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 Demand elasticity is the sensitivity of changes in the number of goods demanded by consumers 
due to changes in the price of goods. This paper compares the price elasticity of demand with 
and without memory effect using fractional-order derivatives. This study is designed using the 
development theory of fractional derivatives for the economic field in determining the price 
elasticity of demand. The result of numerical simulation using the value of α and p indicated that 
the price elasticity of demand with memory effect is more accurate than without the memory 
effect. Furthermore, this study concluded that the price elasticity of demand does not only depend 
on the latest price (current price) but changes in all prices from a specific time interval. The 
findings of this study suggest future studies can examine the phenomenon of market equilibrium 
using fractional-order derivatives. 
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1. Introduction 

 
Fractional orders have received more attention due to their potential applications in economics and management, such as 
Chinese economic growth models (Ming, Wang, & Fečkan, 2019), Spanish economic growth models (Inés Tejado, Valério, 
& Valério, 2015), Portuguese economic growth models (Inés Tejado, Valério, & Valério, 2014), European union economic 
growth models (Tejado, Perez, & Valerio, 2018), economic production quantity model (Rahaman et al., 2020), a financial 
system with market confidence (Xin & Zhang, 2015), western global economic downturn (Machado & Mata, 2015), IS-LM 
Macroeconomic System (Ma & Ren, 2016), regional economic income multiplication capability (Fang, 2020), regional 
economic system impact factors (Zhang, Fu, & Morris, 2019), business cycle model (Xie, Wang, & Meng, 2019), 
investment incentive (Xin & Li, 2013) commercial and rural banks in Indonesia (Khan, Azizah, & Ullah, 2019). 

Some literature related to price elasticity can be seen in (Andruszkiewicz, Lorenc, & Weychan, 2019, 2020; Babbel, 1985; 
Kim & Kwak, 2004; Petricek, Chalupa, & Chadt, 2020; Rashid & Mitra, 1999; Sukawattanapornkul, Siritaratiwat, 
Khunkitti, Surawanitkun, & Chatthaworn, 2019; Tarasova & Tarasov, 2016). Andruszkiewicz, Lorenc, & Weychan (2019) 
proposed a new method of determining the price elasticity of electricity demand based on a comparison of load profiles of 
customers and the price elasticity of demand of households using zonal tariffs and its impact on the hourly load of the power 
system (Andruszkiewicz et al., 2020). Sukawattanapornkul et al. (2019) presented the price elasticity of the demand model 
to evaluate the change in demand after changing electricity rates. Petricek et al. (2020) identification of consumer behavior 
based on price elasticity. Babbel (1985) analyzed the price elasticity of demand for whole life insurance. Rashid & Mitra 
(1999) investigated price elasticity in optimal cash discount rate in credit policy. Kim & Kwak (2004) described the price 
elasticity in the parcel service market. Tarasova & Tarasov (2016) analyzed elasticity for economical processes with 
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memory using fractional order. However, the presentation of literature related to price elasticity using fractional order is 
still very minimal and needs further development. 

The dynamic market equilibrium price function is determined using a second-order linear differential equation. However, 
derivative orders commonly used (including those given to students in formal lectures) are natural numbers. However, it is 
a big challenge for mathematicians to expand the order of these derivatives into rational numbers and even real numbers. 
Literature that comprehensively discusses the properties and generalizations of derivatives and fractional integrals can refer 
to (Chen, Rashid, Noor, Ashraf, & Chu, 2020; Sambas, He, et al., 2020; Sambas, Vaidyanathan, et al., 2020). This paper 
examines the method of determining the price elasticity of demand using the fractional derivative, which describes the level 
of memory reduction over a specific time interval. In this case, we use  𝛼 = ଵଶ and 𝛼 = 1 to observe. This study's main 
contribution is to determine the price elasticity of demand with and without memory effect. The rest of this paper is 
organized as follows. Section 2 describes the background theory of fractional calculus. The methodology of the research is 
shown in Section 3. Results and discussion are discussed in Section 4. Finally, the conclusions of this paper are summarized 
in Section 5. 

2. Background Theory 

2.1. Fractional Calculus 
 

Fractional calculus is a field of mathematics that studies the theory of integral and derivative fractals (any), which is an 
extension of derivatives and integers of integer order (Diethelm & Ford, 2002). Fractional calculus was first introduced by 
L 'Hospital and Leibniz in 1695, which discussed the nth derivative of a simple polynomial function 𝑓(𝑥) = 𝑥௠ that is ௗ೙௫೘ௗ௫೙  
for 𝑛 = ଵଶ . Fractional operators and their applications have essential roles in various fields of science such as mechanics, 
electro, chemistry, biology, economics, and control theory (Sambas et al., 2021; Vaidyanathan, Feki, Sambas, & Lien, 2018; 
Vaidyanathan, Sambas, Kacar, & Cavusoglu, 2019). The fractional derivative of a function 𝑦 = 𝑓(𝑥) can be defined as ௗ೙௙(௫)ௗ௫೙ , where 𝑛 is any real order. For example, 𝑦 = 𝑥௠ where 𝑚 is positive integers, Lacroix denotes derivatives to-𝑛 from 
the function 𝑦 = 𝑓(𝑥) that is: 𝑑௡𝑦𝑑𝑥௡ = 𝑑௡𝑓(𝑥)𝑑𝑥௡ = 𝑑௡𝑥௠𝑑𝑥௡ = 𝑚!(𝑚 − 𝑛)! 𝑥௠ି௡   ,𝑚 ≥ 𝑛 

(1) 

By using the Gamma symbol (𝛤) to replace the definition of factorial functions, the Lacroix formula in Eq. (1) is written as 
follow:  𝑑௡𝑥௠𝑑𝑥௡ = 𝛤(𝑚 + 1)!𝛤(𝑚− 𝑛 + 1)! 𝑥௠ି௡ 

(2) 

The fractional derivative defined by Lacroix is still being developed by several other scientists such as Euler, Laplace, 
Fourier, Abel, Riemann, Liouville, and Caputo. For example, 𝑦 =  𝑓(𝑥) is a function that is defined for x> 0. The integral 
form from 0 to x can be written as: 𝐽𝑓(𝑥) = ׬ 𝑓(𝑡)𝑑𝑡௫଴     (3) 

Eq. (3) is reintegrated from 0 to t, and it is obtained: (𝐽ଶ𝑓)(𝑥) = ׬ ቀ׬ 𝑓(𝑠)𝑑𝑠௧଴ ቁ௫଴ 𝑑𝑡   

This integration can be repeated until the nth integral is obtained: 

  (𝐽௡𝑓)(𝑥) = ׬ ׬ ׬ … 𝑓(𝑡ଵ௧ଶ଴௧௡଴ )𝑑𝑡ଵ𝑑𝑡ଶ  …  𝑑𝑡௡௫଴   (4) 

By using the Cauchy formula for repeated integrals, Eq. (4) can be written as: (𝐽௡𝑓)(𝑥) = ଵ(௡ିଵ)!׬ (𝑥 − 𝑡)௡ିଵ௫଴ 𝑓(𝑡)𝑑𝑡  (5) 

This Eq. (5) then becomes the basis for constructing the definition of fractional order integrals (any real). The definition of 
the Gamma function is: 
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𝛤(𝑧) = න 𝑒ି௧ 𝑡௭ିଵஶ
଴ 𝑑𝑡, 𝑧 𝜖𝑅ା (6) 

Gamma function has basic properties. For example, in Eq. (6), the Gamma function for a positive integer z is written as: 𝛤(𝑧) = (𝑧 − 1)!,  𝑧 𝜖𝑅ା (7) 

Based on Eq. (7), the Gamma function is an extension of the factorial function. Although the Gamma function is defined 
for z > 0, it is also possible to develop Gamma function definitions for all z negative real numbers, i.e.,: 𝛤(𝑧) = 1𝑧 𝛤(𝑧 + 1)  

Eq. (5) is only limited to n integers due to factorial functions. The Gamma function is an extension of the factorial function 
for all real numbers so that it can substitute for factorial functions as in Eq. (7). Therefore, Eq. (5) is written as: 

(𝐽ఈ𝑓)(𝑥) = 1𝛤 (𝛼)න(𝑥 − 𝑡)ఈିଵ௫
଴ 𝑓(𝑡)𝑑𝑡,   

(8) 

Fractional integral definitions can also be written in fractional differential operators with α non-negative real numbers. 

𝐷ିఈ𝑓(𝑥) = 1𝛤(𝛼)න (𝑥 − 𝑡)ఈିଵ௫
଴ 𝑓(𝑡)  

Riemann-Liouville formulates the definition of the fractional integral in equation (8), so it is often known as the Riemann-
Liouville fractional integral. In general, the fractional integral operator is then used to define the fractional derivative α of 
the function f (x), namely Dα f (x). 

2.2 Integral and Fractional Derivatives 
 

According to Baleanu and Agarwal (2021), fractional integrals and derivatives are integrals and derivatives of fractional 
order. Several approaches to denoting fractional-order derivatives include Riemann-Liouville, Caputo, and Grunwald-
Letnikov. The Riemann-Liouville fractional derivative is the most commonly used approach of these approaches. Based on 
equation (8), the Riemann-Liouville fractional integral can be defined. 

Definition 2.1. Let α be a real number, the fractional integral of the order α of th: 

𝐽ఈ𝑓(𝑥) = 𝐷ିఈ𝑓(𝑥)  = 1
Γ(𝛼)න (𝑥 − 𝑡)ఈିଵ 𝑓(𝑡) 𝑑𝑡௫

଴ , (9) 

With α > 0. As for α≥0, and β≥0, the fractional integrals proposed by Riemann-Liouville have the following characteristics: 1.  𝐽ఈ𝐽ఉ𝑓(𝑥) =  𝐽ఈାఉ𝑓(𝑥) 2.  𝐽ఈ𝐽ఉ𝑓(𝑥) =  𝐽ఉ𝐽ఈ𝑓(𝑥) 

 

Definition 2.2. Riemann-Liouville fractional derivatives are defined as: 

𝐷௫బఈ 𝑓(𝑥) = 𝑑௡𝑑𝑥௡ ሾ𝐽௡ିఈ𝑓(𝑥)ሿ (10) 

𝐷௫బఈ 𝑓(𝑥) = ଵ୻(௡ିఈ) ௗ೙ௗ௫೙ ׬] (𝑥 − 𝑡)௡ିఈିଵ 𝑓(𝑡) 𝑑𝑡 ]௫௫బ  (11) 

with α any order, n − 1 ≤ 𝛼 < n, n ∈ 𝑍ା, 𝑥଴ lower limit, 𝑥଴ <  𝑥, 𝑥 > 0, and 𝐷௫బఈ . The fractional derivative operator of order 
α with the lower limit x0. Riemann-Liouville fractional derivatives have the drawback of real-world modeling events 
because they require the definition of boundary conditions and initial values of fractional order. The boundary conditions 
and initial fractional-order values do not have a clear interpretation in real life, so Caputo fractional derivatives are 
introduced as alternatives.  
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The positive order fractional derivative defined by Caputo is a modification of Riemann-Liouville. 

Definition 2.3. Let α be a real number, and  n-1 < α ≤ n, where n is a natural number, the fractional-order of the order α of 
f (x) for x:  

𝐷ఈ𝑓(𝑥) = 𝐽௡ିఈ𝐷௡𝑓(𝑥) = 1
Γ(𝑛 − 𝛼)න (𝑥 − 𝑡)௡ିఈିଵ 𝑓(௡)(𝑡) 𝑑𝑡௫

଴  
(12) 

Definition 2.3 means that the fractional derivative operator is ordered α with the lower limit 𝑥଴ = 0 of the function f (x) 
with respect to x is written as 𝐷ఈ𝑓(𝑥). Thus the fractional integral of order 𝛼 is an anti-fractional sequence of order (- 𝛼) 
with the lower limit 𝑥଴ = 0  from function 𝑓(𝑥) to 𝑥  which is written as 𝐷ିఈ𝑓(𝑥), so it applies 𝐽ఈ𝑓(𝑥) = 𝐷ିఈ𝑓(𝑥). 
Furthermore, to calculate the fractional derivative from the sum of three or more functions, we can use the Caputo Fractional 
derivative properties.  𝐷ఈ[𝑘ଵ 𝑓(𝑡)  + 𝑘ଶ 𝑔(𝑡)  +  𝑘ଷ ℎ(𝑡) ]  =  𝐷ఈ𝑘ଵ 𝑓(𝑡)  +  𝐷ఈ  𝑘ଶ 𝑔(𝑡)  +  𝐷ఈ 𝑘ଷ ℎ(𝑡) =  𝑘ଵ 𝐷ఈ𝑓(𝑡)  +  𝑘ଶ 𝐷ఈ 𝑔(𝑡)  + 𝑘ଷ𝐷ఈ ℎ(𝑡)   

(13) 

2.3 Elasticity 

The elasticity is a tool used to measure the level of sensitivity of consumers and producers to price changes (Baleanu & 
Agarwal, 2021). So, in broad terms, understanding elasticity is the degree of change in demand or supply to price changes. 
Elasticity is divided into two, namely, the elasticity of demand and the elasticity of supply. 

2.3.1 Demand Elasticity  

In measuring how much consumers react to changes in prices and other factors, economists use the concept of elasticity. 
Demand elasticity is the sensitivity of changes in the number of goods requested by consumers to changes in the price of 
goods. This elasticity can tell producers what happened to their sales revenue, whether to increase or decrease the number 
of goods sold after applying a price change strategy. In general, the elasticity of demand can be divided into 3 (Škovránek, 
Podlubny, & Petráš, 2012), namely: price elasticity of demand, income elasticity of demand, and cross price elasticity of 
demand. In the elasticity of demand besides price, several other variables influence demand, among others, e.g., (i) price of 
other products will have a positive effect if the price rises for substitute products and negative if complementary products; 
(ii) consumer income can have a positive effect, but for inferior products, it can have a negative impact; (iii) product price 
expectations in the future have a positive effect; (iv) expectations of future consumer income have a positive effect; (iv) 
expectations of product availability in the future have a negative effect; (v) consumer tastes have a positive effect; (vi) the 
number of potential consumers has a positive effect; (vii) expenditures have a positive effect and product attributes also 
have a positive effect on demand. 

2.3.2 Price Elasticity of Demand 

The elasticity of demand is presented in the form of an elasticity coefficient which is defined as a pointer to illustrate how 
much change in the number of goods demanded compared to price changes (Andreyeva, Long, & Brownell, 2010). The 
elasticity of demand can be explained as follows:  

a. Elastic Uniter (E = 1); If the price goes up / down by 1%, then the demand will go up / down by 1% (the percentage 
of the number of goods demanded is the same as the percentage change in price).  

b. Elastic (E > 1) ; If the price goes up / down by 1%, then the demand will go up / down by more than 1% (the percentage 
change in the number of goods demanded is higher than the percentage change in price; demand is susceptible to price 
changes) 

c. Inelastic (E < 1); If the price goes up / down by 1%, then the demand will go down / up by less than 1% (the percentage 
change in the amount requested is smaller than the percentage change in price; demand is not sensitive to price 
changes). 

d. Perfect inelasticity (E = 0); If demand is not responsive to price changes, so whatever the market price is, then the 
number of goods demanded remains (demand curve parallel to the vertical axis/price axis) 

e. Perfect Elasticity (E = ~); If the consumer wants to buy any amount of goods offered at a certain price level, then the 
demand curve is parallel to the horizontal axis / the number of requests. 

3. Methodology 

The research method adopted is to develop a theory from previous research to be applied more broadly. This research was 
conducted in two stages. First, this study reviews some methods of solving fractional derivatives that have been achieved 
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in previous studies. Second, this study applies them to dynamic economics cases to compare the results and make 
conclusions, where the methods studied to produce the same solution. 

4. Results and Discussion 

4.1 Fractional Derivative  

According to Baleanu and Agarwal (2021), the α-ordered fractional integral of a simple polynomial function in the form of 
f (x) = xm can be expressed in the form of multiplication of the Gamma function with the polynomial function as follows. 

From equation (9), for the lower limit 𝑥଴ = 0 and 𝑓(𝑥)  =  𝑥௠  was obtained:     𝐽 ఈ𝑓(𝑥) = 𝐷ିఈ𝑥௠ = ଵ௰(ఈ)׬ (𝑥 − 𝑡)ఈିଵ௫଴ 𝑡௠ 𝑑𝑡  (14) 

So, it can be calculated  𝐷ିఈ𝑥௠ , where α > 0 ,𝑚 >  −1, as follows: 

𝐷ିఈ𝑥௠ = 1𝛤(𝛼)න(𝑥 − 𝑡)ఈିଵ௫
଴ 𝑡௠𝑑𝑡 = 1𝛤(𝛼)න(1 − 𝑡𝑥)ఈିଵ𝑥ఈିଵଵ

଴ 𝑡௠𝑑𝑡 = 1𝛤(𝛼)න(1 − 𝑢)ఈିଵ𝑥ఈିଵଵ
଴ (𝑥𝑢)௠ 𝑥 𝑑𝑢, 

 

 

with 𝑢 = ௧௫ 

 𝐷ିఈ𝑥௠ = 1𝛤(𝛼) 𝑥௠ାఈ න(1 − 𝑢)ఈିଵଵ
଴ (𝑢)௠𝑑𝑢 = 1𝛤(𝛼) 𝑥௠ାఈ𝐵(𝑚 + 1,𝛼)  = 𝛤(𝑚 + 1)𝛤(𝑚 + 𝛼 + 1) 𝑥௠ାఈ . 

So, the fractional integral of the α order of the simple shaped polynomial function 𝑓(𝑥)  =  𝑥௠ can be stated in the following 
theorem. 

Theorem 4.1. The fractional integral of the α order of the shaped polynomial function 𝑓(𝑥)  =  𝑥௠ is: 

𝐷ିఈ𝑥௠ = 𝛤(𝑚 + 1)𝛤(𝑚 + 𝛼 + 1) 𝑥௠ାఈ  ,𝑓𝑜𝑟  𝛼 > 0,𝑚 > −1, 𝑥 > 0   (15) 

Eq. (14) informs us that the fractional integral of a constant k of order α is: 

 𝐷ିఈ𝑘 = ௞௰(ఈାଵ) 𝑥ఈ       (16) 

Furthermore, it is assumed that 𝛼 =  𝑛 − 𝑢. where 0 < 𝛼 < 1 and 𝑛 is the smallest integer greater than 𝑢. Then, the child 
function 𝑓(𝑥) orde u is: 𝐷௨ 𝑓(𝑥) = 𝐷௡[𝐷ିఈ𝑓(𝑥)]  (17) 

For example, find the fractional derivative function α of f (x) = xm, where m ≥ 0 using Theorem 4.1, then suppose u = n-α, 
where 0 <u <1. Then we have n = 1 and u = 1-α. Then,  

 

𝐷ఈ𝑓(𝑥) = 𝐷ଵ[𝐷ି(ଵିఈ)𝑓(𝑥)]  = 𝐷ଵ[𝐷ି(ଵିఈ)𝑥௠]  = 𝐷ଵ[ 𝛤(𝑚 + 1)𝛤((𝑚 − 𝛼 + 1) + 1) 𝑥௠ିఈାଵ] = [(𝑚 − 𝛼 + 1) 𝛤(𝑚 + 1)(𝑚 − 𝛼 + 1)𝛤(𝑚 − 𝛼 + 1) 𝑥௠ିఈ] = 𝛤(𝑚 + 1)𝛤(𝑚− 𝛼 + 1) 𝑥௠ିఈ , 
 

 

So, the fractional derivative α of a simple polynomial function f (x) = xm can be expressed in the following theorem. 

Theorem 4.2. The fractional derivative α of the polynomial function in the form of f (x) = xm is: 

𝐷ఈ𝑥௠ = 𝛤(𝑚 + 1)𝛤(𝑚 − 𝛼 + 1) 𝑥௠ିఈ .𝑢𝑛𝑡𝑢𝑘  𝑚 ≥ 0. 0 < 𝛼 < 1 
(18) 
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4.2 Determining the Price Elasticity of Demand 

Definition of standard price point elasticity of demand when 𝑡 = 𝑡଴, which is shown by the Eq. (19): 𝐸(𝑄(𝑡); 𝑝(𝑡); 𝑡଴) =  ቀ௣(௧)ொ(௧) ௗொ/ௗ௧ௗ௣/ௗ௧ቁ௧ୀ௧బ= ቀ௣ொ  ௗொௗ௣ቁ௧ୀ௧బ (19) 

where Q is the number of requests and p is the price of an item. In Eq. (19), it is assumed that elasticity depends only on the 
current price when t = t0, i.e., the lowest price around t0. In general, Eq. (19) can only be used when all buyers have total 
amnesia, i.e., The interpretation of total amnesia is not too concerned about changes in previous prices.  In this section, a 
method for determining the elasticity of demand prices is proposed using the fractional order α, with 0 <α <1, which involves 
an element of consumer memory. Fractional elasticity depends on a specific time interval and or price range, in addition to 
the consumer's memory parameters. For example, we assume a parameter α, which is indicated by the level of consumer 
memory (memory loss) during a specified time interval. Thus, if α = 1, the order of memory loss is 1. 

4.2.1 Calculating the Price Elasticity of Demand for 𝛼 = 1 
 
Calculate the elasticity of the demand price for α = 1 of the demand functions for a product below: 𝑄(𝑝)  =  𝑘଴  +  𝑘ଵ𝑝 +  𝑘𝑝ଶ,  (20) 

where p is the unit price, and Q (p) is the amount of demand at the time of price p.  
Eq. (19) can be written as follows, 

𝐸(𝑝)  =  ൬ 𝑝𝑄(𝑝)൰ ൬𝑑𝑄(𝑝)𝑑𝑝 ൰ 
(21) 

Thus, the price elasticity of demand price for α = 1 is: 𝐸(𝑝) = ௣ொ(௣) (𝑘ଵ  +  2𝑘ଶp)= ௞భ௣ାଶ ௞మ௣మ௞బ ା ௞భ௣ା ௞మ௣మ.   (22) 

4.2.2 Calculating Price Elasticity of Demand for 𝛼 =  ଵଶ 
 

We will discuss examples of calculating the fractional price elasticity of demand using the Riemann-Liouville Fractional 
Derivative Method, Caputo Fractional Derivative Method, and the Fractional Derivative Theorem Method. 

Example 4.1 

The following item request functions are known:  𝑄(𝑝)   =  𝑘଴  +  𝑘ଵ𝑝 + 𝑘ଶ𝑝ଶ (23) 

where p is the unit price 𝑄(𝑝) is the amount of demand when the price is at time 𝑝. Determine fractional elasticity by order 𝛼 = ଵଶ. To solve Example 4.1, three methods are used, namely the Riemann-Liouville fractional derivative method, the 
Caputo fractional derivative method, and Theorem 4.2. 

4.3 Riemann-Liouville Fractional Derivative 
 

Riemann-Liouville fractional derivative defined as: 

𝐷௫బఈ 𝑓(𝑥) = 𝑑௡𝑑𝑥௡ [𝐽௡ିఈ𝑓(𝑥)] = 1Γ(𝑛 − 𝛼) 𝑑௡𝑑𝑥௡ [න (𝑥 − 𝑡)௡ିఈିଵ 𝑓(𝑡) 𝑑𝑡 ]௫
௫బ , 

 
(24) 

with any order α, 𝑛 −  1 ≤  𝛼 <  𝑛.𝑛 ∈  𝑍ା , with the lower limit 𝑥଴ , 𝑥଴ <  𝑥. 𝑥 >  0, and 𝐷ఈ  fractional differential 
operator of order α with a lower bound x0 = 0. So, the fractional sequence is ordered 𝛼 = ½ from 𝑄(𝑝)  = 𝑘଴+𝑘ଵ𝑝 +  𝑘ଶ𝑝ଶ 
is: 𝐷ఈ𝑄(𝑝) = 𝐷ఈ 𝑘଴ +  𝐷ఈ𝑘ଵ𝑝 + 𝐷ఈ 𝑘ଶ𝑝ଶ 
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317𝐷భమ𝑄(𝑝) =  𝑘଴ 𝐷ఈ 𝑝଴ + 𝑘ଵ 𝐷భమ 𝑝ଵ + 𝑘ଶ 𝐷భమ 𝑝ଶ 

with Caputo's fractional derivative of the constant k0 i.e., Dα k0 = 0, is obtained: 

𝐷భమ𝑄(𝑝)  =  0 +  ௗௗ௣  ቈ ௞భГ ቀଵିభమ ቁ ׬  (𝑝 − 𝑡)ଵି ½ିଵ 𝑡 𝑑𝑡௣଴ ቉  + ௗௗ௣  ቈ ௞మГ (ଵିభమ) ׬  (𝑝 − 𝑡)ଵିభమ ିଵ. 𝑡ଶ 𝑑𝑡௣଴ ቉  
𝐷భమ𝑄(𝑝) = ௗௗ௣ ቈ ௞భГ (భమ ) ׬  ௧(௣ି௧)భమ  𝑑𝑡௣଴ ቉ + ௗௗ௣ ቈ ௞మГ (భమ ) ׬  ௧మ(௣ି௧)భమ  𝑑𝑡௣଴ ቉ 
 

 

For example, 𝑡 =  𝑝𝑢, for  𝑡 =  0  𝑢 =  0, 𝑑𝑡 =  𝑝 du, for  𝑡 =  𝑝  𝑢 =  1, then 𝐷భమ𝑄(𝑝)  =  ௗௗ௣ ቈ௞భ√గ ׬ ௣௨(௣ି௣௨)భమ  . 𝑝𝑑𝑢ଵ଴ ቉ + ௗௗ௣ ቂ௞మ√గ ׬ (𝑝 − 𝑝𝑢)ି଴,ହ.𝑢ଶ.𝑝ଶ .𝑝 𝑑𝑢ଵ଴ ቃ 
𝐷భమ𝑄(𝑝)  = ௗௗ௣ ቈ௞భ√గ ׬  ௣మ௨௣½ (ଵି௨)భమ  𝑑𝑢ଵ଴ ቉ + ௗௗ௫ ቂ௞మ√గ ׬ 𝑝ି ଴,ହ.  (1 − 𝑢)ି଴,ହ .𝑢ଶ.𝑝ଷ 𝑑𝑢ଵ଴ ቃ 
𝐷భమ𝑄(𝑝)  = ௗௗ௣ ቈ௞భ௣యమ√గ ׬  𝑢ଵ (1− 𝑢)ି½ 𝑑𝑢ଵ଴ ቉ + ௗௗ௣ 𝑘ଶ ቂ ଵ√గ  𝑝ଶ,ହ ׬  (1 − 𝑢)ି଴,ହ .𝑢ଶ 𝑑𝑢ଵ଴ ቃ 
𝐷భమ𝑄(𝑝)  =  ௗௗ௣ ቈ௞భ௣యమ√గ ׬  𝑢ଶିଵ (1 − 𝑢)½ିଵ 𝑑𝑢ଵ଴ ቉+ ௗௗ௣ ቂ௞మ√గ  𝑝ఱమ ׬  (1 − 𝑢)଴,ହିଵ .𝑢ଷିଵ 𝑑𝑢ଵ଴ ቃ 
𝐷భమ𝑄(𝑝)  = ௗௗ௣ ቈ௞భ௣యమ√గ  𝐵 (2, ଵଶ )቉ + ௗௗ௣ ቂ௞మ√గ  𝑝ఱమ .𝐵 (ଵଶ  . ଺ଶ)ቃ 
𝐷భమ𝑄(𝑝)  = ௗௗ௣ ቈ௣యమ√గ   Г (ଶ)Г (భమ)Г ቀఱమቁ ቉ + ௗௗ௫ ቈ௞మ√గ  𝑝ఱమ . Г ቀభమቁ .Г(ଷ) Г (ళమ) ቉ 
𝐷భమ𝑄(𝑝)  = ௗௗ௣ ቈ௞భ௣యమ√గ   √గయ√ഏర ቉ + ௗௗ௣ ቈ௞మ√గ  𝑝ఱమ  √గ  (ଶ)భఱఴ  √గ ቉ 
𝐷భమ𝑄(𝑝)  = ସ௞భଷ√గ  ௗௗ௣  ቂ𝑝యమቃ + ଵ଺ ௞మଵହ√గ ௗ (௣ఱమ)ௗ௣  

𝐷భమ𝑄(𝑝)  = ସ௞భଷ√గ  ଷଶ 𝑝½ + ଵ଺ ௞మଵହ√గ . ହଶ 𝑝యమ 𝐷భమ𝑄(𝑝)  = ଶ ௞భ௣½√గ  + ଼ ௞మඥ௣యଷ √గ  

𝐷భమ𝑄(𝑝)  =  2 𝑘ଵට௣గ +  ଷ଼  𝑘ଶට௣యగ  

Furthermore, fractional elasticity with order is sought 𝛼 = ଵଶ , was obtained 

𝐸ఈ (𝑄(𝑝),𝑝) = ௣ொ(௣) ௗഀொ(௣)ௗഀ௣  

𝐸భమ (𝑄(𝑝),𝑝) = ௣ொ(௣) ௗభమொ(௣)ௗభమ௣  

𝐸భమ (𝑄(𝑝),𝑝) = ௣௞బ ା ௞భ௣ା ௞మ௣మ . 2 𝑘ଵට௣గ +  ଷ଼  𝑘ଶට௣యగ = 
ଶ௣௞భට೛ ഏା ఴయ ௣௞మට೛యഏ௞బ ା ௞భ௣ା ௞మ௣మ  

(25) 
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4.4 Caputo Fractional Derivative 
 

Caputo's fractional derivatives are defined as in Eq. (12), then obtained: 𝐷ఈ𝑄(𝑝) = 𝐷ఈ 𝑘଴ +  𝐷ఈ𝑘ଵ𝑝 + 𝐷ఈ 𝑘ଶ𝑝ଶ 𝐷భమ𝑄(𝑝) =  𝑘଴ 𝐷ఈ 𝑝଴ +𝑘ଵ 𝐷భమ 𝑝 + 𝑘ଶ 𝐷భమ 𝑝ଶ, 𝐷భమ𝑄(𝑝) = ௞బГ (ଵିభమ) ׬  (𝑝 − 𝑡)ଵିభమିଵ 𝑓ᇱ(𝑡)𝑑𝑡௣଴  + ௞భГ (ଵିభమ) ׬ (𝑝 − 𝑡)ଵିభమିଵ௣଴  𝑓ᇱ (𝑡) dt + ௞మГ (ଵିభమ) ׬ (𝑝 − 𝑡)ଵିభమିଵ௣଴  𝑓ᇱ (𝑡) 𝑑𝑡  
 𝐷భమ𝑄(𝑝) = ଵГ (భమ) ׬ (𝑝 − 𝑡)ି½௣଴  ∙ 0 ∙ 𝑑𝑡  + ௞భГ (భమ) ׬ ଵ√௣ି௧ ∙ 1 ∙ 𝑑𝑡 ௣଴  + ௞మГ (భమ) ׬ ଵ√௣ି௧  .2𝑡.𝑑𝑡௣଴  

𝐷భమ𝑄(𝑝) = 2𝑘ଵට௣గ +  ଷ଼  𝑘ଶට௣యగ  

Next, we look for fractional elasticity with order α = ଵଶ , was obtained: 

𝐸భమ (𝑄(𝑝), 𝑝) = ௣ொ(௣) ௗభమொ(௣)ௗభమ௣ = 
ଶ௣௞భට೛ ഏା ఴయ ௣௞మට೛యഏ௞బ ା ௞భ௣ା ௞మ௣మ  

(26) 

Solution using Theorem 4.2. is obtained: 𝑄(𝑝)  = 𝑘଴ + 𝑘ଵ𝑝 + 𝑘ଶ𝑝ଶ 𝐷ఈ𝑄(𝑝) = 𝐷ఈ𝑘଴ +  𝐷ఈ𝑘ଵ𝑝 + 𝐷ఈ𝑘ଶ𝑝ଶ 𝐷భమ𝑄(𝑝) =  𝐷భమ 𝑘଴ + 𝑘ଵ 𝐷భమ 𝑝 + 𝑘ଶ 𝐷భమ 𝑝ଶ, 𝐷భమ𝑄(𝑝) = 0 + 𝑘ଵ Г (ଵାଵ)Г (ଵି భమ ାଵ ) 𝑝ଵିభమ + 𝑘ଶ Г (ଶାଵ)Г (ଶିభమାଵ`) 𝑝ଶିభమ 𝐷భమ𝑄(𝑝) =  𝑘ଵ Г (ଶ)Г (యమ ) 𝑝భమ + 𝑘ଶ Г (ଷ)Г (ఱమ`) 𝑝యమ 
𝐷భమ𝑄(𝑝) = 2 𝑘ଵ ට௣గ  +  ଷ଼ 𝑘ଶට௣యగ  

Next, we look for fractional elasticity with order 𝛼 = ଵଶ, was obtained: 

𝐸భమ (𝑄(𝑝), 𝑝) = ௣ொ(௣) ௗభమொ(௣)ௗభమ௣ = 
ଶ௣௞భට೛ ഏା ఴయ ௣௞మට೛యഏ௞బ ା ௞భ௣ା ௞మ௣మ  

(27) 

                  

Based on Eq. (25) to Eq. (26), the determination of price elasticity of demand using either the Riemann-Liouville Fractional 
Derivative Method, Caputo's Fractional Derivative Method, and Theorem 4.2. give the same results. This indicates that the 
three methods can be used to calculate the fractional of price elasticity of demand. 

Example 4.2  

The following item request functions are known: 𝑄(𝑝) = 180 –  9𝑝ଶ.  (28) 

Determine the price elasticity of demand with 𝛼 = 1 dan 𝛼 = ଵଶ  at the price 𝑝 = 2.5. 

Following is the completion of Example 4.2 for  𝛼 = 1 and 𝛼 = ଵଶ. 
(a) For α = 1 and p = 2.5, we obtained: 
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319𝑄(𝑝) = 180 –  9𝑝ଶ   → ௗொௗ௣ = −18𝑝  

𝐸(𝑝) = ቀ ௣ଵ଼଴ ି ଽ௣మቁ ∙ (−18𝑝) 

𝐸(2.5) = ቀ ଶ.ହଵ଼଴ ି ଽ∙(ଶ,ହ)మቁ ∙ (−18 ∙ 2.5) = -0.9090909090. 

We have |𝐸(2.5)| = 0.9090909090 <  1, the price elasticity of demand in Example 4.2 to be called Elastic for α = 1 and 
p = 2.5. So, if the price rises (decreases) by 1%, the number of units of goods demanded will decrease (increase) as less 
than 1% (the percentage change in the number of units of goods requested is smaller than the percentage change in price 
per unit, meaning that the demand for the number of units of goods is not sensitive to changes in price). The percentage 
change in the number of units of goods requested is greater than the percentage change in price per unit, meaning that the 
demand for the number of units of goods is very sensitive to changes in price per unit. 

(b) For 𝛼 = ଵଶ and p = 2.5, we obtained:  𝑄(𝑝) = 180 –  9𝑝ଶ  𝐷ఈ𝑄(𝑝) = 𝐷𝟏𝟐 180 −  𝐷𝟏𝟐 9𝑝ଶ, 𝐷భమ𝑄(𝑝) = 0 − 9 Г (ଶାଵ)Г (ଶିభమାଵ`) 𝑝ଶିభమ= − 9 Г (ଷ)Г (ఱమ`) 𝑝యమ= − 9 ଼ଷ√గ 𝑝యమ= −   ଶସ√గ 𝑝యమ 
𝐸భమ (𝑄(𝑝),𝑝) = ௣ொ(௣) ௗభమொ(௣)ௗభమ௣ = ( ௣ଵ଼଴ – ଽ௣మ  )(−   ଶସ√గ 𝑝యమ) 

𝐸భమ (2.5) = ( ଶ.ହଵ଼଴ – ଽ∙(ଶ,ହ)మ  )(−   ଶସଵ.଻଻ଶସହ (2.5)యమ) = (0.02020202)(−   ଶସଵ.଻଻ଶସହ (2.5)యమ)  =  −1.081287343. 𝐸భమ(2.5) We have |𝐸భమ(2.5)|  =  1.081287343 >  1 so that the price elasticity of demand in Example 4.2 is called elastic 

for 𝛼 = ଵଶ and 𝑝 = 2.5. So, if the price increase (decreases) by 1%, the amount the units of goods requested will decrease 
(increase) greater than 1 %. The percentage change in the number of units of goods requested is smaller than the percentage 
change in price per unit, meaning that demand is very sensitive to changes in price per unit. 

4.5  Results of Numerical Simulation 

Numerical results of |𝐸(𝑝)|  for the Example 4.2 by Theorem 4.2 using maple software for 𝑝 = 1,2,2.5,3,4  and 𝛼 =1, ଽଽଵ଴଴ , ଻ହଵ଴଴ , ହ଴ଵ଴଴ , ଵ଴ଵ଴଴ , ଵଵ଴଴, are given in Table 1. Whereas, Figure 1 represents values of |𝐸𝑝| for 0 ≤ 𝑝 ≤ 4. The number of 
goods demanded being positive or 𝑄(𝑝) = 180 –  9𝑝ଶ > 0, if 𝑝 > √20. 

 

Fig. 1. Curve of 𝐸(𝑝) with 𝛼 = 1, ଽଽଵ଴଴ , ଻ହଵ଴଴ , ହ଴ଵ଴଴ , ଵ଴ଵ଴଴ , ଵଵ଴଴, for 1 ≤ 𝑝 ≤4, 𝑘଴ = 180,𝑘ଵ = 0 and 𝑘ଷ =  −9 
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Table 1  
Numerical results of |𝐸(𝑝)| for the various value of 𝑝 and 𝛼 𝛼 𝑝 |𝐸𝑝| 𝛼 𝑝 |𝐸𝑝| 

 1 0.05760410  1 0.09290632 
 2 0.51059205  2 0.52480311 

10/100 2.5 1.13482885 75/100 2.5 1.00893042 
 3 2.40694409  3 1.90076767 
 4 15.24477553  4 9.98559363 

 1 0.06544753  1 0.10481568 
 2 0.52282866  2 0.50133751 

25/100 2.5 1.12377460 99/100 2.5 0.91355902 
 3 2.31919706  3 1.64740707 
 4 14.06863210  4 8.07719341 

 1 0.07918450  1 0.10526315 
 2 0.53192304  2 0.50000000 

50/100 2.5 1.08128734 1 2.5 0.90909090 
 3 2.13208368  3 1.63636363 
 4 12.03604445  4 8.00000000 

 

5. Conclusion 

In conclusion, the numerical simulation results in Example 2, the calculation of the fractional price elasticity of demand 
with α = 1 and 𝛼 = ଵଶ  showed significantly different results for 𝑝 = 2.5. The sensitivity level of changes in the number of 
goods demanded by consumers towards price changes per unit for 𝛼 =1 is not sensitive. Whereas the sensitivity level of 
changes in the number of goods demanded by consumers towards price changes per unit for 𝛼 = ଵଶ is very sensitive. In other 
words, the price elasticity of demand does not only depend on the latest price (current price) but changes in all prices from 
a specific time interval (with memory effects). The findings of this study suggest future studies can examine the 
phenomenon of market equilibrium using fractional-order derivatives. 
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