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 Dementia is a neuropsychiatric brain disorder that usually occurs when one or more brain cells 
stop working partially or at all. Diagnosis of this disorder in the early phases of the disease is a 
vital task to rescue patients’ lives from bad consequences and provide them with better 
healthcare. Machine learning methods have been proven to be accurate in predicting dementia in 
the early phases of the disease. The prediction of dementia depends heavily on the type of 
collected data which usually are gathered from Normalized Whole Brain Volume (nWBV) and 
Atlas Scaling Factor (ASF) which are normally measured and corrected from Magnetic 
Resonance Imaging (MRIs). Other biological features such as age and gender can also help in 
the diagnosis of dementia. Although many studies use machine learning for predicting dementia, 
we could not reach a conclusion on the stability of these methods for which one is more accurate 
under different experimental conditions. Therefore, this paper investigates the conclusion 
stability regarding the performance of machine learning algorithms for dementia prediction. To 
accomplish this, a large number of experiments were run using 7 machine learning algorithms 
and two feature reduction algorithms namely, Information Gain (IG) and Principal Component 
Analysis (PCA). To examine the stability of these algorithms, thresholds of feature selection 
were changed for the IG from 20% to 100% and the PCA dimension from 2 to 8. This has resulted 
in 7×9 + 7×7= 112 experiments. In each experiment, various classification evaluation data were 
recorded. The obtained results show that among seven algorithms the support vector machine 
and Naïve Bayes are the most stable algorithms while changing the selection threshold. Also, it 
was found that using IG would seem more efficient than using PCA for predicting Dementia. 
These promising results open the door to a new era of early prognosis of Alzheimer’s Disease 
and Related Dementias (ADRD). 
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1. Introduction 

Dementia is a neuropsychiatric brain disorder that usually occurs when one or more brain cells stop working partially or at 
all. This brain disorder is often accompanied by memory attenuation. From healthcare records, it was found that people 
aged 65 and above are more vulnerable to disease (Bansal et al., 2018, 2020; Lakshmi, 2020). According to the World 
Health Organization (WHO), there are around 50 million patients with dementia worldwide with an increase of 10 million 
patients annually (Battineni et al., 2020; Harvey et al., 2003; WHO, 2020). The most common type of dementia is 
Alzheimer’s Disease (AD) where the average age of clinical AD diagnosis received is 80 years old (Barnes et al., 2015; Dai 
et al., 2020). The prognosis of dementia is still poor and depends on various factors such as age, gender, educational level, 
and many more (van de Vorst et al., 2020). Early studies suggested that early diagnosis of dementia may prevent 
deterioration and help widely with treatments and future predictions of the disease (Alam et al., 2016; Battineni et al., 2019; 
Chen & Herskovits, 2010). This is where advanced computational techniques come into use for predicting future outcomes 
of dementia whether as a prognosis of disease progression or as a mortality rate (Green & Zhang, 2016; van de Vorst et al., 
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2020). At the beginning and mild stages of dementia, magnetic resonance imaging (MRI), which is a neuroimaging 
technique, is becoming an effective tool in detecting AD. However, only a few works correlated AD incidence rate with 
measurements concluded from MRI (Battineni et al., 2020). It’s worthwhile to note that MRI provides significant input 
variables for machine learning algorithms to make the prediction and classification of probable dementia patients and all 
age-related cognitive decline (ARCD) in general (Babiloni et al., 2017; Garrard et al., 2014; Pellegrini et al., 2018). 
Estimated total intracranial volume (eTIV) is a significant feature in the dataset that was studied in this research, which 
relates the brain and intracranial size to ADRD in a volumetric method which is common in neurodegenerative diseases 
analysis (Malone et al., 2014). FAST1 program of FSL software suite was used for computation of normalized whole brain 
volume (nWBV) expressed as a percentage of the accumulated voxels of white and grey matter in the brain taken from 
eTIV analysis where volumetric measures are normalized according to head’s size (Battineni et al., 2020; Marcus et al., 
2010). Machine learning methods are becoming a support decision tool that can help doctors in diagnosing dementia-related 
diseases. The dementia prediction is treated as a classification problem where possible output labels are {demented or non-
demented}. In the literature, it was found that machine learning algorithms were used in many studies to predict the presence 
of dementia in diagnosed patients. The conclusion drawn from these studies is confusing regarding the performance of 
machine learning methods. Therefore, this study examines the stability of seven common machine algorithms for dementia 
prediction. These algorithms are AdaBoost (Ada) and Random Forest (RF), k-Nearest Neighbor (kNN), Support Vector 
Machine (SVM), Decision Tree (DT), Naïve Bayes (NB), and Logistic Regression (LR). To accomplish the stability 
examination, two feature reduction algorithms were used: Information Gain (IG) and Principal Component analysis. 
Information Gain can help in ranking features according to IG score then a specified threshold can be applied to select top-
ranked features (KENT, 1983; Raileanu & Stoffel, 2004). Whereas, PCA is a feature reduction algorithm that aims at 
generating new dimensionality (usually less than the original dimension) based on the structure of the original dataset (Abdi 
& Williams, 2010; Pearson, 1901; Ringnér, 2008). For each feature reduction algorithm, the threshold of features was 
changed to produce a new feature subset every time. 

Regarding IG, the Information gain score is first measured between each input feature and the output feature. The input 
features are then ranked according to their Information gain score from high to low. Later, specific thresholds (range from 
20% to 100%) are applied to select the top features that will be used to slice the dataset that will be used to train and test 
machine learning methods. For example, the threshold of 20% means selecting the top 20% of the dataset’s features. Every 
time the threshold was changed, a new set of features was added to the previously selected top features. This will form new 
input data to the machine learning models which enable us to examine the stability of these models based on different data. 
On the other hand, the same scenario was used with PCA, where a dimension reduction threshold was specified from 2 
dimensions to 8. 

A large number of experiments have been conducted to examine the stability of seven machine learning methods in 
predicting dementia. The stability term is defined by how much the performance of the machine learning method can remain 
stable under changing different setting parameters. The setting parameters in this study are the changes in the dataset features 
and dimensions as explained earlier. However, in each experiment, seven machine learning methods were run over a 
different feature set either obtained from IG or PCA. This has resulted in 7×9 + 7×7= 112 experiments. The classification 
accuracy values have been recorded for each experiment. The dementia dataset the has been used in this paper is available 
publicly from Boysen (2017), more details can be found in section 3.1. The obtained results show that among seven 
algorithms the support vector machine and Naïve Bayes are the most stable algorithms while changing the selection 
threshold. Also, the researchers found that using IG would seem more efficient than using PCA for predicting Dementia.  

The remainder of this paper is organized as follows. In section 1 an introduction to dementia and machine learning 
integration is followed by the literature review and related studies in section 2. Section 3 covers experimental setup through 
four subsections: data origin and dictionary, data preprocessing, choice of learning algorithms, and evaluation measures. In 
section 4, the research methodology was explained. Moreover, section 5 consists of results and discussion, while section 6 
wraps up this study with a conclusion.  
 

2. Literature review 

Most of the studies performed on the prediction of dementia using machine learning models did not mention a clear 
methodology that could be generalized to ensure a stable high-performance prediction independently of the underlying 
dataset (Bansal et al., 2020; Battineni et al., 2020; Bharanidharan & Rajaguru, 2020; Dallora et al., 2020; Popuri et al., 2020; 
Sharma et al., 2020; You et al., 2019). This is because each study uses a different dataset with various features from different 
sources. In other words, there is a lack of stability assessment of the proposed models for predicting dementia. In Battineni 
et al. (2020), a hybrid machine learning model combining 4 models with 14 features to diagnose the early stages of 
Alzheimer’s disease was proposed. The researchers studied 373 magnetic resonance imaging tests belonging to 150 elders. 
As a result, it was found that the proposed hybrid model provides enhanced accuracy of dementia prediction up to 98%.  In 
another study, a machine learning model was presented for the classification of dementia disease using magnetic resonance 
imaging (Bansal et al., 2020). The researchers proposed using the bag of features method to extract the features of magnetic 
resonance imaging scans in association with a support vector machine to classify these scans. This proposed methodology 
leads to an accuracy of 93% for the detection of dementia. A broad multifactorial decision tree model for the prediction of 

 
1  FAST is a software used for computation of normalized whole brain volume. 
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dementia was proposed by Dallora et al. (2020). The researchers used longitudinal data incorporating 75 variables from 726 
subjects. The proposed approach reached 74.5% Area Under the Curve (AUC) for the 10-year prognosis of dementia, while 
the Recall value, that is the ratio of correctly predicted positive observations, was 72.2%.  In the study of Sharma et al. 
(2020), dementia was diagnosed by implementing an iterative filtering decomposition approach to improve the classification 
accuracy of electroencephalogram (EEG) signal besides Cognitive Tests including finger tapping test (FTT) and the 
continuous performance test (CPT). The EEG data were collected from 47 subjects. The proposed approach achieved up to 
92% accuracies for dementia classification, 91.67% accuracies for early dementia classification and 91.87% accuracies for 
healthy classifications. Four swarm intelligence algorithms (particle swarm optimization, artificial bee colony, ant colony 
optimization, and dragonfly algorithm) were implemented and compared with the non-swarm intelligence algorithm (fuzzy-
C-means) as in the study of  Bharanidharan and Rajaguru (2020). The brain Cross-sectional MRI of 65 non-dementia and 
52 dementia subjects were collected and used as input for dementia classification. The results show that the Dragonfly-
particle swarm optimization hybrid classifier yields the highest accuracy of 87.18%. The researchers You et al. (2019), 
examined the relationship between speech and the risk of dementia using a parallel classification system. The system 
ensembles both the K-Nearest-Neighbor model and the Support Vector Machine model to classify older participants at high 
or low risk of dementia by selecting 27-feature extracted from audio recordings. The resulting accuracy was 94.7% when 
the system trained with paralinguistic features only and 97.2% when the system trained with both paralinguistic and episodic 
memory test features. The authors Popuri et al. (2020), proposed an ensemble-learning model that combines structural 
features to create an aggregate measure of neurodegeneration in the brain. The classifier was trained on 753 subjects, 
including 423 stable normal control and 330 dementia of Alzheimer’s type. The classifier was trained on 753 subjects, 
including 423 stable normal control and 330 dementia of Alzheimer’s type. Then, independent validation was made on 8834 
unseen images to predict the development of dementia of Alzheimer’s type depending on the time-to-conversion. The 
classification performance achieved an area-under-curve (AUC) of 81% for time-to-conversion of 6 months and 73% for 
time-to-conversion of 7 years. 

3. Experimental Setup 
 

This section describes the research methodology of the present paper and is divided into the following subsections: 
 

3.1 Data origin and dictionary 
 

The original data came from the OASIS project which aims to provide the scientific community with open-source MRI 
datasets for free. OASIS is made available by the Washington University Alzheimer’s Disease Research Center, Dr. Randy 
Buckner at the Howard Hughes Medical Institute (HHMI) at Harvard University, the Neuroinformatics Research Group 
(NRG) at Washington University School of Medicine, and the Biomedical Informatics Research Network (BIRN). 
However, we’ve downloaded it in a formatted way from Kaggle (Boysen, 2017). This dataset is based on a study of 150 
subjects with multiple visits and scans aged between 60-96. All study participants are right-handed. According to this 
dataset, subjects can be initially divided into three groups: The first group includes 72 subjects who were classified as non-
demented throughout the study. The second group includes 14 subjects who were first diagnosed as non-demented and then 
converted at a later stage into dementia. The third and final group consists of 64 of the subjects characterized as demented 
from early visits and remained so for the rest of the study. The last two groups were merged into one group to avoid duplicate 
results as will be explained in the next section. People with normal age-related brain changes such as mild atrophy, 
Leukoaraiosis, and common dementia cases of AD, were not excluded from this study. Timeframe for all MRI sessions was 
within one year. The data dictionary and description for every feature are detailed in Table 1. 
 

Table 1 
Data dictionary of 15 features and 1 target 

Feature Description 
Subject ID Subject identification 

MRI ID MRI exam identification 
Group Class (Has disease or not) 
Visit Visit order (How many times the patient visited the clinic) 

MR delay MR delay time (contrast) 
M/F Gender 
Hand All participants in the study were right-handed 
Age Age 

EDUC Years of education 

SES 

Socio-economic status (the social standing or class of an individual or group. It is often measured as a combination of education, 
income, and occupation. Examinations of socioeconomic status often reveal inequities in access to resources, plus issues related to 
privilege, power, and control). (As assessed by the Hollingshead Index of Social Position and classified from 1 (highest status) to 5 

(lowest status)) 
MMSE Mini-Mental State Examination score (range is from 0 = worst to 30 = best) 
CDR Clinical Dementia Rating (0 = no dementia, 0.5 = very mild AD, 1 = mild AD, 2 = moderate AD) 
eTIV Estimated total intracranial volume, mm3 

nWBV Normalized whole-brain volume, expressed as a percent of all voxels in the atlas-masked image that are labeled as gray or white 
matter by the automated tissue segmentation process 

ASF Atlas scaling factor (unitless). A computed scaling factor that transforms the native-space brain and skull to the atlas target (i.e., the 
determinant of the transform matrix). 
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Fig. 1 shows the distribution of the target variable which has two labels {demented, non-demented} grouped by gender. It’s 
clear in Figure 1 that there is a class balance scenario in this binary classification situation. However, it’s worth noting that 
the “converted” label from the dataset was appended and modified to be “demented” because not doing so means having 
duplicate examples classified as “non-demented” first, then changed to “converted” at a later visit. The latter observation 
has been noted cautiously and found to have a high impact on the machine learning algorithm performance in subsequent 
sections in this work. The feature titled “number of visits” was kept in the dataset because of its importance in completing 
the big picture of the diagnosis procedure. Finally, one can take a baseline idea that males are more exposed to dementia 
than females according to the studied dataset. 

  
Fig. 1. Dementia disease distribution with gender among 
study participants 

Fig. 2. Dementia disease distribution with gender among 
study participants 

Fig. 2 shows boxplots of the normalized Whole Brain Volume (nWBV) feature concerning two target labels. It can be 
observed that the median of nWBV for demented patients is smaller than non-demented patients. Two groups are 
significantly different, the p-value=0.003. Correlation between age and normalize whole brain volume (nWBV) is shown 
in Fig. 3. There is a negative correlation between nWBV and age which confirms that the whole brain volume is decreasing 
as long as the age of patients is increasing.  

 
Fig. 3. Correlation between age and normalized whole brain volume (nWBV) 

Fig. 4 shows the age histogram distribution for all records in the dataset in addition to boxplots of age features concerning 
target labels. The sample of patients in this dataset is normally distributed where most of the patients aged between 70 and 
85. Most of the demented patients aged between 75 and 85 whereas non-demented patients aged between 72 and 82. 
However, no significant difference between the two groups in terms of age was found. Therefore, one could not conclude 
that there is a clear relationship between age and dementia, even though the medical sectors proved that there is strong 
evidence that there is a relationship between age and dementia.  

  
(a) Histogram of Age (b) Boxplots of Age concerning Target 

Fig. 4. Age Distribution 



S. Faouri et al. / Decision Science Letters 11 (2022) 
 

337

3.2 Data preprocessing 

Data preprocessing is an essential step in constructing any machine learning model to ensure the quality of the training data. 
In this study, some important data preprocessing steps were carried out such as handling missing values, outlier detection, 
and data normalization. Missing data in medical records is not unusual (Zriqat et al., 2017). To handle missing values, the 
mean imputation method was applied for every missing field in the dataset. In other words, the missing values in any feature 
are replaced with the mean of that feature. Even though there are different other imputation methods, the researchers prefer 
to use this approach due to its simplicity, low processing cost, and performance in boosting machine learning models. On 
the other hand, since the numeric features in the dataset present different scales, they may have a negative impact on the 
performance of the constructed machine learning models. To eliminate such impact from different feature types, and to 
have the same influence degree the min-max normalization was used. Regarding outliers, no extreme values were found in 
all features, therefore no observations were excluded. 

  
3.3 Choice of learning algorithms  
  
As mentioned in the introduction, various machine learning algorithms were chosen in this study to build different prediction 
models for predicting the Dementia group. These methods are supposed to exhibit different prediction mechanisms and 
support both linear and nonlinear relationships between the output variable and all input descriptive variables. In particular, 
seven common machine learning algorithms were used, some of them are known as ensemble learning algorithms such as 
AdaBoost (Ada) and Random Forest (RF), while the remaining algorithms are considered solo algorithms such as k-Nearest 
Neighbor (kNN), Support Vector Machine (SVM), Decision Tree (DT), Naïve Bayes (NB), and Logistic Regression (LR). 
Ensemble learning algorithms are supposed to have better accuracy in comparison with solo algorithms as confirmed in 
previous studies because they implemented multiple solo algorithms to support weak learners (Minku et al., 2013).  
k-Nearest Neighbor (kNN) is a supervised machine learning algorithm based on the idea of predicting by similarity. 
Specifically, the kNN uses a distance measure such as Euclidean distance to retrieve, for each new observation, the nearest 
observations from the training dataset. The final output is then predicted from the outputs of the set of selected observations. 
Many control parameters impact the performance of kNN such as feature selection, voting mechanism, feature weighting, 
number of selected observations (k), and type of distance measure. It is important to note that a smaller value of k can be 
noisy and subject to the effect of an outlier, whereas the large value of k can smooth the final decision (Wu et al., 2002). 
SVM is an algorithm used for regression and classification. The basic idea of SVM is to build an optimal hyperplane that 
can separate data with maximum margin. The margin is defined as the maximal width of the slab parallel to the hyperplane 
that has no interior data points. The optimal hyperplane generation depends on the choice of kernel functions such as 
Gaussian, Polynomial, and Radial Basis Function. Both Gaussian and Radial Basis function kernels can benefit hyperplane 
generation because they support the locality of training data, which means that the data can be efficiently separated (Widodo 
& Yang, 2007).  DT is a tree-like method that uses iterative partitioning to construct the tree. The algorithm uses 
probabilistic measures such as entropy, information gain, and Gini metrics to decide which optimal features should be used 
to separate data at each decision node. In each step, more coherent data are grouped based on the decision node. The 
algorithm also uses a pruning algorithm to remove unwanted sub-branches that do not contribute significantly to the decision 
process. In this paper, the C4.5 algorithm was not used because it uses gain ratios instead of gains, which can create more 
generalized trees and not fall into overfitting and it can also handle incomplete data very well (Myles et al., 2004).  
NB classifier is an efficient probabilistic classifier based on Bayes’ theorem of conditional probability. It is “naïve” because 
it assumes that all predictor variables are conditionally independent. This assumption is often violated in real-world 
examples, despite that NB can work well in comparison to other classifiers. The NB algorithm can work well with huge 
data because it needs less computation processes with reasonable speed and accuracy (Soria et al., 2011). LR is a binary 
classifier based on the assumption of the probabilistic statistical regression technique. LR is used to explain the relationship 
between one dependent binary variable and one or more independent variables by fitting examples to a logistic curve. The 
LR uses the sigmoid function to estimate the class probability of a test example (Kleinbaum & Klein, 2010).  
Random Forest is an ensemble learning algorithm that can be constructed from a set of decision trees using the Bagging 
algorithm. RF adds additional randomness to the model while growing the trees. Instead of searching for the most important 
feature while splitting a node, it searches for the best feature among a random subset of features. This results in a wide 
diversity that generally results in a better model. Therefore, in a random forest, only a random subset of the features is taken 
into consideration by the algorithm for splitting a node. You can even make trees more random by additionally using random 
thresholds for each feature rather than searching for the best possible thresholds (like a normal decision tree does) (Qi, 
2012). 
The AdaBoost algorithm is another ensemble algorithm used to learn from multiple weak learners. The basic idea is to build 
a strong learner from the mistakes of several weaker learners. In other words, one could start by creating a model from the 
training data. Then, the second model is created from the previous one by trying to reduce the errors. Models are added 
sequentially, each correcting its predecessor, until the training data is predicted perfectly, or the maximum number of models 
have been added (Rätsch et al., 2001).  
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3.4 Evaluation Measures 

Choosing the right evaluation metrics is not an easy process because the employed dataset might suffer from imbalanced 
data distribution which makes most predictions biased towards the dominant class label. For example, the classification 
accuracy metric cannot tell the true accuracy of the prediction model because it is easily influenced by a truly positive and 
true negative of the dominant label. Therefore, multiple evaluation metrics are highly recommended in that case. The 
classification evaluation metrics which were used are: Recall as shown in equation 1, Precision as shown in Eq. (2), F1 as 
shown in Eq. (3), Accuracy as shown in equation 4, and Area Under Curve. Recall measure computes the proportion of the 
observations that are correctly predicted for each class label. Precision measure computes the proportion of the observations 
that are tested correctly for each class label. F1 is the balance measure between precision and recall. The area under the 
curve measures the area under the ROC plot for each class label. Both F1 and Area Under Curve would be a good choice if 
data is not evenly distributed. 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (1) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (2) 𝐹1 = 2 × (𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  (3) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (4) 

where TP (True Positive) is the number of positive observations that are predicted as such. TN (True Negative) is the number 
of negative observations that are predicted as such. FP (False Positive) is the number of negative observations that are 
predicted as positive. FN (False Negative) is the number of positive observations that are predicted as negative.   
 
4. Methodology 
 
To examine the stability of machine learning algorithms in predicting dementia groups, two feature reduction methods were 
used that provide flexibility in changing the feature space. These methods are Information Gain (IG) and Principal 
Component Analysis (PCA). Information gain attempts to rank features based on measuring the information gain metric 
between the output feature and each input feature then a specific threshold is applied to select top predictive features.  
PCA is a feature dimensionality reduction attempt to reduce feature space into a smaller space by transforming a large set 
of features into a smaller one that still contains most of the information in the large set. Reducing feature space into a smaller 
space can reduce running costs but might affect expenses of accuracy. However, the trick is to trade a little accuracy for 
simplicity to make the data easier for exploration, analysis, and model construction.  
Multiple experiments were conducted to investigate the stability of Dementia prediction models. For each machine learning 
algorithm, both IG and PCA were applied to the employed dataset by changing the threshold. For the IG method, various 
thresholds were applied to select top-ranked features ranging from 20% to 100%. For example, for a threshold of 20%, the 
top 20% of all features in the dataset were selected. For PCA, different feature space dimensions were applied to range from 
2 to 8. For each threshold and dimension value, a machine-learning algorithm was applied to the reduced dataset, and 
evaluation measures were recorded also. Each model is validated by using 10-Fold cross-validation which separate the 
reduced dataset into 10 subsets. In each run, one data subset is used as testing and the remaining data subsets are used for 
training. Meanwhile, the evaluation measures are recorded for each model.  

  
5. Results and discussion 
  
This section presents the results obtained after conducting multiple experiments on the Dementia data set using different 
machine learning algorithms. The main objectives of these experiments are twofold: 1) to investigate the performance of 
the employed machine learning and 2) investigate their stability when changing feature space. In this study, the Information 
Gain was consulted in the first part of the empirical evaluation to reduce feature space by changing the threshold of selection 
from 20% to 100% with an increment of 10%. Initially, all features are ranked based on their Information Gain score from 
high to low. The process of selecting optimal features depends on assigning a threshold for the targeted score so any feature 
that falls within the top percentage is then selected. In other words, for 20%, the top 20% ranked features out of all features 
were selected. Each time a threshold was applied, and the top predictive features that are ranked by the Information Gain 
feature selection algorithm were selected. These features are supposed to have a great influence on detecting the group type 
of dementia disorder. Table 2 shows all features ranked according to the Information gain algorithm as explained in the 
methodology section. The threshold columns denoted by 20%, 30%, and so forth represent the features selected by that 
threshold – the selected features are denoted by  symbol. For example, for the 20% column, it can be observed that only 
CDR and MMSE features have been selected and used to construct machine learning models. One might ask why the 
features that are not relevant to the output variable were used, the answer is that the researchers need to examine the stability 
of machine learning models with and without irrelevant features. 
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Table 2  
Feature Ranking and selection according to Information Gain. The  means that the feature has been selected by the 
threshold mentioned in the column header 

Rank Feature IG value 20% 30% 40% 50% 60% 70% 80% 90% 100% 
1 CDR 0.724          
2 MMSE 0.336          
3 M/F 0.070          
4 nWBV 0.045          
5 EDUC 0.036          
6 SES 0.030          
7 MR Delay 0.023          
8 Visit 0.008          
9 ASF 0.003          
10 eTIV 0.002          
11 Age 0.002          

Tables 3 to 7 show the aggregate evaluation results for all labels using different selection thresholds of top predictive 
features. The values in the bold represent the most predictive models for each feature set that are selected by a threshold. 
Table 3 shows the results of all machine learning models in terms of the AUC measure. It can be observed that no one 
model can perform better than other models. Remarkably, both DT and NB can show somehow more accurate results than 
other models. This has also been confirmed by the results in Figure 5 that shows values of AUC for each machine learning 
model across different threshold values. DT and NB show stable accuracy which suggests that the changes in AUC across 
different thresholds. Although SVM can use different kernel functions to map data from low dimension to higher, it does 
not work efficiently for this complex structure dataset because it contains numerical and categorical data. All used models 
are supposed to support the nonlinear relationship between variables, but since SVM cannot treat input categorical variables 
in its implementation, only numeric input variables were used. This may explain why SVM could not surpass other 
prediction models. Surprisingly, the RF obtained less accurate results, even though that RF can treat both numerical and 
categorical variables and built upon the idea of ensemble learning.  

Table 3  
Results of AUC evaluation measure against different feature sets  

%of selected features by Information Gain 
Model 20% 30% 40% 50% 60% 70% 80% 90% 100% 

RF 0.919 0.955 0.896 0.930 0.901 0.890 0.903 0.893 0.901 
LR 0.927 0.955 0.917 0.930 0.890 0.850 0.852 0.842 0.885 
NB 0.940 0.953 0.953 0.954 0.963 0.963 0.966 0.967 0.967 

SVM 0.935 0.933 0.956 0.956 0.959 0.960 0.960 0.961 0.960 
DT 0.924 0.925 0.947 0.958 0.964 0.963 0.967 0.964 0.967 

kNN 0.938 0.903 0.931 0.951 0.956 0.956 0.960 0.958 0.958 
Ada 0.927 0.875 0.933 0.926 0.941 0.940 0.909 0.906 0.931 

 

 

Fig. 5. AUC results for the comparison between different machine learning models using IG 

According to Fig. 5, it can be noticed that LR, RF, and Ada are the most unstable models, whereas NB and DT are the most 
stable models with slight changes in AUC while changing the selection threshold. Also, there is an improvement in AUC 
when selecting more features despite some selected features are irrelevant according to Information Gain. Finally, the kNN 
model shows less accurate AUC results when dealing with a small threshold value, but the AUC improves when the 
threshold value increases. To investigate more on why kNN behaves badly over small threshold values, the researchers have 
tried to change the number of k nearest neighbors from 1 to 10 but still, the best result for kNN is so far from other results 
for small threshold values. Another factor that may increase the accuracy of kNN is the choice of feature weights during 
the voting process. Two approaches were tried; the first approach is using equal weights for all retrieved k nearest neighbors 
and the second approach is to use their distance to increase the weight of some labels over others. The latter gives us better 
results. Indeed, searching for optimal configurations within a large space of configuration possibilities is a time-consuming 
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task and needs optimization algorithms. However, the recorded results for kNN are those after searching manually for the 
best configurations that include k and weights. Surprisingly, the RF and AdaBoost models that are considered as ensemble 
algorithms did not beat DT across different feature selection thresholds. Tables 4 to 7 show results for other evaluation 
measures such as Accuracy, F1, Precision, and Recall. The results in these tables are relatively similar which suggests that 
kNN, DT, and NB are the most stable models with high values. These results are also confirmed by findings in Figures 6 to 
9. In conclusion, it can be found that ensemble methods such as RF and Ada boost cannot beat solo models such as NB, 
DT, and kNN. Also, the LR model obtained the worst results among different models. The solo models show improvements 
while increasing the selection threshold which confirms that using as many features as possible increases accuracy in spite 
that some of these features are irrelevant. 

Table 4  
Results of Accuracy evaluation measure against different feature sets 

Model %of selected features by Information Gain 
20% 30% 40% 50% 60% 70% 80% 90% 100% 

RF 0.944 0.928 0.871 0.930 0.901 0.890 0.903 0.893 0.901 
LR 0.928 0.946 0.917 0.930 0.890 0.850 0.853 0.842 0.885 
NB 0.946 0.946 0.946 0.946 0.941 0.938 0.938 0.938 0.938 

SVM 0.946 0.946 0.946 0.941 0.936 0.936 0.938 0.941 0.941 
DT 0.946 0.917 0.933 0.936 0.944 0.946 0.946 0.946 0.938 

kNN 0.946 0.903 0.946 0.946 0.946 0.946 0.946 0.946 0.946 
Ada 0.946 0.815 0.917 0.906 0.903 0.903 0.901 0.898 0.903 

 

 
Fig. 6. Accuracy results for the comparison between different machine learning models using IG 

Table 5  
Results of F1 evaluation measure against different feature sets 

Model %of selected features by Information Gain 
20% 30% 40% 50% 60% 70% 80% 90% 100% 

RF 0.944 0.928 0.871 0.930 0.901 0.890 0.903 0.893 0.901 
LR 0.928 0.946 0.917 0.930 0.890 0.850 0.852 0.842 0.885 
NB 0.946 0.946 0.946 0.946 0.941 0.938 0.938 0.938 0.938 

SVM 0.946 0.946 0.946 0.941 0.936 0.936 0.938 0.941 0.941 
DT 0.946 0.917 0.933 0.936 0.944 0.946 0.946 0.946 0.938 

kNN 0.946 0.903 0.946 0.946 0.946 0.946 0.946 0.946 0.946 
Ada 0.946 0.815 0.917 0.906 0.903 0.903 0.901 0.898 0.903 

 
Fig. 7. F1 results for the comparison between different machine learning models using IG 
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Table 6 
Results of Precision evaluation measure against different feature sets 

Model %of selected features by Information Gain 
20% 30% 40% 50% 60% 70% 80% 90% 100% 

RF 0.944 0.928 0.871 0.930 0.901 0.890 0.903 0.893 0.901 
LR 0.928 0.946 0.917 0.930 0.890 0.850 0.853 0.842 0.885 
NB 0.946 0.946 0.946 0.946 0.941 0.938 0.938 0.938 0.938 

SVM 0.946 0.946 0.946 0.941 0.936 0.936 0.938 0.941 0.941 
DT 0.946 0.917 0.933 0.936 0.944 0.946 0.946 0.946 0.938 

kNN 0.946 0.903 0.946 0.946 0.946 0.946 0.946 0.946 0.946 
Ada 0.946 0.815 0.917 0.906 0.903 0.903 0.901 0.898 0.903 

 

 
Fig. 8. Precision results for the comparison between different machine learning models using IG 

In this study, the second part of the empirical evaluation is to further examine the stability of the constructed prediction 
models in accurately predicting the Dementia group by using the PCA algorithm. The purpose of this validation is to ensure 
whether the accuracy of prediction models improve and keep stable or there are some fluctuations due to changes in the 
dimension of generated feature space. Specifically, The PCA algorithm is used to generate a new feature space with a 
different dimension that changes from 2 to 8. For each dimension, the empirical experiments were re-run on the new dataset 
and the same machine learning algorithms. The obtained results are recorded in Tables 8 to 12. The first remarkable 
observation is that all evaluation results are bad when the dimension of feature space is small, and these results are improved 
along with an increasing dimension of feature space. Furthermore, the PCA results, in general, are worse than the results of 
the first experiments that use Information gain for feature selection. This is because the PCA generates a new feature space 
that does not exist in the original dataset. 

Table 7  
Results of Recall evaluation measure against different feature sets 

Model %of selected features by Information Gain 
20% 30% 40% 50% 60% 70% 80% 90% 100% 

RF 0.947 0.928 0.871 0.930 0.901 0.890 0.904 0.893 0.901 
LR 0.928 0.950 0.917 0.930 0.890 0.850 0.853 0.842 0.885 
NB 0.950 0.949 0.950 0.950 0.945 0.942 0.942 0.942 0.942 

SVM 0.949 0.950 0.949 0.943 0.937 0.937 0.940 0.943 0.943 
DT 0.950 0.917 0.934 0.937 0.946 0.949 0.949 0.948 0.939 

kNN 0.950 0.904 0.950 0.950 0.950 0.950 0.950 0.950 0.950 
Ada 0.950 0.815 0.917 0.907 0.905 0.905 0.901 0.899 0.904 

 
Fig. 9. Recall results for the comparison between different machine learning models using IG 
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For AUC in Table 8, it can be observed that NB obtained accurate and stable results across different feature space dimension 
values. For the Accuracy metric in Table 9, it can be seen that NB and kNN are more predictive models. Similarly, Tables 
10, 11, and 12 show the same trend exists in Table 9.  

Table 8  
Results of AUC evaluation measure against different feature dimensions generated by PCA 

Model Feature dimension generated by PCA 
2 3 4 5 6 7 8 

RF 0.557 0.543 0.708 0.766 0.817 0.825 0.822 
LR 0.565 0.600 0.710 0.775 0.841 0.863 0.863 
NB 0.656 0.682 0.835 0.931 0.962 0.967 0.967 

SVM 0.630 0.664 0.805 0.888 0.905 0.917 0.917 
DT 0.633 0.623 0.783 0.901 0.934 0.942 0.938 

kNN 0.554 0.608 0.803 0.927 0.955 0.961 0.964 
Ada 0.583 0.585 0.677 0.759 0.819 0.810 0.825 

 
Table 9  
Results of Accuracy evaluation measure against different feature dimensions generated by PCA 

Model Feature dimension generated by PCA 
2 3 4 5 6 7 8 

RF 0.558 0.544 0.708 0.767 0.818 0.826 0.823 
LR 0.566 0.601 0.710 0.775 0.842 0.863 0.863 
NB 0.625 0.622 0.764 0.847 0.925 0.933 0.933 

SVM 0.603 0.609 0.737 0.815 0.845 0.855 0.850 
DT 0.622 0.582 0.708 0.828 0.898 0.874 0.863 

kNN 0.576 0.563 0.751 0.861 0.949 0.946 0.946 
Ada 0.579 0.576 0.670 0.745 0.812 0.810 0.818 

 
Table 10  
Results of F1 evaluation measure against different feature dimensions generated by PCA 

Model Feature dimension generated by PCA 
2 3 4 5 6 7 8 

RF 0.557 0.543 0.708 0.767 0.818 0.826 0.823 
LR 0.565 0.600 0.710 0.775 0.842 0.863 0.863 
NB 0.622 0.620 0.764 0.847 0.925 0.933 0.933 

SVM 0.600 0.605 0.737 0.814 0.844 0.854 0.849 
DT 0.621 0.582 0.707 0.828 0.898 0.874 0.863 

kNN 0.573 0.563 0.751 0.860 0.949 0.946 0.946 
Ada 0.577 0.576 0.670 0.745 0.812 0.810 0.818 

 
Table 11  
Results of Recall evaluation measure against different feature dimensions generated by PCA 

Model Feature dimension generated by PCA 
2 3 4 5 6 7 8 

RF 0.558 0.544 0.708 0.767 0.818 0.826 0.823 
LR 0.566 0.601 0.710 0.775 0.842 0.863 0.863 
NB 0.625 0.622 0.764 0.847 0.925 0.933 0.933 

SVM 0.603 0.609 0.737 0.815 0.845 0.855 0.850 
DT 0.622 0.582 0.708 0.828 0.898 0.874 0.863 

kNN 0.576 0.563 0.751 0.861 0.949 0.946 0.946 
Ada 0.579 0.576 0.670 0.745 0.812 0.810 0.818 

 
Table 12 
Results of Precision evaluation measure against different feature dimension generated by PCA 

Model Feature dimension generated by PCA 
2 3 4 5 6 7 8 

RF 0.557 0.544 0.708 0.767 0.818 0.826 0.824 
LR 0.565 0.600 0.711 0.775 0.843 0.863 0.863 
NB 0.626 0.623 0.764 0.849 0.928 0.937 0.937 

SVM 0.604 0.611 0.737 0.817 0.850 0.861 0.854 
DT 0.622 0.582 0.708 0.830 0.902 0.876 0.863 

kNN 0.577 0.564 0.751 0.863 0.952 0.950 0.950 
Ada 0.583 0.577 0.670 0.746 0.812 0.810 0.818 

Figs. (10-14) show the relationship between evaluation measure and feature space dimension for each machine learning 
model. The findings in these figures suggest that all models behave similarly with a bad performance at small feature space 
dimensions and these results getting improved while the dimension is increased.  
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Fig. 10. AUC results for the comparison between different machine learning models using PCA 

 

 
Fig. 11. Accuracy results for the comparison between different machine learning models using PCA 

 

 
Fig. 12. F1 results for the comparison between different machine learning models using PCA 
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Fig. 13. Precision results for the comparison between different machine learning models using PCA 

 
Fig. 14. Recall results for the comparison between different machine learning models using PCA 

6. Conclusion 

This paper investigates the stability of machine learning methods for predicting dementia in older people. Seven machine 
learning algorithms in addition to two feature reduction methods with different selection thresholds have been applied to 
the Dementia dataset. In each experiment, a new set of features were applied as explained in the methodology section. The 
results drawn from this comprehensive experimentation are: 1) Using Information gain to rank and select features would 
seem to be more efficient and stable than using PCA. 2) In general, there is no clear stability of all machine learning methods 
concerning all accuracy measures. 3) It was noticed that Support Vector Machine and Naïve Bayes are the top stable 
methods among all used machine learning methods. 4) Using high feature dimensions in PCA is better than using a small 
number of dimensions. 5) Surprisingly, ensemble learning methods such as Ada and Random forest did not show stable 
performance under different accuracy measures. 6) Finally, adding more features by incrementing the threshold of 
information gain resulted in an improvement in solo models although some of the added features may be irrelevant. The 
algorithms that showed consistent improvements are Support Vector Machine, Naïve Bayes, Decision tree, and k-Nearest 
Neighbors, while the ensemble methods such as Ada and Random Forest did not improve. From these results, it can be 
concluded that the Support Vector Machine and Naïve Bayes are the most stable methods. However, we doubt that such 
methods did not work well with low feature dimensionality even though all their accuracy values are superior to other 
methods. Also, we discourage using ensemble learning methods for predicting Dementia, under any conditional setting. 
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