
* Corresponding author.
E-mail address: jayanth@jainuniversity.ac.in (T. Jayanth Kumar)

© 2022 by the authors; licensee Growing Science, Canada.
doi: 10.5267/dsl.2022.6.003

Decision Science Letters 11 (2022) 473–484

Contents lists available at GrowingScience

Decision Science Letters

homepage: www.GrowingScience.com/dsl

An efficient hybrid genetic algorithm for solving truncated travelling salesman problem

S. Purusothama, T. Jayanth Kumarb*, T. Vimalab and K.J. Ghanshyamb

aDepartment of Mathematics, School of Advanced Sciences, VIT, Vellore-632014, Tamil Nadu, India
bDepartment of Mathematics, Faculty of Engineering and Technology, Jain (Deemed-to-be University), Kanakapura, Bangalore-562112, Karnataka,
India
C H R O N I C L E A B S T R A C T

Article history:
Received February 12, 2022
Received in revised format:
June 18, 2022
Accepted June 24 2022
Available online
June 24, 2022

 This paper considers a practical truncated traveling salesman problem (TTSP), in which the
salesman is only required to cover a subset of out of given cities (rather than covering all the
given cities as in conventional travelling salesman problem (TSP)) with minimal traversal
distance. Thus, every feasible solution tour contains exactly cities including the starting city.
However, extensive research on TSP has been received and various efficient solution techniques
including exact, heuristic, and metaheuristic algorithms are devoted, a very limited attention has
been given to TTSP models because of its solution structure. The TTSP model comprises two
types of problems including city selection i.e. as a salesman's trip need not include all the cities,
the challenge is to identify which combination of cities are to be visited and which sequence of
cities will constitute minimal traversal distance. A hybrid genetic algorithm (GA) comprising
sophisticated mutation operators is developed to tackle this problem efficiently. Comparative
computational findings suggest that the proposed GA has capability to outperform existing
approaches in terms of TTSP results. In addition, the proposed GA report improved results and
will serve as a basis for forthcoming TTSP studies.

.by the authors; licensee Growing Science, Canada 2220©

Keywords:
Truncated travelling salesman
problem
Genetic algorithm
Mutation strategies

1. Introduction

One of the most well known and widely studied NP-hard combinatorial optimization problems is the travelling salesman
problem (TSP) (Applegate et al., 2006; Stodola et al., 2022). The TSP involves determining the minimum closed tour to
cover all the given cities and finds several real-world applications that arises in logistics distribution (Elgesem et al., 2018;
Baniasadi et al., 2020), shortest path network (Fatthi et al., 2018), warehouse order picking (Madani et al., 2021), vehicle
routing (Demir et al., 2019), dairy beverage delivery (Palhares and Araújo, 2018) etc. Furthermore, the foraging behaviour
of birds, animals, and insects, which is governed by power-law functions, can also be better understood using the TSP
models (Stanley and Buldyrev, 2001). Due to its diversified applications, several practical models have been addressed by
transforming the traditional TSP structure. According to Bhavani and Murthy (2006), selection of ()k n< out of n cities

is known as truncation and there exists
kCn feasible solutions for the TSP. However, the problem becomes more difficult

when higher values of n and k . Thus, exact algorithms will not work for higher dimensional problems and it is inevitable
to develop an efficient heuristic or metaheuristic algorithm. In this study, a real-world variant of TSP and an exceptional
case of the prize collection TSP (PCTSP) called truncated Travelling salesman problem (TTSP) is addressed. The present
study mainly focuses on the developments of TTSP. The TTSP received little attention from the researchers as compared
to TSP and its other variants. The TTSP is also known as k-TSP in some studies (Venkatesh et al., 2018). Saksena and

 474

Kumar (1966), Ibaraki (1973), and Laporte et al. (1984) are few investigated TTSP with an added constraint that the
salesman must visit a subset of k cities.
The objective of TTSP is to identify a set of k out of n cities as well as to find the permutation of k cities that optimizes
the total distance covered by the salesman. The TTSP finds several applications in routing scenarios and rural health care
delivery. For instance, logistic distribution of goods delivery, the distribution begins in the home/starting/depot city, visits
only a restricted number of cities and concludes the tour at the depot city. Fig. 1 and Fig. 2 demonstrate the difference
between TSP and TTSP, respectively. In Fig.1, the salesman starts from the home city, travels through the remaining 7
cities only once and return to the home city with the minimal total travel distance. Although, the salesman in Fig. 2 begins
from the depot city, not necessary to visit all the given 8 cities but required to visit only 5()k n= < cities.

In the literature, some solution techniques such as heuristics and exact approaches are presented for solving TTSP and its
variants. Gensch (1978) presented TTSP as a time restriction based industrial scheduling problem. In this model, the
salesperson must select a subset of cities to be covered with shortest distance within the time constraint. The Lagrangian
relaxation based branch and bound method has been devoted as a solution to this problem, and it is capable of addressing
problems of higher dimensions. Mittenthal and Noon (1992) suggested an efficient heuristic approach that combines an
insertion and deletion strategies for solving TTSP with an added constraint and its computational results demonstrate its
usefulness. Westerlund et al. (2006) studied TTSP and an efficient heuristic decomposition based column generation
approach has suggested to tackle it. Giardini and Kalmár-Nagy (2011) has applied TTSP to multiagent planning scenarios
that are solved through a hybrid Genetic algorithm (GA) and its performance is demonstrated with computational results.
According to Stetsyuk (2016), the task of determining the k-node least cycle is more challenging than determining the
shortest Hamiltonian cycle with n-nodes. Venkatesh et al. (2018) has developed the first metaheuristic namely general
variable neighbourhood search algorithm (GVNS) that integrates two neighbourhood strategies such as exchange and swap
processes to solve k-TSP effectively. Pandiri and Singh, (2020) have developed two multi-start heuristic algorithms for
solving k-TSP. More recently, Singamsetty et al., (2021) has investigated a variant of TTSP called Open TTSP and
developed an efficient hybrid genetic algorithm. Several researchers have shown that the Genetic algorithm (GA) is more
proficient in dealing with TSP and its variants than any other metaheuristic technique (Bahaabadi et al., 2012; Singh et al.,
2018; Ha et al., 2020; Sharma and Jain, 2021).

In addition to the aforementioned studies, the truncation aspect has been considered in various optimization contexts
including merchant sub tour problem (Verweij and Aardal (2003)), truncated M-TSP (Bhavani and Murthy, 2006), spanning
networks (Kumar & Purusotham, 2017; Adasme & Dehghan Firoozabadi, 2020), wireless sensor networks (Adasme et al.,
2018), bicriteria TTSP with time threshold (Kumar Thenepalle and Singamsetty, 2018), green communication in
underground mines (Xu et al., 2018), profitable tour problem (Dasari et al., 2021), open TTSP (Singamsetty et al., 2021),
LPG delivery problem (Singamsetty & Thenepalle, 2021), k-cardinality unbalanced assignment problem (Prakash et al.,
2022). With the motivation from the above-cited works, the present study address the TTSP and develop a simple and
efficient metaheuristic algorithm called the nearest neighbourhood based Genetic algorithm (GA) with complex mutation
strategies that provide the best results. The GA is the first evolutionary technique for the TTSP, to the author’s best
information.

The following is how the rest of the paper is organised: The definition and formulation of the TTSP will be provided in the
next section. The GA and its operators will be described in Section 3. The computational findings are demonstrated in
Section 4. Section 5 accomplishes with a conclusion and a description of the scope of future work.

Fig. 1. An arbitrary 8 city TSP solution Fig. 2. An arbitrary 5 city TTSP solution

2. Truncated Travelling Salesman Problem

The following notations are used in the present model

S. Purusotham et al. / Decision Science Letters 11 (2022)

475

Notations Description
(,)G G N E= An undirected complete edge-weighted graph

{1, 2,..., }N n= Node set with n cities/nodes

{(,) / , ; }E i j i j V i j= ∈ ≠ Edge set with 2n n− edges
{0,1}, (,)ijx i j E∈ ∀ ∈ A binary variable

ij n n
D d

×
 =   A symmetric distance matrix defined over E

; (; , 0)ij ij ji ii ijd d d d d= = ∞ > Distance between the cities i and j

k Truncation parameter, the cities that the salesman required to cover (i.e. k out
of n)

(| | , ,)S S k where S V k n= ⊆ ≤ A subset with k cardinality
{0,1},iy i V∈ ∈ Binary variable related to visited cities

The travelling salesman problem (TSP) over G is the problem of determining a Hamiltonian cycle of length n with
shortest distance. The present study is mainly dedicated on solving symmetric truncated travelling salesman problem
(TTSP), which is a variant of classical TSP. The TTSP can be mathematically formulated over (,)G G N E= defined on a

symmetric distance matrix ij n n
D d

×
 =   with n cities and 2n n− edges. Each edge of G indicate the path between two

cities and it is assigned with positive distance. The salesman cover exactly k out of n cities, starting and ending at home

city and each city is to be covered by salesman exactly once. On covering k cities, there exists (1)!
n

k
k
 

× − 
 

 possible

feasible solutions. It is note that throughout this study, starting city is assumed the city 1. The TTSP aims to determine an
optimal tour of covering k out of n cities with minimal traversal distance. A sub tour of length k is called a tour/feasible
tour/ feasible solution and a tour of length that is less than k is called a sub tour/illegitimate tour. The binary variable ijx

takes 1 when the salesman covers thj city from thi city, and 0ijx = otherwise. Here jy , the binary variable that assumes

1 when the salesman visits city j and 0 otherwise. The mathematical model of TTSP is given as follows:

The salesman traversal distance can be minimized using the following objective function

1 1
Minimize

n n

ij ij
i j

Z d x
= =

=
(1)

Constraint set (2-4) is imposed to ensure the salesman begin and conclude his tour at the starting city (i.e. city 1) exactly
once and traverse a city and leave from it at most once.

1 1
2 2

1
n n

j i
j i

x x
= =

= = 
(2)

1
1; &

n

ij
i

x j V i j
=

≤ ∀ ∈ ≠
(3)

1
1; &

n

ij
j

x i V i j
=

≤ ∀ ∈ ≠
(4)

To ensure that any feasible solution includes k edges, Constraint (5) is enforced. However, it does not promise in giving
feasible solutions with those k edges. For example, if 8 & 4n k= = , and (1,3), (3, 2), (6, 5), (5,1) be four edges.
This set of edges cannot construct a feasible tour of length 4. Moreover, the cities contained in {1, 3, 2, 5, 6}S = do not

match with the desired cardinality | | 4S k= ≠ . The resulting tour must be a cycle that begins and concludes at the starting
city. Thus, this constraint alone is not enough to judge the feasible tour.

 476

1 1

n n

ij
i j

x k
= =

=
(5)

Degree of each city in the tour should be equal to two. To preserve this, Constraint (6) is presented and it assures that
whenever the salesman visits a city, he must depart from that city.

1 1
0;

n n

ij jp
i p

x x j V
= =

− = ∀ ∈ 
(6)

However, Constraint (6) cannot control the formation of illegitimate tours with length smaller than k . This can be validated
with the example: if 5k = , the two illegitimate tours 2 3 2− − and 5 4 6 5− − − involves 5 cities and 5 edges that can
optimize the TTSP. Hence, Constraint (7) is introduced to avoid the formation of illegitimate tours of length less than

1.k −

1 1 2 2 3 11 1 1 2... 1; , ... /{1}
i i ip p p p p p p p ix x x x x k p p p V
−

+ + + + + ≤ − ∈ (7)

To ensure that any feasible tour should include exactly k cities, Constraint (8) is imposed. Finally, the binary variables ijx
and iy are specified in Constraint (9).

1

n

i
i

y k
=

=
(8)

{0,1}& {0,1}ij ix y∈ ∈ (9)

3. Genetic algorithm

The classical Genetic algorithm (GA), which is most extensively used metaheuristic in evolutionary computation
(Goldenberg, 1989), is provided first, followed by a detailed discussion of the proposed algorithm. The survival of the fittest
approach was first presented by Holland in 1975. The GA, by its nature, begins with a pool of preliminary solutions known
as the initial population/ chromosomes where all genetic data is kept. Each number on the chromosome is considered as a
gene. In addition, a fitness value is calculated to assess chromosome effectiveness. Each time, based on their fitness values
two best parent chromosomes are randomly chosen from the population. The crossover operation is then applied over those
two chromosomes that results in two new chromosomes for the next generation. If the newly found chromosomes have
higher fitness values, then they will replace the old ones. The newly generated chromosomes are then subjected to a mutation
operation to preserve the population's variability. Repeat the selection, crossover, and mutation operations to produce
numerous novel chromosomes until the size of the population matches that of the old. The updated population is then used
to begin the iteration. Because superior chromosomes are more likely to be designated for crossover, and the newer
chromosomes produced are more likely to transfer the properties of their parent chromosomes. Until the predefined
conditions are fulfilled, the search process will continue for several generations. This complete procedure is known as
classical GA (Hariyadi et al., 2020). Certain studies, on the other hand, have witnessed a crossover-free GA. For example,
Liu & Kroll (2016) designed a GA with no crossover operator but comprised composite mutation operators (slide, inversion,
swap, insertion, and various combinations) to solve the multi-robot job allocation problem. The crossover-free GA achieves
superior outcomes than the classical GA, according to the experimental results provided in this work. Different GA
approaches may use different encoding, crossover, and mutation operators, resulting in search process divergence. As a
result, it's critical to execute the above actions to ensure that the optimal/suboptimal solution is obtained. A hybrid GA with
sophisticated mutation operators (swap, slide, reverse) and no crossover operator is designed to solve TTSP effectively. The
essential components of the proposed GA for TTSP are detailed in the subsections below.

 3.1. Chromosome representation

For an efficient GA, an appropriate chromosome representation must be used to solve TSP and its variants. The TSP solution
can be generally denoted as a chromosome in different methods comprising path representation (Larranaga et. al., 1999),
matrix representation (Khan et al., 2009), double chromosome representation (Riazi, 2019) etc. According to Hussain et al.
(2017), path representation is extensively used to tackle TSP and its allied models. In this representation, the chromosome
respective TSP solution is given by an arrangement of n distinct integers. A chromosome can be denoted as

1 2 3(, ,g ,...)ng g g with the size of n genes, where , 1jg V j n∈ ≤ ≤ indicates a gene (city) in the chromosome. In

our study, a modified path representation is used to represent the TTSP solution. Instead of generating a chromosome with

S. Purusotham et al. / Decision Science Letters 11 (2022)

477

the size of n genes, it is enough to use a chromosome with the size of k genes (since the TTSP tour involves only k
genes). Such a path representation with the length of k genes is simple to implement, which will be considered as TTSP
solution. For example, if 10n = , 8k = , then a sample TTSP solution through path representation is demonstrated in Fig.
3. By attaching the starting city at the beginning and the ending to the chromosome, then the resultant tour 1, 4, 6, 7, 2, 10,
3, 5, 1 is achieved.

Fig. 3. An example solution of TTSP with 8 out of 10 cities

3.2. Initial population encoding

A finite set of chromosomes of a certain size is known as the initial population. This set consists of valid chromosomes,
which are created by using the nearest neighbourhood technique and inserting them into the set one by one. It is clear that
the optimal solution tour contains the shortest distance related edges. Thus, the distance matrix elements are arranged in
increasing order together with their indices. The first chromosome is constructed by picking the shortest distance associated
first city and applying the nearest neighbour heuristic (NNH). A second chromosome is formed by picking the next smallest
distance related initial city and employing the NNH. In this manner, a set of 2() / 2n n− valid unique chromosomes are
produced for n n× symmetric matrix. Only preferred best chromosomes can then be selected for subsequent processing.
Algorithm 3.1 shows the pseudo-code for the NNH. In Fig. 3, the chromosome denote one of the feasible solutions of the
TTSP. The series of integers also known as cities are encoded in the genes. Such a chromosome representation is known
as path representation, and it is used in this study.

Algorithm 3.1. Nearest neighbour heuristic pseudo-code
begin Nearest_Neighbour
Initialization
Distance matrix
Sort the elements of the distance matrix along with respective indices,
route= ∅
Create initial population with nearest-neighbour heuristic
 while termination condition not met do
 find the least distance corresponding nodes
 select the first node as current city from the two nodes
 start city → current city
 route=route ∪current city
 mark the current city as visited
 nearest (current city) → next city
 If route length=desired length, end.
 else, nearest city → current city
 end
Output salesman route with desired length
end Nearest_Neighbour

3.3. Fitness function

The fitness values of all chromosomes in the population are computed using the fitness function. One of the critical steps
in GA is the selection strategy, which is based on the fitness value. Higher fitness value chromosomes are always having a
great probability of being picked for the next generation. The objective function (1) in our study is assumed to be the fitness
function. As a result, the higher fitness value chromosome certainly possesses the smallest distance, thus, a higher genetic
chance of being picked. The fitness value in the TTSP is nothing but the salesman's total covering distance when touring
cities.

3.4. Selection operator

It is one more important part of the GA since it has an impact on its performance. The standard roulette wheel approach is
employed as the GA selection operator. Depending on the chromosome fitness value, it chooses a chromosome from its
population to pass into a reproducing pool.

 478

3.5. Mutation operator

After the selection operation, mutation operation is executed. Its goal is to escape the GA from becoming stuck in a local
optimum and boost the population's evolutionary divergence. The complex mutation operator, which includes the Swap,
Reverse swap/Flip, and Slide processes, is used in this work. This complex operator helps to determine the shortest distance
in a limited time. A parent chromosome is selected based on a mutation probability mP . Two separate positions are picked
at random from the parent chromosome for a swapping activity, and the genes of these two positions are swapped. In a
reverse swap process, two distinct places to define the segment are chosen, and the genes between these positions are

swapped. Similarly, two distinct places (say, thi and thj positions) are chosen for a sliding operation. A new offspring is

generated by eliminating the gene in thi point and replicate the same in thj point of the parent chromosome. Therefore,

genes at (1),(2)i i+ + places will be shifted to thi and (1)thi + places, respectively and so on. In the same manner, the

gene at thi position is shifted to thj position and the gene at thj place should be relocated to (1)thj − place. Figures 4-6
show illustrations of Swap, Reverse swap/Flip, and Slide strategies, respectively.

Fig. 4 An illustration for swap operation Fig. 5 An illustration for reverse swap operation

Fig. 6 An illustration for slide operation

3.6. GA parameters

The algorithm's performance is dependent on the parameters' values, such as population size, mutation probability rate, and
termination criterion. The population size refers to the number of chromosomes in any single generation and it assumes to
be large enough to be 100 in this study. Crossover operator is not addressed in this study. However, a complex mutation
operator will fulfil its purpose. The mutation probability rate ()mP reveals how often mutations occur to the parts of the

chromosome. This operator effectively maintains the diversity in the population. Usually, mP varies from 0.001 and 0.1.
To our study, it is assumed as 0.01. Maximum number of generations is to be considered as the end condition for the present
GA. The proposed GA is depicted in Fig. 7.

Fig. 7. Flowchart of the proposed methodology

S. Purusotham et al. / Decision Science Letters 11 (2022)

479

4. Computational results

This section presents computational results. To produce new children in each generation, the proposed GA employs roulette
wheel selection and complex mutation (Swap, Reverse Swap, and Slide) operators. The proposed GA was written in
MATLAB R2017a on a PC with an Intel Core i3 2.00 GHz processor and 4GB of RAM running Windows 10 Pro 64 bit.
Unlike traditional TSP, no benchmark test instances are available to check TTSP. As a result, the TSPLIB benchmark
instances are used to generate TTSP instances. Nevertheless, the TTSP and TSP models are not same, but standard test
instances and their optimal solutions may be beneficial in testing the GA’s competency. The benchmark examples were
Euclidean, 2-D symmetric, had different node scales and ranging from 14 to 200 cities.

 A comparison of our technique against the general variable neighbourhood search (GVNS) with various neighbourhood
structures suggested by Venkatesh et al. (2018) is performed to assess the competency of the proposed GA. This comparative
study is performed on the same benchmark instances as used in Venkatesh et al. (2018) and a overall 44 benchmark
instances. The reference cited in this paragraph reports the results of GVNS with different neighbourhood structures in
terms of three parameters namely, best, worst and average solutions on benchmark instances for distinct node scales. In this
study, the comparison is done on the two parameters namely best and worst solutions. The developed GA is run ten times
on each test instance independently, and the best and worst results are reported after each run. Tables 1, 2 and 3 provide
comparative results of the present GA versus the GVNS techniques stated above. Tables 1, 2 and 3 are only varying by k

value, which is fixed as
3*, & ,

4 2 4
n n nk k k     = = =          

 respectively.

The first column in each of these tables, Instance, contains the test instance name followed by total cities at the end. The
size of the benchmark instance and the truncation parameter respectively denotes the next two columns n and k . The Best
and Worst labelled columns represent the best and worst solutions generated by different GVNS techniques and by proposed
GA, respectively. Finally, the column Dev. % denotes the best-known solution deviation percentage, which is evaluated
using the formula (10) by utilizing the best-known and best solutions found by the present GA. However, the deviation (%)
takes absolute values, both positive and negative values has considered. Here, positive deviation indicates that the solution
found by developed GA is superior than best-known solution (BKS). Negative deviation; on the other hand, suggest that
the best-found solution (BFS) is worse than the BKS. Both the solutions are identical when it is zero deviation.

% 100Best knownGVNS Solution Best GA SolutionDeviation
Best knownGVNS Solution

−= ×

(10)

Table 1 reports the best and worst solutions found by the proposed GA tested on 44 test instances with truncation parameter

4
nk  =   

. Of the 44 test instances, it is revealed that for 32 cases, the BKS and BFS are identical. For 6 cases, GA solutions

are worse than BKS and for 6 cases, the GA solutions are better than BKS. It is also worth noting that the negative deviation
ranges from 0.93% to 6.42%− − , where as positive deviations varying from 3.20% to 47.91% . Similarly, in Table

2, we considered the similar benchmark instances as used in Table 1 but with distinct
2
nk  =   

. Of the 44 test cases, it is

seen that for 24 cases coincides the BKS and BFS. For 5 cases, GA results are worse than BKS and for 15 cases, the GA
solutions are better than BKS. It is also evident that the negative deviation varies from 0.57% to 3.41%− − , where as
positive deviations varying from 0.11% to 59.38%. Finally, in Table 3, the similar benchmark instances has considered

as used in Table 1 but with distinct
3*

4
nk  =   

. Of the 44 test cases, it is observed that for 21 cases coincides the BKS

and BFS. For 6 cases, GA results are worse than BKS and for 17 cases, the proposed GA found improved solutions than
BKS. It is also evident that the negative deviation varies from 0.56% to 3.94%− − , while positive deviation ranging
from 0.11% to 56.18%.

From overall observations, it is evident that the proposed GA outperforms the existing GVNS approach and certainly
provides the best solutions. Note that the improved solutions in all three tables are reported in boldface. Figure 6 depict the
solutions produced by the proposed GA for the test instance burma14 with various k values (3, 7, 10). The cities are
depicted with star symbols marked with their respective city numbers in all plots, and the home city where the salesperson
begins and concludes his trip is indicated as a red - coloured diamond symbol. This figure evidently show the how k value
play a key role in in the salesman tour and its traversal distance.

 480

(a) 3 &distance 280k = = (b) 7 &distance 1236k = = (c) 10 &distance 1575k = =

Fig. 8. Salesman route plans for burma14 with distinct k values by proposed GA

Table 1

Results of proposed GA Vs. GVNS on benchmark instances with
4
nk  =   

Instance n k GVNS 1()N GVNS 2()N GVNS 1 2()N N+ Proposed GA Dev.
(%) Best Worst Best Worst Best Worst Best Worst

bayg29 29 7 350 350 350 357 350 350 350 350 0
bays29 29 7 418 418 418 418 418 418 418 425 0
berlin52 52 13 686 707 742 763 679 679 679 679 0
bier127 127 31 11477 11941 11994 13258 10747 10770 11050 11451 -2.59
burma14 14 3 359 359 359 359 359 359 280 331 22
ch130 130 32 1319 1415 1373 1598 1130 1130 1130 1220 0
ch150 150 37 1354 1444 1483 1491 1276 1276 1294 1431 -1.41
d198 198 49 5211 5236 5250 5275 5002 5127 5002 5248 0
dantzig42 42 10 145 158 155 156 145 145 145 149 0
eil101 101 25 149 149 155 155 107 108 108 117 -0.93
eil51 51 12 83 83 83 83 82 82 82 84 0
eil76 76 19 119 120 129 130 102 117 102 107 0
fri26 26 6 243 243 243 243 243 243 243 243 0
gr137 137 34 18742 18764 18742 18764 17509 17509 18634 19612 -6.42
gr17 17 4 234 234 245 245 234 234 234 234 0
gr21 21 5 324 324 324 324 324 324 324 324 0
gr24 24 6 264 264 264 264 264 264 264 264 0
gr48 48 12 874 874 984 984 874 874 874 874 0
gr96 96 24 11383 12031 11383 12031 10821 11041 9543 9543 11.81
hk48 48 12 2850 2850 3304 3304 2827 2827 2827 3135 0
kroA100 100 25 5318 5341 6226 6335 5050 5050 5203 5203 -3.02
kroA150 150 37 6742 6756 7286 7806 6295 6648 6045 6045 3.97
kroA200 200 50 7998 8273 7998 8273 6826 6961 6607 6937 3.20
kroB100 100 25 4605 4605 4930 4938 4605 4605 4303 4495 6.55
kroB150 150 37 7479 7573 7802 7896 6120 6180 6368 6368 -4.05
kroB200 200 50 8175 8381 8175 8381 6100 6539 6100 6353 0
kroC100 100 25 6248 6248 6577 6577 4967 5363 4967 5058 0
kroD100 100 25 5350 5485 5495 5579 4762 4787 4762 4928 0
kroE100 100 25 3905 4014 4569 4722 3905 3910 3905 3933 0
lin105 105 26 2779 2803 2881 2905 2606 2606 2606 2613 0
pr107 107 26 8615 8705 9266 9582 8443 8443 8443 8518 0
pr124 124 31 14516 14639 15618 17016 14325 14325 14325 16252 0
pr136 136 34 24315 25528 24315 25538 21367 23857 21367 23678 0
pr144 144 36 14437 14437 14437 14437 14327 14327 14327 14327 0
pr152 152 38 20029 20029 20029 20029 20029 20029 20029 20200 0
Pr76 76 19 27179 27179 28464 28464 23450 23450 23450 25606 0
rat195 195 48 584 598 648 705 565 575 565 570 0
rat99 99 24 302 302 305 305 291 291 291 298 0
rd100 100 25 1586 1607 1675 1696 1438 1500 1438 1455 0
St70 70 17 120 120 120 120 120 120 120 132 0
Swiss42 42 10 192 192 192 192 192 192 100 102 47.91
U159 159 39 9392 9459 9534 9601 9085 9085 9085 9863 0
Ulysses16 16 4 935 935 935 935 935 935 935 976 0
Ulysses22 22 5 747 747 970 970 747 747 747 752 0

14 16 18 20 22 24 26
X Coordinate

92

93

94

95

96

97

98

99

Y
C

oo
rd

in
at

e

 4

 5

 1

 2

 3

 6

 7

 8

 9

10

11

12

13

14

Cities
Home City
Salesman Tour

14 16 18 20 22 24 26
X Coordinate

92

93

94

95

96

97

98

99

Y
C

oo
rd

in
at

e

 7

 8

13

 1

 2

 3

 4

 5

 6

 9

10

11

12

14

Cities
Home City
Salesman tour

14 16 18 20 22 24 26
X Coordinate

92

93

94

95

96

97

98

99

Y
C

oo
rrd

in
at

e

 9

 1

 2

 3

 4

 5

 6

 7

 8

10

11

12

13

14

Cities
Home City
Salesman Tour

S. Purusotham et al. / Decision Science Letters 11 (2022)

481

Table 2

Results of proposed GA Vs. GVNS on benchmark instances with
2
nk  =   

Instance n k GVNS 1()N GVNS 1()N GVNS 1 2()N N+ Proposed GA Dev. (%)
Best Worst Best Worst Best Worst Best Worst

bayg29 29 14 643 643 686 744 626 626 626 644 0
bays29 29 14 784 784 826 826 733 733 733 751 0
berlin52 52 26 2163 2163 2269 2269 2006 2006 1876 1876 6.48
Bier127 127 63 26835 27935 28900 31153 26107 26338 26107 26536 0
burma14 14 7 1298 1298 1366 1366 1272 1272 1236 1236 2.83
ch130 130 65 2930 2952 3145 3464 2576 2653 2573 2590 0.11
ch150 150 75 3140 3148 3543 3650 2935 3029 2935 3114 0
d198 198 99 7378 7458 7543 7623 7086 7149 7086 7458 0
dantzig42 42 21 284 285 296 310 260 260 260 272 0
eil101 101 50 242 252 276 281 234 239 242 250 -3.41
eil51 51 25 198 201 198 201 175 175 175 188 0
eil76 76 38 233 233 252 254 219 222 219 234 0
fri26 26 13 446 446 489 489 414 414 414 425 0
gr137 137 68 31933 32012 33930 34011 30897 31784 31784 36567 -2.87
gr17 17 8 517 517 517 517 517 517 517 517 0
gr21 21 10 982 999 918 918 918 918 918 918 0
gr24 24 12 512 512 512 512 504 504 504 534 0
gr48 48 24 1925 1986 2034 2095 1925 1925 1925 1951 0
gr96 96 48 23653 24297 23844 25609 22027 22196 19876 19876 9.76
hk48 48 24 4759 4759 5409 5526 4759 4759 4759 5146 0
kroA100 100 50 11775 11893 12646 12754 10204 10208 10050 10117 1.50
kroA150 150 75 12834 12834 15061 15666 12722 12762 12429 12429 2.30
kroA200 200 100 15435 15732 16159 16620 14379 14542 13965 13965 2.87
kroB100 100 50 11694 12238 11694 12238 9917 10328 9638 9638 2.81
kroB150 150 75 13676 14192 15329 15645 12040 12350 12040 12105 0
kroB200 200 100 15713 16106 16593 17275 13113 14051 13113 13877 0
kroC100 100 50 12991 13181 12991 13181 9729 9820 9729 10382 0
kroD100 100 50 11498 11626 11498 11626 9614 9705 9227 9823 4.02
kroE100 100 50 10597 10950 11430 11980 10053 10065 9576 9988 4.74
lin105 100 52 6130 6360 6130 6360 5920 5944 5954 5980 -0.57
pr107 107 53 19131 19775 19425 20271 18028 18028 18028 18079 0
pr124 124 62 25038 25038 27488 29355 22998 24431 22998 24945 0
pr136 136 68 50303 52668 50303 52668 47909 47919 47909 50728 0
pr144 144 72 29283 34914 29283 34914 28964 34644 28059 28059 3.12
pr152 152 76 43976 44433 44094 45211 41641 43403 38863 39142 6.67
Pr76 76 38 44675 44849 51378 52764 41813 41970 42638 44481 -1.97
Rat195 195 97 1176 1217 1264 1342 1146 1153 1160 1163 -1.22
rat99 99 49 622 622 638 657 574 585 574 587 0
rd100 100 50 4012 4033 4052 4073 3392 3554 3291 3327 2.97
St70 70 35 302 311 302 311 302 306 273 273 9.60
Swiss42 42 21 469 515 469 515 458 458 186 186 59.38
U159 159 79 18841 19850 22879 23033 18491 18556 18841 21040 0
Ulysses16 16 8 2210 2232 2362 2362 1685 1685 1685 1959 0
Ulysses22 22 11 2489 2489 2498 2518 1902 1958 1902 2022 0

 482

Table 3

Results of proposed GA Vs. GVNS on benchmark instances with 3
4

nk ∗ =   

Instance n k GVNS 1()N GVNS 1()N GVNS 1 2()N N+ Proposed GA Dev. (%)
Best Worst Best Worst Best Worst Best Worst

bayg29 29 21 1028 1028 1055 1113 999 999 1028 1037 -2.90
bays29 29 21 1204 1204 1246 1246 1194 1194 1194 1198 0
berlin52 52 39 4555 4642 4860 4947 4213 4441 4176 4253 0.87
Bier127 127 95 54291 56616 54490 56815 50284 50903 50764 52990 -0.95
burma14 14 10 1693 1754 1643 1656 1642 1642 1575 1575 4.08
ch130 130 97 4403 4770 4719 5139 4213 4260 4158 4226 1.30
ch150 150 112 5255 5370 5311 5426 4637 4690 4720 4729 -1.78
d198 198 148 9795 10037 10045 10269 9363 9483 9363 9542 0
dantzig42 42 31 478 476 478 476 442 457 439 439 0.67
eil101 101 75 424 426 458 467 406 408 406 414 0
eil51 51 38 309 309 316 327 287 287 287 293 0
eil76 76 57 372 373 382 387 342 355 342 360 0
fri26 26 19 682 682 689 689 601 601 601 601 0
gr137 137 102 52699 53282 52699 53282 47465 48623 48623 50674 -2.43
gr17 17 12 951 951 951 951 951 951 951 951 0
gr21 21 15 1565 1582 1565 1582 1501 1501 1501 1501 0
gr24 24 18 852 852 852 852 844 844 844 886 0
gr48 48 36 3548 3627 3548 3627 3333 3352 3234 3244 2.97
gr96 96 72 41504 43679 41504 43679 31717 32965 31095 31153 1.96
hk48 48 36 7631 7883 7963 8165 7400 7411 7357 7357 0.58
kroA100 100 75 16288 16436 18256 18580 15740 15901 15357 15357 2.43
kroA150 150 112 20951 21457 21792 22475 18809 19223 18295 19223 2.73
kroA200 200 150 23898 25053 24262 25677 20135 20469 20135 21037 0
kroB100 100 75 16535 17282 18663 19238 15346 15493 15346 16363 0
kroB150 150 112 20951 22550 21876 22550 17349 17672 17349 17963 0
kroB200 200 150 25058 26124 25058 26124 20459 21272 21266 21725 -3.94
kroC100 100 75 17531 17739 18465 19047 14871 16738 14835 14835 0.24
kroD100 100 75 17079 17243 17721 17942 15630 15793 14759 14770 5.57
kroE100 100 75 16169 16604 17771 18506 15179 15236 15179 15882 0
Lin105 105 78 9444 9844 9469 9877 8999 9034 8999 9119 0
pr107 107 80 40731 41687 40959 42699 38579 39930 37605 37605 2.52
pr124 124 93 39978 40846 41102 43281 39203 39423 39423 41017 -0.56
pr136 136 102 78807 82446 78807 82446 70790 74732 70790 72819 0
pr144 144 108 48403 54366 48878 54823 44657 50147 41703 41720 6.61
pr152 152 114 59070 59527 59926 61777 56727 57075 52393 52498 7.64
Pr76 76 57 67800 68492 70925 77449 64990 65199 64918 66329 0.11
rat195 195 146 1787 1815 1890 2064 1713 1718 1713 1777 0
rat99 99 74 947 994 947 994 870 870 870 910 0
rd100 100 75 6247 6268 6247 6268 5175 6136 5175 5539 0
St70 70 52 482 487 494 510 477 486 454 455 4.82
Swiss42 42 31 773 918 773 918 760 760 333 368 56.18
U159 159 119 31296 31895 31296 31895 27612 28182 27612 27621 0
Ulysses16 16 12 3184 3264 3184 3264 3183 3183 3183 3385 0
Ulysses22 22 16 3110 3124 3240 3254 2968 2968 2968 3084 0

5. Conclusion

We have modelled, executed and tested a hybrid Genetic algorithm (GA) with composite mutation strategies for the TTSP.
This algorithm successfully handles both subset collection and arrangement of the cities for the TTSP. To assess the
performance, this algorithm tests 44 different sized benchmark instances with different truncation values and its results are
compared with the results of existing GVNS with various neighbourhood strategies. Computational results exhibit the
competence of the proposed GA over the existing GVNS algorithm. Furthermore, for many test cases, the proposed GA
report improved results than the results of the GVNS algorithm. Our proposed GA approach being the first evolutionary
algorithm for the TTSP, will act as a benchmark for future work on TTSP. Generating a good initial population for the
TTSP and implementation of effective mutation operators using GA is still a challenging problem. Developing these things
may be considered as a future scope of research.

S. Purusotham et al. / Decision Science Letters 11 (2022)

483

References

Adasme, P., & Dehghan Firoozabadi, A. (2020). Degree-Constrained-Minimum Spanning Tree Problem. Complexity, 2020.
Adasme, P., Soto, I., & Seguel, F. (2018, August). Finding degree constrained k-cardinality minimum spanning trees for

wireless sensor networks. In International Conference on Mobile Web and Intelligent Information Systems (pp. 51-62).
Springer, Cham.

Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2006). The traveling salesman problem: a computational study.
Princeton university press.

Bahaabadi, M.R., Mohaymany, A.S., Babaei, M.: An Efficient crossover operator for travelling salesman problem.
International Journal of Optimization in Civil Engineering 2(4), 607–619 (2012).

Baniasadi, P., Foumani, M., Smith-Miles, K., & Ejov, V. (2020). A transformation technique for the clustered generalized
traveling salesman problem with applications to logistics. European Journal of Operational Research, 285(2), 444-457.

Bhavani, V., & Murthy, M. S. (2006). Truncated M-travelling salesmen problem. Opsearch, 43(2), 152-177.
Dasari, K. V., Pandiri, V., & Singh, A. (2021). Multi-start heuristics for the profitable tour problem. Swarm and

Evolutionary Computation, 64, 100897.
Demir, E., Huckle, K., Syntetos, A., Lahy, A., & Wilson, M. (2019). Vehicle routing problem: Past and future. In

Contemporary operations and logistics (pp. 97-117). Palgrave Macmillan, Cham.
Elgesem, A. S., Skogen, E. S., Wang, X., & Fagerholt, K. (2018). A traveling salesman problem with pickups and deliveries

and stochastic travel times: An application from chemical shipping. European Journal of Operational Research, 269(3),
844-859.

Fatthi, W. N. A. W. A., Haris, M. H. M., & Kahtan, H. (2018, October). Application of travelling salesman problem for
minimizing travel distance of a two-day trip in Kuala Lumpur via Go KL city bus. In International Conference on
Intelligent Computing & Optimization (pp. 277-284). Springer, Cham.

Gensch, D. H. (1978). An industrial application of the traveling salesman's subtour problem. Aiie Transactions, 10(4), 362-
370.

Giardini, G., & Kalmár-Nagy, T. (2011). Genetic algorithm for combinatorial path planning: the subtour problem.
Mathematical Problems in Engineering, 2011.

Goldenberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Newyork.
Ha, Q. M., Deville, Y., Pham, Q. D., & Hà, M. H. (2020). A hybrid genetic algorithm for the traveling salesman problem

with drone. Journal of Heuristics, 26(2), 219-247.
Hariyadi, P. M., Nguyen, P. T., Iswanto, I., & Sudrajat, D. (2020). Traveling salesman problem solution using genetic

algorithm. Journal of Critical Reviews, 7(1), 56-61.
Hussain, A., Muhammad, Y. S., Nauman Sajid, M., Hussain, I., Mohamd Shoukry, A., & Gani, S. (2017). Genetic algorithm

for traveling salesman problem with modified cycle crossover operator. Computational intelligence and neuroscience,
2017.

Ibaraki, T. (1973). Algorithms for obtaining shortest paths visiting specified nodes. Siam Review, 15(2), 309-317.
Khan, F. H., Khan, N., Inayatullah, S., & Nizami, S. T. (2009). Solving TSP problem by using genetic algorithm.

International Journal of Basic & Applied Sciences, 9(10), 79-88.
Kumar Thenepalle, J., & Singamsetty, P. (2018). Bi-criteria travelling salesman subtour problem with time threshold. The

European Physical Journal Plus, 133(3), 1-15.
Kumar, T. J., & Purusotham, S. (2017, November). An exact algorithm for k-cardinality degree constrained clustered

minimum spanning tree problem. In IOP Conference Series: Materials Science and Engineering (Vol. 263, No. 4, p.
042112). IOP Publishing.

Laporte, G., Mercure, H., & Norbert, Y. (1984). Optimal tour planning with specified nodes. RAIRO-Operations Research-
Recherche Opérationnelle, 18(3), 203-210.

Larranaga, P., Kuijpers, C. M. H., Murga, R. H., Inza, I., & Dizdarevic, S. (1999). Genetic algorithms for the travelling
salesman problem: A review of representations and operators. Artificial Intelligence Review, 13(2), 129-170.

Liu, C., & Kroll, A. (2016). Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-
robot task allocation problems. SpringerPlus, 5(1), 1361.

Madani, A., Batta, R., & Karwan, M. (2021). The balancing traveling salesman problem: application to warehouse order
picking. Top, 29(2), 442-469.

Mittenthal, J., & Noon, C. E. (1992). An insert/delete heuristic for the travelling salesman subset-tour problem with one
additional constraint. Journal of the Operational Research Society, 43(3), 277-283.

Palhares, R. A., & Araújo, M. C. B. (2018, December). Vehicle routing: application of travelling salesman problem in a
dairy. In 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp.
1421-1425). IEEE.

Pandiri, V., & Singh, A. (2020). Two multi-start heuristics for the k-traveling salesman problem. OPSEARCH, 57(4), 1164-
1204.

Prakash, A., Balakrishna, U., & Thenepalle, J. (2022). An exact algorithm for constrained k-cardinality unbalanced
assignment problem. International Journal of Industrial Engineering Computations, 13(2), 267-276.

Riazi, A. (2019). Genetic algorithm and a double-chromosome implementation to the traveling salesman problem. SN
Applied Sciences, 1(11), 1397.

 484

Saksena, J. P., & Kumar, S. (1966). The routing problem with “K” specified nodes. Operations Research, 14(5), 909-913.
Sharma, S., & Jain, V. (2021, April). A Novel Approach for Solving TSP Problem Using Genetic Algorithm Problem. In

IOP Conference Series: Materials Science and Engineering (Vol. 1116, No. 1, p. 012194). IOP Publishing.
Singamsetty, P., & Thenepalle, J. (2021). Designing optimal route for the distribution chain of a rural LPG delivery system.

International Journal of Industrial Engineering Computations, 12(2), 221-234.
Singamsetty, P., Thenepalle, J., & Uruturu, B. (2021). Solving open travelling salesman subset-tour problem through a

hybrid genetic algorithm. Journal of Project Management, 6(4), 209-222.
Singh, R. K., Panchal, V. K., & Singh, B. K. (2018, August). A review on genetic algorithm and its applications. In 2018

Second International Conference on Green Computing and Internet of Things (ICGCIoT) (pp. 376-380). IEEE.
Stanley, H. E., & Buldyrev, S. V., (2001). Statistical physics: The salesman and the tourist. Nature, 413 (6854), 373+.
Stetsyuk, P. I. (2016). Problem statements for k-node shortest path and k-node shortest cycle in a complete graph.

Cybernetics and Systems Analysis, 52(1), 71-75.
Stodola, P., Otřísal, P., & Hasilová, K. (2022). Adaptive ant Colony optimization with node clustering applied to the

travelling salesman problem. Swarm and Evolutionary Computation, 70, 101056.
Venkatesh, P., Srivastava, G., & Singh, A. (2018). A general variable neighborhood search algorithm for the k-traveling

salesman problem. Procedia computer science, 143, 189-196.
Verweij, B., & Aardal, K. (2003). The merchant subtour problem. Mathematical programming, 94(2-3), 295-322.
Westerlund, A., Göthe-Lundgren, M., & Larsson, T. (2006). A stabilized column generation scheme for the traveling

salesman subtour problem. Discrete Applied Mathematics, 154(15), 2212-2238.
Xu, H., Li, Q., Wang, J., Luo, G., Zhu, C., & Sun, W. (2018). An optimization routing algorithm for green communication

in underground mines. Sensors, 18(6), 1950.

© 2022 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY)
license (http://creativecommons.org/licenses/by/4.0/).

