best 
solution in a memory buffer and extracts the oldest solution, and when the number of sequential failures reaches the 
maximum allowed limit, the algorithm refers to one of the solutions stored in the memory and the temperature is reset 
adaptively. In a paper by Vincent et al. (2017), to solve the vehicle routing problem (VRP), if the best solution was not 
optimized after every 10 rounds of temperature reduction, the SA algorithm was reset to the initial temperature and a primary 
new solution was generated. 

The Tabu search (TS) algorithm is another heuristic algorithm introduced by Glover (1989). The first research to use the 
TS algorithm to solve the QAP was pubished by Skorin-Kapov (1990) in which the algorithm is a pair-swap heuristic that 
uses a memory (tabu list) to store the number of recent swaps. The traditional decision-making approach used for layout 
problems is only based on a criterion with one objective function and is based on the minimization of the total handling 
cost. However, in order to create an appropriate layout, the sole minimization of handling costs is not sufficient, instead, 
there are several other quantitative and qualitative objectives that affect the creation of a good layout. Therefore, it is logical 
to select a layout that can consider all important design criteria. Layout problem solving via a multi-objective optimization 
approach was introduced by Rosenblatt (1979). He considered the two factors of cost and the relationships of the activities 
of departments for objective functions and used a weighted objective function consisting of both factors to solve the 
problem. Samarghandi and Eshghi (2010), employed an adaptive memory of solutions for an intensification strategy and a 
probability method for the selection of bad solutions for a diversification strategy in the TS algorithm. 

Solimanpur and Jafari (2008) presented a mathematical mixed-integer planning model for the FLP in two dimensions and 
used a Branch and Bound (BB) algorithm to obtain the optimal solution of the problem, although the corresponding 
algorithm to solve large scale problems is inefficient. 

Şahin and Türkbey (2009) used the two criteria of cost and closeness rating for the FLP, and utilized the SA algorithm and 
the Pareto concept to solve the problem. Bashiri and Dehghan (2010) utilized a three-stage approach for solving a multiple-
criteria DFLP. In the first stage, they solved a classic layout model and considered the solution as a suitable primary solution. 
Next, by considering other criteria, they optimized this solution. In the second stage, the Decision-Making Units (DMUs), 
inputs, and outputs were defined. Any change from any layout of a certain point in time to another layout of another point 
in time was considered to be a DMU. In the last stage, the problem was modeled and solved, the DFLP was combined with 
Data Envelopment Analysis (DEA) and the proposed model was solved via the global criterion method. Ultimately, the 
most effective layout was selected. G. Chen and Rogers (2009) offered a qualitative and quantitative objective function for 
the FLP. The objective of the qualitative part was to maximize the closeness rating for departments. The quantitative 
objective function was to minimize distance based on cost.  

Hasani and Soltani (2015) proposed a hybrid model of a DFLP and a transportation system design where the transportation 
method is selected by TOPSIS. In a paper by Rezazadeh et al. (2009), the PSO was employed to solve the DFLP. Barzinpour 
et al. (2019) utilized the invasive weed optimization (IWO) algorithm to solve the DFLP, and the performance efficiency 
of the solution in small, medium and large problems were compared. Ulutas and Islier (2015), considering the seasonal 
demand changes in the footwear industry and using real-life data, presented a clonal selection-based algorithm for the real-
life DFLP. 

In  a paper by Kulturel-Konak (2017), a hybrid meta-heuristic approach with concepts related to TS and mathematical 
programming was proposed. In this method, the relative locations of departments and the allocation of those locations to 
sections is done via the TS algorithm while their exact location is identified through mathematical programming. According 
to Cravo and Amaral (2019), the SRFLP includes facility layout along a direct line such that the total weight of distances 
between each facility pair is minimized. In their paper, a greedy metaheuristic problem-solving method was employed to 
solve samples in sizes ranging up to 1000. Finally, the numerical results showed the efficiency of their proposed algorithm. 
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Out of 93 instances the algorithm provided 29 instances were with improved results. Kalita and Datta (2018) studied the 
SRFLP in which some placement or/and a determined ordering constraint were imposed on some facilities. Gai and Ji 
(2019) regarding the FLP for healthcare services, proposed an integrated approach to solve the problem with two 
quantitative and qualitative objectives. In the first phase, considering the transportation cost as the objective to be minimized 
using a mathematical programming model, several alternative facilities layouts were generated. Then, in the second phase, 
considering the qualitative criterion, the alternatives were ranked using multi-attribute group decision-making. Amar et al. 
(2018), regarding the environmental constraints and production efficiency requirements, considered the FLP, in which 
minimization of the CO2 emissions as the environmental factor of the corresponding system was considered. 

Turanoğlu and Akkaya (2018) introduced bacterial foraging optimization (BFO) for solving DFLPs. In their study, a new 
heuristic hybrid algorithm called simulated annealing bacterial foraging optimization (SABFO) was presented for FLP for 
which the parameter adjustment was done by Taguchi design of experiments. The proposed algorithm was tested on 
problems used in subject studies and satisfactory results were obtained in a reasonable calculation time. Rubio-Sánchez et 
al. (2016) considered two common methods namely GRASP and path relinking (PR) which effectively searches high-quality 
paths for SFLPs. Ultimately, non-parametric tests were employed to identify the differences between the algorithms. Kang 
et al. (2018), first, proposed a Cuckoo Search Algorithm for the closed loop-based FLP in which the cells could be located 
inside or outside of the loop. Although the SA algorithm is likely to escape local optima due to selecting poor solutions, it 
may eventually be trapped at a local optimum at low temperatures. Allahyari and Azab (2018) used a SA algorithm with 
multiple starts to increase the algorithm's search possibility to solve the UA-FLP. To improve the results of the SA 
algorithm, Palubeckis (2017) combined it with the variable neighborhood search (VNS) algorithm so that the solutions of 
the SA algorithm were used as the input of the second algorithm solution. Anjos et al. (2018) modeled a special case of a 
MRFLP, in which the departments were considered one-dimensional, the space between the two departments was assumed 
acceptable, and the distances between two departments were considered as the horizontal distance between the departments.  

Hu and Yang (2019) modeled the MLFLP in semiconductor fabrication and the PSO algorithm was used to find a near-
optimal solution. According to Safarzadeh and Koosha (2017), the MRFLP is a special type of FLPs where facility layout 
in a number of fixed rows is selected in a way that minimizes material handling costs. Today, based on new needs existing 
in the area of layouts, MRFLPs have many applications. In their paper, four fundamental hypotheses are considered. The 
mathematical formula of these hypotheses was written using a nonlinear mixed-integer programming model with fuzzy 
constraints. They solved the problem via the GA that enables finding the best solution with minimum opportunity costs. J. 
Liu et al. (2018) focused on FLPs with unequal areas. Their innovation was employing an objective space-division method 
in the multi-objective PSO (MOPSO) algorithm. Kulturel-Konak (2019) presented a novel mathematical model for the 
zone-based UA-FLP. The proposed approach combined SA, variable neighborhood search, and mixed-integer 
programming. The dimensions of departments were considered as decision variables, and the departments are allocated to 
flexible sections with pre-structured placements. Atta and Mahapatra (2019) proposed a population-based heuristic 
algorithm by considering a local search to solve the SRFLP. S. Liu et al. (2021) studied the SRFLP with various types of 
constraints such as positioning and ordering constraints and relations between departments and utilized a fireworks 
algorithm to solve the problem. Herrán et al. (2021) proposed a variable neighborhood search algorithm to solve a particular 
case of the MRFLP in which no free space was permitted between two adjacent facilities, and the space between the leftmost 
department and the left margin should be zero. Uribe et al. (2021) proposed a The Greedy Randomized Adaptive Search 
Procedure algorithm along with an improved local search for the Multiple-Row Equal FLP based on efficient calculations 
of the objective function. Further, they employed a probabilistic method to choose the solutions. Lakehal et al. (2021) 
presented two metaheuristic algorithms based on the biogeography-based optimization for QAP-formulation of FLP. They 
used a parallel computation method to reduce the algorithm runtime and enable further scanning of the search space. S. Liu 
et al. (2022) studied Double-Row FLP by considering positioning, ordering, and relation constraints and proposed a 
differential evolution algorithm to solve the problem on a large scale.  

3. Problem definition 

The MLFLP arranges some facilities on several lines on the plant floor so that the number of facilities is less than the 
number of locations, and facilities do not overlap each other. Nevertheless, in these problems, some products are usually 
manufactured in different volumes and different routings (Sadrzadeh, 2012). Fig. 1 presents an instance of a multi-line 
facility in a 3×4 grid with eight facilities. 

 

 1 6  

5 8 4 3 

7  2  

Fig. 1. A sample multi-line facility layout 



K. Zolfi et al.   / Decision Science Letters 12 (2023) 
 

73

The total material handling cost or the total cost in short (C), can be defined by equation 1. The model presents the simple 
MLFLP where each facility is at most in one location.  

𝑚𝑖𝑛 𝐶 =  𝑓𝑐𝑑ே
ୀଵ

ே
ୀଵ  (1) 

𝑥 ≤ 1
ୀଵ     ∀𝑘 ∈ 𝑀 (2) 

𝑥 = 1     ∀𝑖
ୀଵ ∈ 𝑁 (3) 

𝑑 =  𝑑𝑖𝑠 ∗ 𝑧ெ
ୀଵ

ெ
ୀଵ   ∀𝑖, 𝑗 ∈ 𝑁  (4) 

𝑧 <= 𝑥                             ∀𝑖, 𝑗 ∈ 𝑁,𝑘, 𝑙 ∈ 𝑀   (5) 𝑧 <= 𝑥                              ∀𝑖, 𝑗 ∈ 𝑁,𝑘, 𝑙 ∈ 𝑀   (6) 𝑥 + 𝑥 − 1 <= 𝑧            ∀𝑖, 𝑗 ∈ 𝑁, 𝑘, 𝑙 ∈ 𝑀   (7) 𝑥 , 𝑧 𝑖𝑠 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (8) 

where 𝑖 and 𝑗 are facilities, 𝑁 is the total number of facilities, 𝑀 = 𝑟 ∗ 𝑐 is the total number of locations, 𝑟 is the number of 
rows, c is the number of columns in the grid, 𝑘 and 𝑙 are locations, 𝑑𝑖𝑠  is the rectilinear distance from location 𝑘 to 
location 𝑙, 𝑓  is the amount of material flow from the facility 𝑖 to the facility 𝑗, 𝑐 is the cost of moving one unit of materials 
from the facility 𝑖 to the facility 𝑗, and 𝑑 is the rectilinear distance between the centroid location of the facility 𝑖  and the 
facility 𝑗. According to constraint (2), there is at most one facility at a single location, and according to constraint (3), every 
facility is located at a single location. If facility 𝑖 is in location 𝑘, 𝑥 is set to 1; otherwise, it is set to zero. If facility 𝑖 is in 
location 𝑘, and facility 𝑗 is in location l, 𝑧 is set to 1; otherwise, it is set to zero. 

3.1 Dual-Memory Simulated Annealing Algorithm (DMSA) 

The simulated annealing algorithm is a probability-based meta-heuristic algorithm introduced by Kirkpatrick et al. (1983). 
Using the similarity between annealing metal and optimal solution search, this algorithm is used in optimization problems. 
In physics, annealing is a process where metal is first heated up to a very high temperature and then slowly cooled until it 
reaches the minimum energy level. In fact, simulated annealing is a replication of this process. At a high temperature, the 
chance of accepting low-quality neighbors is higher which allows for hill climbing in search. As the temperature gradually 
drops, the search for finding higher quality solutions increases until the system reaches the equilibrium state which is 
actually the optimal or sub-optimal point (Allahyari & Azab, 2018). In this method, the algorithm accepts worse solutions 
with a probability P (Grobelny & Michalski, 2017) where  𝑃 = 𝑒ି∆/(್∗்) and Kb is Boltzmann constant and T is the 
temperature. 

One of the shortcomings of the standard SA algorithm is the possibility to trap into the local optimum. For this purpose, the 
proposed algorithm’s capability to escape from the local optimum and move toward the global optimum has increased using 
two local and global memories and a restart mechanism. A local memory buffer stores solutions generated at a temperature 
and a global memory buffer stores a portion of the total search space. If no improvement is made in an algorithm 
implementation process, solutions stored in the global memory buffer will be used as the restarting point. In what follows, 
the parameters, variables, solution representation, and the steps of the algorithm are discussed. 

 

3.2 Parameters and Variables 

The parameters and variables of the proposed algorithm are explained in Table 1 and Table 2, respectively. 
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Table 1  
The parameters of the proposed algorithm 

Parameter Description 𝑎𝑙𝑝ℎ𝑎 Temperature reduction coefficient 𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 The number of local searches at every temperature 𝑇 The initial temperature 𝑇 The final temperature 𝑚𝑎𝑥𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 The maximum allowed number of times that temperature decreases and no changes happen in the best 
local solution 𝑚𝑎𝑥𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 The maximum allowed number of times that temperature decreases and no changes happen in the best 

global solution 𝑔𝑙𝑜𝑏𝑎𝑙𝑀𝐵𝑅𝑎𝑡𝑖𝑜 A percentage of the global memory buffer that is allocated to global solutions 𝑟𝑒𝑠𝑡𝑎𝑟𝑡𝑀𝐵𝑅𝑎𝑡𝑖𝑜 A percentage of the global memory buffer that can be used for restarting 𝑏𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 Shows the size of local and global buffers 𝐾 Boltzmann constant 
 
Table 2  
The variables of the proposed algorithm 

Variable Description 𝑙𝑜𝑐𝑎𝑙𝐵𝑢𝑓𝑓𝑒𝑟 The local memory buffer where the solutions of a temperature degree are stored 𝑔𝑙𝑜𝑏𝑎𝑙𝐵𝑢𝑓𝑓𝑒𝑟 It is the global memory buffer 𝑏𝑒𝑠𝑡𝑆𝑜𝑙 The best local solution. It is the best solution that exists for the current solution during search and is passed to 
the next neighbor 𝐺𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡𝑆𝑜𝑙 The best global solution. It is the best solution that we found in the entire search and is considered as the best 

solution obtained using the algorithm. 𝑙𝑜𝑐𝑎𝑙𝑆𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 The number of times that the temperature has reduced but no change occurred in the best local solution. 𝑔𝑙𝑜𝑏𝑎𝑙𝑆𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 The number of times that the temperature has reduced but no change occurred in the best global solution 𝑖 It represents the solution storage index in the local memory buffer 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 The current temperature 𝑆𝑜𝑙 The current solution 

3.3 Solution Representation 

One of the most important steps in developing the solution representation. In The proposed algorithm, each solution is 
represented by a structure with the following components in Table 3. 

Table 3  
The components of the solution structure 

Component Description 𝑐𝑜𝑠𝑡 The total material handling cost related to solution layout 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 The temperature where the solution was acquired 𝑏𝑒𝑠𝑡𝑆𝑜𝑙 The best-known local solution 𝑙𝑎𝑦𝑜𝑢𝑡 The solution layout 

For layout encoding, a one-dimensional array is utilized that is acquired by using a space-filling curve of the corresponding 
layout. As an example, Fig. 2 shows an example of layout encoding with 13 facilities related, and Fig. 3 depicts the 
corresponding solution representation. The empty locations are shown with numbers higher than the number of the facilities 
which in the corresponding example include number 14, 15, and 16. 

7 2 3  

1 6 8 4 

 5 12 10 

9 11 13  

Fig. 2. An example of multi-line facility layout problem 

7 2 3 14 4 8 6 1 15 5 12 10 16 13 11 9 

Fig. 3. The encoded solution for the layout shown in Fig. 2 

3.4 Steps of the Algorithm 

The steps and the pseudo-code of the algorithm are described in what follows. 
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The first step: parameter and variable initialization 

In this step, the parameters, i.e. 𝑇 , 𝑇 , 𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 , 𝑎𝑙𝑝ℎ𝑎 , 𝑚𝑎𝑥𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 , 𝑚𝑎𝑥𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 , 𝑏𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒, 𝑟𝑒𝑠𝑡𝑎𝑟𝑡𝑀𝐵𝑅𝑎𝑡𝑖𝑜, and 𝑔𝑙𝑜𝑏𝑎𝑙𝑀𝐵𝑅𝑎𝑡𝑖𝑜, are initialized. 𝑙𝑜𝑐𝑎𝑙𝐵𝑢𝑓𝑓𝑒𝑟 and 𝑔𝑙𝑜𝑏𝑎𝑙𝐵𝑢𝑓𝑓𝑒𝑟 are considered as 
an array of the solution structure with the size of 𝑏𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒. The variables of 𝑙𝑜𝑐𝑎𝑙𝑆𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 and 𝑔𝑙𝑜𝑏𝑎𝑙𝑆𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 
are initialized and set to be zero. The first index of the memory buffer is considered as the initial index, and the current 
temperature is set to 𝑇. Value of 𝑏𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 is equal to or greater than value of 𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛. 

The second step: creating the initial solution  

A solution, 𝑠𝑜𝑙, is created as a random permutation of facilities with empty locations. The 𝑏𝑒𝑠𝑡𝑆𝑜𝑙 component of 𝑠𝑜𝑙 is 
considered to be 𝑠𝑜𝑙 and the temperature component of 𝑠𝑜𝑙 is considered to be current temperature. The best local solution 
and global solution are set to 𝑠𝑜𝑙, and all the elements of the local and global memory buffers are initialized with this 
solution.  

The third step: creating a neighbor solution 

A new solution 𝑛𝑒𝑤𝑆𝑜𝑙 is created in the neighborhood of the current solution. The best local solution related to 𝑛𝑒𝑤𝑆𝑜𝑙 is 
set with the best local solution and its related temperature is also considered as the current temperature. New solutions are 
generated through the following two types of neighborhood generation. 

1) Random Swap Neighborhood: Two facilities are randomly selected and their locations are swapped. In Fig.4, an 
example of the pair-swap of facility 7 and 3 is shown. 
 

Current Solution 4 8 2 7 3 10 11 15 9 5 13 1 12 14 6 16 
 

Neighbor Solution 4 8 2 5 3 10 11 15 9 7 13 1 12 14 6 16 
 

 

4 8 2 7 
15 11 10 3 
9 5 13 1 

16 6 14 12 

 
4 8 2 5 
15 11 10 3 
9 7 13 1 
16 6 14 12 

 

Fig. 4. An example of random swap neighborhood generation 

2) Adjacent Swap Neighborhood: A facility is randomly selected from index 1 to m-1 (m = the number of array 
length) and its element is swapped with the next facility. An example of adjacent swap neighborhood is shown in 
Fig. 5. 

Current Solution 4 8 2 7 3 10 11 15 9 5 13 1 12 14 6 16 
 

Neighbor Solution 4 8 2 3 7 10 11 15 9 5 13 1 12 14 6 16 
 

 

4 8 2 7 
15 11 10 3 
9 5 13 1 

16 6 14 12 

 
4 8 2 3 
15 11 10 7 
9 7 13 1 
16 6 14 12 

 

Fig. 5. An example of adjacent swap neighborhood generation 

The fourth step: selecting a new solution 

If the new solution is better than the current solution, it will replace the current solution. If the new solution is worse than 
the current solution, the new solution is selected with a probability of  𝑒ି∆/் where ∆𝐶 is the difference between values of the objective function for the two neighboring solutions, and 𝑇 is the 
current temperature. If the replaced solution is better than the best local solution, the best local solution will also be updated 
and 𝑙𝑜𝑐𝑎𝑙𝑆𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 is set to zero. If the replaced solution is better than the best global solution, the best global solution 
will also be updated and 𝑔𝑙𝑜𝑏𝑎𝑙𝑆𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 will be also set to zero. The new solution is placed in the index 𝑖 of the local 
buffer and the 𝑖 index will be increased by one unit. 



  76

The fifth step: local search 

In this step, a local search consisted of the third to fourth steps are repeated until the number of repetitions 
reach 𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛.  

The sixth step: Updating the global memory buffer 

The global memory buffer is updated in such a way that, at first, the local memory buffer is sorted in terms of the total cost 
and replaces the worst solutions of the local memory up to the amount of 𝑔𝑙𝑜𝑏𝑎𝑙𝑀𝐵𝑅𝑎𝑡𝑖𝑜 from the best global memory 
buffer solutions. Then the solutions with duplicate cost values are deleted along with sorting the local memory in terms of 
the cost function. The mechanism for deleting duplicate solutions is in form of taking unique from the mentioned list, hence 
the first solution is preserved from the beginning of the list and the other duplicate solutions are deleted. This allows the 
algorithm to search for new spaces at lower temperatures. The resulted buffer replaces the global memory buffer. The global 
memory buffer increases the intensification strategy of the SA algorithm so that some of the high-quality solutions are 
maintained and the neighborhood of these solutions is further explored at a lower temperature. The scheme of the updating 
process for the global memory buffer is shown in Fig. 6. 𝑙𝑜𝑐𝑎𝑙𝐵𝑢𝑓𝑓𝑒𝑟 𝑏𝑒𝑠𝑡𝐿𝐵  

Old 𝑔𝑙𝑜𝑏𝑎𝑙𝐵𝑢𝑓𝑓𝑒𝑟 𝑏𝑒𝑠𝑡𝐺𝐵  
New 𝑔𝑙𝑜𝑏𝑎𝑙𝐵𝑢𝑓𝑓𝑒𝑟 𝑏𝑒𝑠𝑡𝐿𝐵 𝑏𝑒𝑠𝑡𝐺𝐵 

Fig. 6. Update scheme for global memory buffer 

In this scheme, 𝑏𝑒𝑠𝑡𝐿𝐵 and 𝑏𝑒𝑠𝑡𝐺𝐵 represent the best solutions in the local buffer and the best solutions in the global 
buffer, respectively.  

1.  Initialize Parameters: T0, Tf, alpha,Kb, localIteration, maxLocalStagnation,  maxGlobalStagnation, globalMBRatio, restartMBRatio, 
bufferSize 

2.  Initialize Variables: localStagnation = 0, globalStagnation = 0, temperature = T0 
3.  Initialize Solutions: sol, bestSol = sol, globalBestSol = sol, 
4.  Initialize Buffers: localBuffer, globalBuffer 
5.  while temperature >= Tf     
6.     for i = 1 to localIteration 
7.    Generate a neighbor solution for Sol to obtain a new solution, newSol; calculate delta = newSol.cost - sol.cost; 
8.    newSol.temperature = temperature;sol.temperature = temperature; 
9.    newSol.bestSol = bestSol; 
10.   if delta <= 0 
11.    sol= newSol; 
12.   Else 
13.                  Generate probability r 
14.    if r < exp(-delta/(Kb*temperature)); 
15.     sol = newSol; 
16.    end 
17.   end 
18.   if cost(sol) < cost(bestSol) 
19.    bestSol = sol; 
20.    localStagnation = 0;      
21.   end 
22.   if cost(sol) < cost(globalBestSol) 
23.    globalBestSol = sol; 
24.    globalStagnation = 0; 
25.   end 
26.   localBuffer(i) = sol; 
27.     end 
28.     UpdateGlobalBuffer(localBuffer, globalBuffer, globalMBRatio); 
29.     if localStagnation > maxLocalStagnation 

   and globalStagnation < maxGlobalStagnation 
30.   sol = BufferSelection(globalBuffer, restartMBRatio); 
31.   localStagnation = 0; 
32.   temperature = Temperature(sol); 
33.   bestSol = BestSol(sol); 
34.     end  
35.     temperature = temperature * alpha; 
36.     localStagnation = localStagnation + 1; 
37.     globalStagnation = globalStagnation + 1; 
38.    end 
39.    return globalBestSol; 

Fig. 7. The pseudo-code of the algorithm 
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The seventh step: Restart Mechanism 

If the value of 𝑙𝑜𝑐𝑎𝑙𝑆𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 is greater than 𝑚𝑎𝑥𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 and the value of 𝑔𝑙𝑜𝑏𝑎𝑙𝑆𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 is less than 𝑚𝑎𝑥𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛, a solution among the best solutions of the global memory buffer is randomly selected to the 
amount of 𝑟𝑒𝑠𝑡𝑎𝑟𝑡𝑀𝐵𝑅𝑎𝑡𝑖𝑜 and it is considered to be current solution, and the temperature and the best local solution of 
the algorithm are updated using the temperature and the best local solution stored in the extracted solution and 𝑙𝑜𝑐𝑎𝑙𝑆𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 is set to be zero. This phase increases the diversification of the algorithm. As 𝑟𝑒𝑠𝑡𝑎𝑟𝑡𝑀𝐵𝑅𝑎𝑡𝑖𝑜 increases 
and converges to 1, the searching ability of the algorithm becomes shallower and the search space becomes more extended. 
In contrast, as this value reaches zero, the focus of the algorithm becomes performing in-depth movements increasing the 
intensification. 

As can be seen in lines 28 to 33 of the DMSA algorithm, if the maxLocalStagnation variable is a very large number or the 
value of variable maxGlobalStagnation is zero, the algorithm never uses the restart mechanism and reaches the final 
temperature and terminates. In this case, the algorithm turns into the standard SA. If the value of variable 
maxLocalStagnation is a small number or the value of variable maxGlobalStagnation is a very large number, the algorithm 
frequently uses the restart mechanism and may not be able to search for the solution space properly or even terminate. 
Therefore, it can be said that the standard SA algorithm is a special case of the DMSA algorithm in which the restart 
mechanism and memory buffer have not been used. 

The eighth step: Temperature Reduction 

In this step, temperature is decreased and one unit is added to both 𝑙𝑜𝑐𝑎𝑙𝑆𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 and 𝑔𝑙𝑜𝑏𝑎𝑙𝑆𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛, and index 𝑖 
set reset to 1. The third to seventh steps continue until the final temperature is reached. A Pseudo-code of the algorithm is 
depicted in Fig. 7.  

4. Numerical examples 

Two test cases from MLFLP-related papers and 11 test cases from the QAP benchmark library have been selected to 
examine the algorithm in large-scale problems. 

The algorithm was programmed in MATLAB® 2013 and executed on a Core™ i7 computer with 8GB of ram running 
Windows™ 7 operating system. The parameters of the algorithm for these experiments are presented in Table 4. The 
parameters mentioned in this table are obtained experimentally. Given that the initial temperature for all test cases is 500℃, 
the Boltzmann constant is chosen in such a way that the average probability of choosing bad solutions at the initial 
temperature of T0 is about 60 to 70% and also this probability is close to zero at the final temperature.  

Table 4  
Parameter setting for the numerical experiments 

Parameter problem1 problem2 tho30 tho40 wil50 wil100 sko100a-f tho150 𝑚𝑎𝑥𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 600 𝑏𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑇 500 𝑇 0.1 𝑎𝑙𝑝ℎ𝑎 0.99 𝑟𝑒𝑠𝑡𝑎𝑟𝑡𝑀𝐵𝑅𝑎𝑡𝑖𝑜 0.1 𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 1000 2000 𝑔𝑙𝑜𝑏𝑎𝑙𝑀𝐵𝑅𝑎𝑡𝑖𝑜 0.9 0.95 𝑚𝑎𝑥𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 12 15 𝐾 4 20 10 10 1 1 1 30 

Problem 1 

This problem was introduced by Kazerooni et al. (1996). The problem was determining the layout of 24 types of machines 
on a 5×6 grid of the locations of the machines. The part list and production data related to 38 products are given in Table 5. 

Using the data in Table 5, the material flow between departments is shown in Table 6. For example, the data flow between 
departments 1 to 13 in Table 5 (760), are obtained from the total material flow of these two departments in Table 6 in the 
production path of products No. 1 (130), No. 9 (85), No. 16 (95) , No. 17 (160), No. 31 (130) and No. 38 (160). 

The material handling cost between the machines was considered to be 1 for all cases. By considering 24 machines and 6 
candidate locations, the total number of possible combinations to be searched for finding the optimal solution is ଷ!! =3.68 × 10ଶଽ which makes the full enumeration impossible. In this study, this problem was modeled in the GAMS software 
with a time constraint of 86400 seconds. The total cost associated with the solution obtained by the CPLEX solver was 
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14251. Mak et al. (1998) solved this problem using GA and compared their results those of Chan and Tansri (1994) who 
utilized the three crossover operators of partially mapped crossover (PMX), order crossover (OX), and cyclic crossover 
(CX). El-Baz (2004) and Sadrzadeh (2012) also improved the problem’s solutions using GA. Ou-Yang et al. (2013) solved 
the aforementioned problem via the Heuristic Artificial Particle Swarm Optimization (HAPSO) algorithm. Table 7 
demonstrates a comparison among the results of applying these methods on the problem. In the Table, the number of times 
that the best solution was obtained in 30 runs is shown. The GA of Chan and Tansri (1994) with the PMX, OX and CX 
operators generated inferior solutions compared to the one proposed by Mak et al. (1998) which was able to obtain a solution 
with a total cost of $12982 which could be reached by the latter algorithm in 11 runs out of 30. El-Baz (2004) acquired a 
better solution with the total cost of $11862 in 23 runs out of 30. Sadrzadeh (2012) obtained a solution with a total cost of 
$11669 in 28 runs out of 30. Ou-Yang et al. (2013) employed a hybrid PSO algorithm called HAPSO and acquired a solution 
with a total cost of $11632. Although their best solution is better than the one obtained from the algorithm of Sadrzadeh 
(2012), their average and worst solutions were worse than those of  that algorithm. The best solution belongs to the proposed 
SA algorithm with the total cost of $11402 which generated a better solution compared to other algorithms. Moreover, the 
average and worst solutions obtained by the proposed algorithm is better than those obtained by the other algorithms which 
imply its higher effectiveness. Fig. 8 and Fig. 9 depict the best solution obtained by the proposed algorithm and those 
obtained by GAMS and other algorithms, respectively. It can be seen that the best solution has been improved by 1.98%. 
As can be seen, the DMSA algorithm is not only better at finding the best solution to the problem than the standard SA 
algorithm but also the quality of the final solutions has been improved according to the average of the solutions and the 
worst solution. 

Table 5  
Part list and production data of the products for Problem 1 

Product Number Production 
Volume Production Route Product Number Production 

Volume Production Route 

1 130 22–1–13–21 20 130 10–17–12 
2 150 3–20–24 21 105 4–16 
3 125 14–7–23–24 22 130 2–5–11–19 
4 145 15–6–18–8–12 23 150 20–12 
5 65 15–6–18–8–12–5 24 185 7–14–23 
6 78 9–17–10 25 145 15–6–18–8–10 
7 95 9–17–10 26 65 15–6–18–8–12 
8 160 4–16 27 95 9–17 
9 85 22–1–13–21 28 160 6–18–8–12 
10 105 2–11–19–5–21 29 85 3–20–17 
11 130 3–20 30 105 14–7–23–24–16 
12 140 3–20 31 130 22–1–13–21–2 
13 150 2–11–19 32 150 3–20 
14 185 2–11–19–5 33 125 11–19–5 
15 78 3–20 34 145 20–12–21 
16 95 22–1–13–21 35 65 16–11–14 
17 160 1–13–22 36 78 4–16 
18 85 15–6–18–8–12 37 95 4–16 
19 105 4–16 38 160 1–13–19 

 
Table 6  
Flow data for problem 1 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
1                         760                 440     
2         130           440                   130       
3                                       733         
4                               543                 
5                     130 65             415   105       
6                             505     665             
7                           415                 230   
8                   145   520           665             
9                                 268               
10                                 303               
11                           65   65     695           
12                                 130     295 145       
13                                     160   440 160     
14                                             185   
15                                                 
16                                               105 
17                                       85         
18                                                 
19                                                 
20                                               150 
21                                                 
22                                                 
23                                               230 
24                                                 
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Table 7  
A comparison of the performances of different methods on problem 1 over 30 runs 

Method Successful 
Hits 

Best 
Cost Average Cost Worst Cost Average 

Time (sec) 
Proposed algorithm (DMSA)  7 11402 11584.7 11892 1182 
Standard SA (This paper) 1 11552 11932.7 12362 430 
CPLEX (This paper) - 14251 - - 86400 
Ou-Yang et al. (2013) 12 11632 11764 11981 Not reported 
Sadrzadeh (2012) 28 11662 11676 11951 Not reported 
El-Baz (2004) 23 11862 Not reported Not reported Not reported 
Mak et al. (1998) 11 12982 15087.7 18657 Not reported 
Chan and Tansri (1994) with PMX operator 0 14947 18355.9 20654 Not reported 
Chan and Tansri (1994) with OM operator 0 22406 24301.7 26926 Not reported 
Chan and Tansri (1994) with CX operator 0 14717 17216.5 20654 Not reported 

 
22 1 13 19 11 14 
6 18 21 5 2 7 

15 8 12 20 24 23 
 10 17 3 16  
  9  4  

Fig. 8. The best solution obtained by the proposed algorithm for problem 1 

 
 3 24 16 4 22 

9 20 23 5 13 1 
17 12 7 19 21  

10 8 14 11 2  
 18 6 15   

(a) 

 
 3 24 16 4 22 

9 20 23 5 13 1 
17 12 7 19 21 26 
10 8 14 11 2 25 

 18 6 15   

(b) 
 

 4 23 7 14  
 16 24 1 22  
 3 20 13 19 11 

9 17 12 21 5 2 
 10 8 18 6 15 

(c) 

 
 9 17 10   

3 20 12 8 18 6 
23 24 16 4  15 
7 14 2 11 19 5 
  21 13 1 22 

(d) 
 

    9 4 23 7 
  10 24 16   14 
  3 17 2 11 22 
6 15 20 5 19   

18 8 12 21 13 1 
(e) 

Fig. 9. The best solutions obtained by (a) Mak et al. (1998) (b) El-Baz (2004) (c) Sadrzadeh (2012) (d) Ou-Yang et al. 
(2013)  

(e) CPLEX (this paper) for problem 1 

Problem 2 

The second example is taken from Francis et al. (1974) which is deciding the layout of 12 departments where the required 
areas of the departments are presented in Table 8. In addition, the flow data and the cost data are presented in Table 9 and 
Table 10, respectively. Facilities are located on the factory floor with an area of 16 × 16 with square blocks. The proposed 
space-filling curve layout is shown in Fig. 10, where the representation is a horizontal sweeping. In order to make the 
algorithm more flexible in finding the optimal solution, the remaining empty blocks were considered as four departments 
with zero material flow with other departments and areas of 10, 10, 10, and 6 blocks. 
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Fig. 10. space filling curve for layout of problem 2 

González-Cruz and Martínez (2011) solved this problem using an entropy-based algorithm. The best solution obtained by 
them was $83883 and they compared their solution with the best solution of the CRAFT algorithm of Francis et al. (1974) 
which had a cost of $87693. The best solution of the CRAFT algorithm is shown in Fig. 11 and the best solution of the 
entropy-based algorithm of González-Cruz and Martínez (2011) is displayed in Fig. 12 

Sadrzadeh (2012) solved the problem with the GA and obtained a layout with a cost of 77844$ shown in Fig. 13. Tavakkoli-
Moghaddam et al. (2015) with a four-dimensional firefly algorithm acquired the solution displayed in Fig. 14 with a total 
cost of 71679$. The proposed memory-based SA algorithm with a total cost of $69022 offered a better solution compared 
to other algorithms in the reviewed literature and is shown in Fig. 15. A comparative summary of the methods of this 
problem is given in Table 11. For the first time for this problem, the average of the best solution, worst solution and also 
the algorithm run time are mentioned. As you can observe, the average of the best and worst solutions in 30 executions of 
the proposed algorithm is better than the best existing solution in the literature which indicates the higher effectiveness of 
this algorithm. It can be seen that the best solution for this example has been improved by 3.71%. Here, although the best 
solution from the DMSA algorithm is the same as that of the standard SA algorithm, as can be seen, the quality of the 
solution obtained from the memory-based SA algorithm is better, so that the average solution and the worst solution have 
been improved. Additionally, the proposed algorithm has been able to achieve the best solution several times more. 

Table 8  
Departments and required areas in Problem 2 

Number Department Area (𝐹𝑡ଶ)  Number Department Area (𝐹𝑡ଶ) 
1 Receiving 600  7 Sanding 125 
2 Machining 425  8 Facing 275 
3 Grinding 200  9 Painting 285 
4 Welding 250  10 Cleaning 150 
5 X-ray 210  11 Labeling 75 
6 Inspection 175  12 Storage and shipping 715 

 
Table 9  
Flow data for Problem 2 

  1 2 3 4 5 6 7 8 9 10 11 12 
1   1000 300                   
2     1000 200                 
3   200   400   600             
4         600               
5           200 400           
6             600 200   400     
7           400       200   600 
8             200           
9                     200 400 
10                 600       
11                       200 
12                         

 
Table 10  
Cost data for Problem 2 

  1 2 3 4 5 6 7 8 9 1 11 12 
1   3 1.5                   
2     1.23 0.98                 
3   0.98   1.23   1.1             
4         2.1               
5           1.8 1.5           
6             1 1   1.2     
7           1       1   2.4 
8             1           
9                     1.3 2.1 
1                 1.7       
11                       2 
12                         
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1 1 1 1 1 1 1 12 12 12 10 10 10 9 9 9 
1 1 1 1 1 1 1 12 12 12 10 10 10 9 9 9 
1 1 1 1 1 1 12 12 12 12 10 10 10 9 9 9 
1 1 1 1 1 1 12 12 12 12 12 12 12 9 9 9 
1 1 1 1 1 1 7 7 7 12 12 12 12 9 9 9 
1 1 1 1 1 1 7 7 7 12 12 12 12 9 9 9 
2 2 2 2 2 2 7 7 12 12 12 12 12 11 11 11 
2 2 2 2 2 2 3 3 12 12 12 12 12 12 11 11 
2 2 2 2 2 3 3 3 12 12 12 12 8 8 8 8 
2 2 2 2 2 3 3 3 12 12 12 12 8 8 8 8 
2 2 2 2 2 3 3 3 12 6 6 6 8 8 8 8 
4 4 4 4 5 3 3 6 6 6 6 8 8 8 8 8 
4 4 4 5 5 5 6 6 6 6       
4 4 4 5 5 5           
4 4 4 5 5 5           
4 4 4 5 5 5           

Fig. 11. The best solution obtained by CRAFT algorithm of Francis et al. (1974) for Problem 2 

 

1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 
1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 
1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 
1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 
1 1 1 1 1 1 1 2 2 2 2 3 4 4 4 4 
1 1 1 1 1 1 1 2 2 2 6 6 4 4 4 4 
7 7 7 8 8 8 8 8 8 6 6 6 5 5 5 5 
10 7 7 8 8 8 8 8 8 6 6 6 5 5 5 5 
10 7 7 7 8 8 8 8 8 6 6 6 5 5 5 5 
10 10 10 10 9 9 9 9 9 9 9 9 9 11 11 5 
10 10 10 9 9 9 9 9 9 9 9 9 11 11 11 12 
12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 
12 12 12 12 12 12 12 12 12 12       
12 12 12 12 12 12           
12 12 12 12 12 12           
12 12 12 12 12 12           

Fig. 12. The best solution obtained by entropy-based algorithm of González-Cruz and Martínez (2011) for Problem 2 
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Fig. 13. The best solution obtain by genetic algorithm of Sadrzadeh (2012) for Problem 2 
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Fig. 14. The best solution obtain by QFA algorithm of Tavakkoli-Moghaddam et al. (2015) for Problem 2 

1 1 1 1 1 1 1 1 1 1       
1 1 1 1 1 1 1 1 1 1       
1 1 1 1 1 1 1 1 1        
1 1 1 1 1 1 1 1 1        
2 2 2 2 2 2 2 2 10 10 10 9 9 9 9 11 
2 8 2 2 2 2 2 2 10 10 9 9 9 9 9 11 
8 8 2 2 2 2 2 2 10 10 9 9 9 9 9 11 
8 8 2 2 2 2 2 2 10 10 9 9 9 9 11 11 
8 8 8 3 3 3 6 6 6 7 7 12 12 12 12 12 
8 8 8 3 3 3 6 6 6 7 7 12 12 12 12 12 
8 8 8 3 3 3 6 6 6 7 7 12 12 12 12 12 
8 8 8 3 3 3 3 6 6 7 7 12 12 12 12 12 
   4 4 4 4 5 5 12 12 12 12 12 12 12 
   4 4 4 4 5 5 5 12 12 12 12 12 12 
  4 4 4 4 5 5 5 5 12 12 12 12 12 12 
  4 4 4 4 5 5 5 5 12 12 12 12 12 12 

Fig. 15. The best solution obtained by proposed approach for Problem 2 

Table 11  
A comparison of the performances of different methods on Problem 2 over 30 runs 

Method Successful Hits Best 
Cost Average Cost Worst Cost Average Time 

(sec) 
Proposed algorithm (DMSA) 26 $69022 69132 70207 1270 
Standard SA (This paper) 10 $69022 69896 72633 469 
Tavakkoli-Moghaddam et al. (2015) Not Reported $71679 Not Reported Not Reported Not Reported 
Sadrzadeh (2012) Not Reported $77844 Not Reported Not Reported Not Reported 
González-Cruz and Martínez (2011) Not Reported $83883 Not Reported Not Reported Not Reported 
Francis et al. (1974) Not Reported $87963 Not Reported Not Reported Not Reported 

QAP Problems 

In this section, the performance of the DMSA algorithm in solving large-scale problems is examined. To this end, we have 
compared the best solution obtained from the implementation of the proposed SA algorithm with the standard SA algorithm 
and the related research in solving tho, sko, wil test cases from the QAP benchmark library. 

Table 12 summarizes the results of the DMSA algorithm and standard SA algorithm for the considered test cases. Each test 
case was independently performed ten times, and the best, average, and worst solutions were listed in the table. The table 
also shows the best solution in bold font for each test case among the compared algorithms. The percentage of deviations 
of the best solution and the average solution is calculated by Eq. (9), in which BKS represents the best-known solution. 

𝐷𝑒𝑣 = 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝐵𝐾𝑆𝐵𝐾𝑆  × 100 
(9)  
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Table 12  
The summarized results obtained by Standard SA and DMSA algorithm over 10 runs 

Problem BKS 
Standard SA DMSA 

Best Average Worst 
Time Dev Dev 

Best Average Worst 
Time Dev Dev 

sec Best Avg sec Best Avg 
tho30 149936 149936 150572.6 151318 221 0 0.42 149936 150298.2 150542 718 0 0.24 
tho40 240516 241028 241770.4 243600 265 0.21 0.52 240542 241173.8 242474 701 0.01 0.27 
tho150 8133398 8151160 8159008.2 8166898 1598 0.22 0.31 8148538 8156319 8164216 4423 0.19 0.28 
wil50 48816 48850 48902 48994 307 0.07 0.18 48824 48865.8 48906 1063 0.02 0.1 
wil100 273038 273402 273644 273946 526 0.13 0.22 273336 273568.6 273798 1519 0.11 0.19 
sko100a 152002 152224 152677.2 152868 586 0.15 0.44 152280 152426.2 152692 1448 0.18 0.28 
sko100b 153890 154258 154579.2 154804 529 0.24 0.45 154076 154293 154582 2077 0.12 0.26 
sko100c 147862 148100 148445.4 149554 526 0.16 0.39 148090 148360.6 148802 1706 0.15 0.34 
sko100d 149576 149950 150338 150594 530 0.25 0.51 149940 150183.8 150512 1490 0.24 0.41 
sko100e 149150 149390 149722.2 150216 525 0.16 0.38 149292 149814 150230 2141 0.1 0.45 
sko100f 149036 149494 149773 150112 526 0.31 0.49 149254 149678 150058 1340 0.15 0.43 

 

As can be seen in this table, the DMSA algorithm has performed better in all cases than the standard SA algorithm except 
one test case. In the tho30 test case, both algorithms have found the optimal solution of the problem. Abdel-Basset et al. 
(2018) compare the implementation results of the combined whale algorithm and tabu search with SA, Particle Swarm 
Optimization (PSOpure), Particle Swarm Optimization with Variable Neighborhood Search and Genetic Algorithm (OB-GA) 
of Mamaghani and Meybodi (2012). They show that their combined algorithm performed better in sko100a-f test cases, but 
this algorithm was not successful compared to the hybrid PSO algorithm (PSOHC) in sko100a, sko100d, and sko100f test 
cases. Table 13 summarizes the results of implementing the DMSA algorithm with the mentioned algorithms. 

Table 13  
A comparison of the performances of different methods on sko100a-f  

Problem BKS (Mamaghani & Meybodi, 2012) (Abdel-Basset 
et al., 2018) This paper 

PSOpure PSOvns SA OB-GA PSOHC WAITS DMSA 
sko100a 152002 155462 153949 154210 153090 152922 153090 152280 
sko100b 153890 156007 155971 154262 155030 154123 155030 154076 
sko100c 147862 150978 149366 149542 149948 149742 149336 148090 
sko100d 149576 152346 151746 151746 150828 150431 150828 149940 
sko100e 149150 152349 150999 150426 150598 151426 150294 149292 
sko100f 149036 152038 150871 150738 150402 150111 150402 149254 

As can be observed in this table, the proposed SA algorithm has performed better in all test cases than the mentioned 
algorithms. Table 14 compares the best solutions for wil100 and tho150 test cases with the WAITS algorithm of Abdel-
Basset et al. (2018), the genetic algorithm of Şahinkoç and Bilge (2018) and the backtracking search algorithm of  Zhou et 
al. (2017). 

Table 14  
A comparison of the performances of different methods on tho150 and will100 

Problem BKS 
(Zhou et al., 2017) (Şahinkoç & Bilge, 

2018) (Abdel-Basset et al., 2018) This paper 

BSAL GA WAITS DMSA 
tho150 8133398 8207482 8216038 Not reported 8148538 
wil100 273038 273942 273786 273938 273336 

According to this table, the DMSA algorithm provides a better solution than the other studies mentioned in the table. 

Sensitivity Analysis 

To analyze the sensitivity of the parameters, we selected problem 1. Also, the value of the three important parameters of 
the proposed algorithm was set according to Table 15, and the value of other parameters was considered according to Table 
4. Based on the Taguchi L16 design, the algorithm was performed 30 times for each design. Table 16 summarizes the 
results. 

Table 15  
The value of parameters of the Taguchi design for problem 1 

Parameters values 
restartMBRatio 0.01, 0.05, 0.1, 0.2 
globalMBRatio 0.8, 0.9, 0.95, 0.99 

maxLocalStagnation 6, 9, 12, 15 
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Table 16  
Summarized results of the Taguchi design for problem 1 

design restartMBRatio globalMBRatio MaxLocalStagnation Average Cost Average time(sec) Successful hits 
1 0.01 0.8 6 11638 2111 3 
2 0.01 0.9 9 11699 2268 2 
3 0.01 0.95 12 11641 2074 3 
4 0.01 0.99 15 11666 1651 6 
5 0.05 0.8 9 11641 2635 4 
6 0.05 0.9 6 11672 2704 5 
7 0.05 0.95 15 11583 1165 6 
8 0.05 0.99 12 11597 1317 7 
9 0.1 0.8 12 11604 1455 5 
10 0.1 0.9 15 11582 1033 2 
11 0.1 0.95 6 11600 2504 11 
12 0.1 0.99 9 11578 1662 8 
13 0.2 0.8 15 11599 1062 4 
14 0.2 0.9 12 11560 1300 10 
15 0.2 0.95 9 11524 1716 8 
16 0.2 0.99 6 11618 2722 2 

According to the Table above, the algorithm successfully found the best solution in all cases, yielding an average of 
acceptable solutions. This demonstrated the ability of the proposed algorithm to find adequate solutions. Figures 16 and 17 
illustrate the graphs of the results obtained through MINITAB. 

According to Fig. 16, increasing the value of the parameter 𝑟𝑒𝑠𝑡𝑎𝑟𝑡𝑀𝐵𝑅𝑎𝑡𝑖𝑜 enhances the capability of the algorithm to 
escape from the local optimum and decreases the average solution. According to Fig. 17 and discussions in section 3 on the 
algorithm steps, changing the parameters can lead to changes in the exploration and exploitation capability of the proposed 
algorithm. For this problem, the proposed values for parameters restartMBRatio, globalMBRatio, and maxLocalStagnation 
are 0.1, 0.95, and 12, respectively. 
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Fig. 16. The output of MINITAB for the average best 

solution through the DMSA algorithm 
Fig. 17. The output of MINITAB for the successful hits of 

the DMSA algorithm 

5. Conclusions 

In this paper, a memory-based simulated algorithm, named DMSA, for multi-line facility layout problems was presented. 
The difference between this algorithm and the standard SA algorithm was the use of two memory buffers, two variables for 
storing the best algorithm solutions and a restart mechanism. The effectiveness of the algorithm was shown on two 
benchmark problems, and the results obtained were better than those obtained from the other algorithms employed for 
solving these problems. Since the DMSA algorithm has a general structure like the standard SA algorithm, it can be used 
in the approximate solution of other problems and is recommended as a problem-solving method for NP-Hard problems. 

The efficiency of the proposed algorithm was demonstrated by 13 numerical examples. The first example has been presented 
by Kazerooni et al. (1996) and solved by Chan and Tansri (1994), Mak et al. (1998), El-Baz (2004), and Sadrzadeh (2012) 
using the genetic algorithm and by Ou-Yang et al. (2013) using the particle swarm optimization. The proposed algorithm 
could improve the best solution by 1.98%. The second example was taken from Francis et al. (1974). The best solution of 
the proposed algorithm was compared with that of the CRAFT algorithm (Francis et al., 1974), entropy-based algorithm 
(González-Cruz & Martínez, 2011), genetic algorithm (Sadrzadeh, 2012), and the quaternion firefly algorithm (Tavakkoli-
Moghaddam et al., 2015). The proposed algorithm improved the best solution by 3.71%. 
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The DMSA algorithm was examined in 11 test cases of the QAP library benchmark, including tho, wil, and sko test cases, 
which performed better than the standard SA algorithm in 10 of 11 test cases. The results of this algorithm in solving the 
sko100a-f test case were compared with the combined whale and tabu search algorithm Abdel-Basset et al. (2018)  and the 
combined PSO algorithm Mamaghani and Meybodi (2012) and it reached a better solution in all six tests. Moreover, a 
comparison was made with the GA of Şahinkoç and Bilge (2018), the backtracking search algorithm of Zhou et al. (2017), 
and the algorithm of Abdel-Basset et al. (2018) in solving the wil100 test case and tho150, where better solutions were 
obtained, and this shows the suitable efficiency of the algorithm in solving complex large-scale optimization problems. 

Current research can be expanded in several ways. More specifically, the proposed algorithm can be utilized for solving 
other problems; and its performance can be compared with that of other methods. Another significant research may be 
creating a bed for a more thorough comparison for example based on criteria such as computational time. 
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