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 This study explores the quality control system featuring visual inspection and grade judgment 
for detecting distortion defects in spectacle lens fabrication. Spectacle lenses must be precisely 
curved to help accommodate nearsightedness and farsightedness. The curved shape allows the 
lens to have different curvatures in different areas during grinding. The spectacle lens will be 
prone to optical distortion when the curvature changes abnormally. Accordingly, this study 
proposes an automatic distortion flaw inspection system for spectacle lenses to substitute 
professional inspectors who rely on empirical judgment. We first apply the digital imaging of a 
concentric circle pattern through a testing lens to create an image of that lens. Second, the 
centroid–radii model is employed to stand for the shape property of each concentric circle in the 
image. Third, by finding the deviations of the centroid radii for detecting distortion flaws through 
a small variation control method, we obtain a different image showing the detected distortion 
regions. Four, based on the distortion amounts and locations, we establish the fuzzy membership 
functions and inference rulesets to measure distortion severity. Finally, the GA-ANFIS model is 
applied to determine the quality levels of distortion severity for the detected distortion flaws. 
Trial outcomes reveal that the proposed automatic inspection system can help practitioners in 
spectacle lens fabrication, for it attains a high 94% correct classification rate of quality grades in 
distortion severity, 81.09% distortion flaw detection rate, and 10.94% fake alert rate, in distortion 
inspection of spectacle lenses. 
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1. Introduction 

 
The increased dependence and burden on the eyes have led to a gradual increase in the demand for eyeglasses to assist 
vision. Spectacle lenses are curved to accommodate nearsightedness and farsightedness. The curved shape allows the lens 
to have different curvatures in different areas within the lens during grinding. The spectacle lens is made by grinding the 
transparent lens to bend the lens, mainly through the slight change of the curvature, so that the lens power can meet the 
needs of the user. However, the spectacle lens will be prone to optical distortion during imaging when the curvature changes 
abnormally.  
 
In the process of lens manufacturing, due to the different curvatures of each area, the difficulty of grinding the lens is much 
higher than that of ordinary lenses. Often, the negligence of the manufacturer can easily cause distortion flaws that are very 
serious for users. Since the lenses are directly used to cover the eyes, the distortion flaw of the lens will lead to imaging 
errors bringing inconvenience and even danger to the user in daily life activities. Figure 1 shows the schematic illustrations 
of imaging distortion for viewing distant street scenes with the normal and defective spectacle lenses, respectively.  
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    (a)                       (b) 

Fig. 1. Schematic illustrations of imaging distortion for viewing distant street scenes with spectacle lenses: (a) normal 
lens, (b) defective lens 

 
Distortions occurring in the near central part need to be paid attention to because these distortions will directly affect the 
imaging quality of the user's viewing of objects. For example, when going downstairs, you may experience dizziness or be 
unable to accurately judge the position between steps, which may be dangerous to people. Currently, the degree of distortion 
in this area is checked manually with the aid of an instrument. If the distortion is too severe, it needs to be regarded as 
defective, otherwise, it will endanger the life of the wearer. The current testing instruments only measure the lens data such 
as the power and transmittance of the lens. There is no instrument to quantify and detect distortion flaws and only relies on 
the experience and judgment of professionals. Therefore, the lens manufacturing industry urgently needs a set of automatic 
distortion inspection systems with consistency, accuracy, and cycle detection advantages.  
 
If wearing lenses with severe imaging distortion flaws, consumers will see distorted scenes and may encounter 
inconvenience or even danger in daily life activities. Since imaging distortions do not have regular shapes and sharp 
boundaries, they are often difficult to detect and measure, especially on curved spectacle lenses. In addition, outwardly 
curved lenses, due to their high light transmittance and high reflectivity, often hinder the identification of distortion flaws 
in spectacle lenses. This study proposes an automated vision system for rapid detection and classification of distortion flaws 
to replace the use of high-end optical instruments and personnel when inspecting lenses during manufacturing, resulting in 
cost savings and improved overall inspection efficiency and effectiveness.  
 
 
2. Literature Reviews 
 
Automatic optical inspection in quality evaluation has become an essential process for production as it ensures that product 
quality is assured and production efficiency is enhanced through strict inspection and evaluation of all products in the 
industrial processes (Ebayyeh & Mousavi, 2020; Chen et al., 2021). The inspection systems established on image processing 
and machine learning technology have generated many appliances in the manufacturing industry (Tulbure, 2022). To 
improve glass product qualities, many studies have been developing non-contact automatic inspection devices inspecting 
the shape and poor surface of a glass product with the latest image processing technologies, and analyzing the characteristics 
of glass. These researches investigated the surface defect inspection of glass-related products, such as proposing a multi-
crisscross filtering method established on the Fourier domain to detect appearance blemishes of capacitive touch panels 
(Lin & Tsai, 2012), designing a visual inspection system for non-spherical lens modules of semiconductor sensors (Kuo et 
al., 2017), applying the Hotelling’s T2 statistic and grey clustering methods to cosine transform for detection of visible 
defects in appearances of LED lenses (Chiu & Lin, 2013), designing an inspection structure for auto glass using fringe 
patterns (Xu et al., 2010). These optical inspection systems focus mainly on surface flaw detection on glass-related products.  
 
Image distortions because of perspective have to be corrected to permit further image processing (Daniel et al., 2017). 
Regarding the distortion detection and correction techniques, Mantel et al. (2020) proposed methods for determining the 
perspective distortion on electroluminescence images of photovoltaic panels, and Cutolo et al. (2020) presented a quick 
method to calibrate transparent head-mounted panels by making the use of a calibrated camera. It is evident that most of 
the distortion-related works due to perspective concentrate on the distortion correction of optical lenses (Hou et al., 2018; 
Liu et al., 2018).  
 
Transmitted deformation is the image degeneration of a visible object incurred by transpicuous materials. In inspection 
studies of transmitted distortion in industrial parts, Dixon et al. (2011) developed a system using digital imaging and a 
classifier based on decision trees for quantifying optical distortion in aircraft transparencies. Youngquist et al. (2015) 
presented a novel explanation of optical distortion and permitted the use of a phase-shifting interferometer for determining 
the distortion of a large optical window. Lin and Hsieh (2018) designed a vision system with a trapezoidal mask for image 
acquisition and applied small shift control charts to inspect distortion flaws on car mirrors. Gerton et al. (2019) investigated 
distortion patterns of Ronchi grids mathematically for determining the effects of distortions in eyewear products. Lin and 
Lo (2016) applied Hough transform to detect distortion defects on transparent glass products.  
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Spectacle lenses are products that are closely related to people's activities and must be verified in the inspection. If there are 
too many defects, it will lead to dangers in people's lives. Le et al. (2019) used symmetric energy analysis of color channels 
to automatically detect surface defects for coated eyeglasses. Yao et al. (2013) applied forward lighting by low-angled-ring-
LED for image capture and normalization algorithms for image processing and glasses grading to develop a surface defect 
inspection system for glasses. Karangwa et al. (2021) proposed an optical inspection platform combining convolutional 
neural networks and semantic segmentation to inspect and classify appearance flaws on optical plane components, such as 
lenses, filters, mirrors, etc. Lin et al. (2019) proposed a visual inspection system for optical components based on computer 
vision, widely applied in the flaw inspection of lenses for cameras and eyeglasses and other optical elements. Lin (2014) 
proposed an adaptive vision-based approach that combines the extraction of wavelet features and a support vector machine 
classifier for classifying various classes of spectacle lens images to judge the power of spectacle lenses.  
 
Most current optical inspection systems for transparent glass products mainly detect surface defects but do not include 
imaging distortion flaws. The imaging distortion flaws embedded in the surface of curved spectacle lenses with high 
transmission and reflection characteristics are difficult to detect accurately (Lin and Hsieh, 2018). Most of the related works 
on perspective-induced distortion have focused on the distortion correction of optical lenses. Presently, very few research 
studies apply automated visual inspection systems to detecting imaging distortion flaws in eyeglass lenses. Therefore, we 
propose a vision system based on small variation control methods to inspect imaging distortion flaws on spectacle lenses. 
With proper parameter settings, the method can identify not only severe distortion flaws but also minor distortion ones.  
 
3. Proposed approach based on the small variation control method 
 
This study proposes a vision-based system with a known standard pattern for image acquisition and applies small variation 
control methods to inspect distortion flaws as well as a hybrid intelligent model of combining genetic algorithm and fuzzy 
inference system to determine the quality level of distortion severity on curved spectacle lenses. To measure the distortion 
degree of a curved spectacle lens, we first apply the digital imaging of the concentric circles pattern through a testing lens 
to create an imaging distortion map of that lens. This distortion map is regarded as an imaging image to be analyzed to find 
the existence of distortions and locations of the flaws. Second, the imaging image is preprocessed to increase the appearance 
clearness of the concentric circles and the distance features between the mass center and boundary points of each concentric 
circle based on a centroid-radii model are extracted for shape descriptions in the image. Third, through the small variation 
control method to find slight changes in the distance deviations in the features for detecting distortion flaws, a different 
image displaying the detected distortion flaws can be obtained. Four, based on the distortion amounts and occurrence 
locations in the training stage, the fuzzy membership functions and inference rulesets of the distortions are established. 
Finally, the GA-ANFIS model is applied to classify the quality levels of distortion severity for the detected distortion flaws. 
 
3.1 Image acquisition and Preprocessing 
 
In this study, testing samples with a 6.3 mm thickness and a 49.6 mm diameter, are randomly selected from the fabrication 
line of a spectacle lens manufacturer. To acquire images with digital imaging of a standard pattern through a testing sample 
for creating an imaging distortion map of the sample, this study proposes an image capture system with a concentric circles 
pattern for imaging image acquisition. Fig. 2 shows a testing lens sample and two transmitted imaging images using the 
concentric circles pattern for image acquisition. The testing sample is inserted in a custom-made fixture horizontally and is 
located in front of the standard pattern. The standard pattern with base concentric circles is attached to the bottom. A camera 
with a stand is used to take images from the view transmitted on the concentric circles pattern through the testing lens. To 
acquire the digital imaging of a standard pattern with proper intensity, the lighting control of the environment is also 
important when acquiring images.  
 

 
Fig. 2. A testing lens sample and two acquired imaging images using the concentric circles pattern for image acquisition  

 
Fig. 3 shows two processed images from transmitted imaging of the concentric circles pattern through a defective lens. The 
defective image has significant distortions in the lower-left area. The captured images are preprocessed in some steps to 
increase the clearness of object appearances on transpicuous lenses. To quantify the distortion level of the captured pattern 
image, Figure 3(a) and Figure 3(b) depict the corresponding binarized image and thinned image for the defective sample 
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that the Otsu method (Otsu, 1979) and thinning algorithm (Zhang & Suen, 1984) are applied to do segmentation and thinning 
operation sequentially while using the concentric circles pattern. Most of the concentric circles are segmented and thinned 
from the background in the binary thinned images by the two methods. The results disclose that the moderate distortion 
faults in transpicuous lens surfaces are rightly divided in the binary images, irrespective of insignificant distortion 
differences.  
 

 
                                                                    (a)                                                    (b) 
Fig. 3. Two processed images from transmitted imaging of the concentric circles pattern through a defective lens: (a) the 

binarized image; (b) the thinned image  
 
3.2 Feature extraction of distortion flaws 
 
Some problems arise when using coordinates directly for image feature processing. If the image is translated, scaled, and 
rotated, the result of feature judgment will be wrong due to the change of coordinates. Therefore, it needs to be described 
by geometric features. In this study, the centroid–radii model (Tan et al., 2000) is employed to stand for the geometric 
property of each concentric circle in the image, and the coordinates are converted into distance feature vectors through 
Euclidean distance. Euclidean distance has the properties: translation invariance, scaling invariance, and rotation invariance.  
A typical concentric circles pattern includes 8 concentric circles in this study. The centroid radii m

id  are the Euclidean 
distances calculated from the centroid ( , )c cC x y  and the i-th boundary point , ,( , )i m i mx y  on the m-th circle of the concentric 
circles pattern, correspondingly: 
 

2 2
, , , ,( ) ( )m

i i m c m i m c md x x y y= − + −  
(1) 

 
The centroid radii of the m-th circle in the concentric circles pattern can form a distance-vector denoted as,    
 

{ }1 2 3, , , ..., , ...m m m m
m iD d d d d=  (2) 

 
The distance vector can be further normalized to between 0 and 1 for scale and rotation invariance by dividing the maximum 
value of the distance values, 
 

/ max( )m m m
i i iN d d=  (3) 

 

When the centroid radii from the concentric circles to the object centroid are calculated and normalized, Fig. 4(a) draws the 
schematic diagram of the distance feature vector of all points of a concentric circle. Fig. 4(b) shows the farther the distance 
feature is from the middle, the more this area is represented for concentric circles there are potential distortions.  
 

 
                                                           (a)                                                                 (b) 

Fig. 4. The corresponding distance values from the mass center to the boundary points of a concentric circle: (a) the 
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schematic diagram of the Euclidean distances (b) the boundary points versus the normalized distance values.  
3.3 Distortion detection by the EWMA method 
 
The feature values of the concentric circles pattern in the testing image are compared with those of the normal image to 
measure the deviation of the corresponding distances to locate suspicious distortions in the testing image. To detect small 
changes in distance deviation, this study proposes one of the small variation control techniques, the EWMA (exponentially 
weighted moving average) method, which is often applied in statistical process control to detect slight deviations or shifts 
from the normal production process (Montgomery, 2019; Mansouri et al., 2018). We apply this method to find slight changes 
in the distance deviations for detecting distortion flaws. The EWMA method is a good choice for detecting slight deviations 
in process control of industrial applications (Sanusi et al., 2017; Mitra et al., 2019). The exponentially weighted moving 
average 𝒁𝒊 is expressed as: 
 𝒁𝒊 ൌ 𝝀𝒙𝒊  ሺ𝟏 െ 𝝀ሻ𝒁𝒊ି𝟏                        (4) 

 
where 𝝀  is a constant on an interval 0<𝝀≦1 and the start value of 𝒁𝒊  is the process target value 𝒁𝟎 =𝝁𝟎 . Values of the 
parameter 𝝀 called smoothing constant or weight in the interval 0.05 ~ 0.25 are suitable in practice for small deviation 
detection. A suggested regulation is to use a litter value of 𝝀 to detect slight deviations. A lower bound and an upper bound 
for the control limits (LCL and UCL) of the EWMA method are calculated as:   
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The planned parameters of the chart are the multiple of the standard deviation employed in the bound limits (L) and the 
value of 𝜆. The manifestation of the EWMA method is simple to establish and manipulate. Fig. 5 shows the detection result 
of the 7-th circle of the concentric circles pattern in the sample image processed by the EWMA method. It can be seen that 
when the EWMA detects regions with distortion flaws, there will be clearer boundary point ranges for the locations of the 
flaws.  
 

 
                                                             (a)                                                                       (b) 

Fig. 5. The detection result of the 7-th circle of the concentric circles pattern in the sample image processed by the 
EWMA method: (a) the EWMA control chart; (b) the regions of detected distortion flaws marked in red  

 
3.4  Determination of quality grades for distortion severity by GA-ANFIS method 
 
This study uses fuzzy measurement models for automatic variation detection of distortion severity (Vahid et al., 2018). The 
GA-ANFIS (Genetic Algorithm-Adaptive Network-based Fuzzy Inference System) is a system combining genetic algorithm 
and adaptive network fuzzy inference system theory, including GA and ANFIS, of which ANFIS includes FIS and BPN 
(Back-Propagation Network). The GA-ANFIS model is employed to classify the quality level of the distortion severity of 
spectacle lenses. By combining the advantages of these algorithms, the classification accuracy of the system is significantly 
improved.  By comparing the differences between the detected distortion flaw image and the concentric circles pattern 
image, Fig. 6(a) displays the red-line areas are the distortion flaws and the white-line areas are the standard pattern. And, 
the detected flaw points are compared with the points on the concentric circles pattern, correspondingly. The Manhattan 
distance-vector M representing the amount of distortion is calculated as: 
 𝑚 ൌ ห𝑥ௗ,  െ 𝑥, ห  ห𝑦ௗ,  െ 𝑦, ห,                 (7) 𝑀 ൌ ൛𝑚ଵ,𝑚ଶ,𝑚ଷ, … ,𝑚 , … ൟ,                    (8) 
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where 𝑥ௗ, and 𝑦ௗ, are the coordinates of the j-th point on the distorted image, and 𝑥, and 𝑦, are the coordinates of the 
j-th point on the concentric circles pattern.  
 

 
                                                                     (a)                                                (b) 
Fig. 6. The processed distortion images are (a) the difference image with marked distortions, and (b) the marked difference 
image based on three different severity levels of distortion  
 
Fig. 6(b) shows that the marked difference image is divided into three areas based on three different severity levels of 
distortion: the red part is the low-tolerance region, which consists of the 1st and 2nd circles, called area A; the blue part is 
the medium-tolerance region, which is composed of the 3rd, 4th, and 5th circles, called area B; the green part is the high-
tolerance region, which is made up of the 6th, 7th, and 8th circles, called area C. The individual distortion measures of these 
three areas are input into the inference system for inference and classification.  
 
3.4.1  FIS of distortion severity 
 
The principal function of the fuzzy inference system (FIS) is to convert the observations into fuzzy membership functions 
and to establish fuzzy inference rules and models (Shihabudheen & Pillai, 2018; Takagi & Sugeno, 1985). The advantage 
is that when the input is fuzzy data, it can output a suitable corresponding value through the process of conducting the 
established inference rules and a de-fuzzy algorithm. In this study, the amounts of distortion in areas A, B, and C are used 
as inputs to classify the severity levels of lens distortions. Table 1 lists three feature values as the inputs of the fuzzy inference 
system, which are the individual levels of distortion amounts in areas A, B, and C, and the output value is the distortion 
severity. In the level setting of the fuzzy sets, when the input value is the distortion amount in area A, it is set to 2 levels due 
to the low tolerance, and the rest of the input and output values are all 3 levels. All membership functions and fuzzy sets for 
the inputs are computed and summarized in Table 2.  
 
Table 1  
The inputs and outputs of the proposed fuzzy inference system 

 Inputs Outputs 
Feature 
values 

X1: Distortion amount in area 
A 

X2: Distortion amount in area 
B 

X3: Distortion amount in area 
C Y: Deformation severity 

Levels A1: Small 
A2: Large 

B1: Small 
B2: Medium 
B3: Large 

C1: Small 
C2: Medium 
C3: Large 

O1: Minor 
O2: Moderate 
O3: Severe 

 
 
After the fuzzy membership functions are established, the fuzzy rule base can be formulated according to the tolerance of 
the distortion degree of the spectacle lens. When the area where the distortion defect occurs is closer to the center of the 
lens, the allowable tolerance is smaller, and the distortion severity is at a serious level. The closer the distortion defect area 
is to the boundary of the lens, the higher the allowable tolerance and is therefore classified as minor on the distortion severity 
scale. We formulate fuzzy rules based on the empirical rules of professionals. There are three input values: X1, X2, and X3, 
which are the levels of distortion amounts in areas A, B, and C, and the output value is the severity level. For example, 
when the distortion amount (X1) in area A is small (A1) and the distortion amount (X2) in area B is small (B1) and the 
distortion amount (X3) in area C is small (C1), the output severity level (Y) is minor distortion (O1). A fuzzy rule base 
including 18 rules is established in this study. The inference engine employed in this study is the TSK (Takagi-Sugeno-
Kang) fuzzy model (Takagi & Sugeno, 1985) combining the use of fuzzy rules with the IF-THEN form. The outcome of 
every rule is a linear association of the input variables and a constant item. The resulting outcome is the weighted mean of 
every rule outcome. It mainly uses fuzzy rules to depict a nonlinear system. The advantages of this method are fast 
calculation efficiency, better coordination with adaptive optimization technology, and continuous surface values in outputs. 
These are great for mathematical analysis. When the levels of distortion amounts of the three areas are input into the fuzzy 
inference system and inferred by all the rules, a correct output value can be generated through the defuzzification process 
using the weighted average method. After calculating the output values of all rules, the final output value can be obtained.  



H.-D. Lin et al.  / Decision Science Letters 11 (2022) 
 

503

 
Table 2  
The membership functions and fuzzy sets for the inputs 

Inputs Membership functions Fuzzy sets 

Distortion amount 
X1 in area A 

 

𝜇భሺ𝑥;  8.26, 4.784ሻ 𝜇మሺ𝑥;  1084, 765ሻ 
Distortion amount 

X2 in area B 

 

𝜇భሺ𝑥;  69, 17.61ሻ 𝜇మሺ𝑥;  385, 895.7ሻ  𝜇యሺ𝑥;  384, 2392ሻ 
Distortion amount 

X3 in area C 

 

𝜇భሺ𝑥; 287, 117.2ሻ 𝜇మሺ𝑥; 468.5, 1766ሻ 𝜇యሺ𝑥; 670, 3637ሻ 
 
 
3.4.2  ANFIS for judging the severity of distortions 
 
ANFIS is mainly a network inference model established by combining the two principles of backward propagation neural 
network and fuzzy inference system (Jang, 1993; Karaboga & Kaya, 2018). It is evaluated by continuously changing 
parameter values and minimizing the error function. In this study, a five-layer ANFIS network architecture diagram is 
established through the distortion amounts of the three areas, which are the input layer, rule layer, normalization layer, result 
inference layer, and output layer, as shown in Fig. 7. Through a learning process, training is performed iteratively, and each 
training will repeatedly correct the parameters and calculate the error values of the parameters. When the training error 
value converges to the minimum value or the training reaches the set maximum number of learning times, the training will 
be stopped, and a better network fuzzy inference system can be obtained than the original parameters.  
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Fig. 7. The proposed ANFIS structure diagram for judging the severity of distortions 
3.4.3  GA-ANFIS for classifying severity levels of distortions 
 
The Genetic Algorithm (GA) mainly applies the process of biological reproduction and inheritance through crossover and 
mutation of chromosomes. First, use the parameters of the membership function of the distortion amount to establish the 
initial population of the genetic algorithm, and assess the fit value of every parameter combination in the population. Next, 
the parameters in each parameter combination perform uniform crossover and mutation to generate more different parameter 
values. The advantage of this algorithm is that it can be promoted to the global optimal solution from the local optimal one 
through the mutation function. A fuzzy inference system has been established including the membership functions of the 
distortions in three regions, the rule base and the inference mode. The GA-ANFIS model mainly optimizes the algorithm 
through two steps (Li & Su, 2010; Vishal et al., 2019). The first step of optimization is to use the ANFIS to compute the 
errors between the predicted solutions and the ground-truth values and the solution is optimized by a gradient descent 
method. But using the gradient descent method can only find the local optimal solution. The second step of optimization is 
to use the GA to evaluate the fitness values of the parameter combinations and select better parameters from crossover to 
share information, and finally, perform mutation to make the range of feasible parameters wider. The purpose of this step is 
to promote the local optimal solution to the global optimal solution.  
 
 
4. Implementation and Analyses 
 
To evaluate the manifestation of the recommended method with the concentric circles pattern, assessments are performed 
on 350 sample images (200 images for training and 150 images for testing) with various severity levels of distortions to 
evaluate the capability of the recommended technique. Every captured image has 256x256 pixels with 8 bits per pixel. The 
developed distortion flaw inspection arithmetic is compiled in the Matlab platform and carried out on the version R2013 of 
MATLAB interactive environment on a computer (INTEL CORE i5-8250U 1.60GHz, 16GB RAM). To numerically verify 
the capability of the distortion flaw inspection methods, we discern the results of our assessments from those offered by the 
empirical evaluators (gold standard). Two measures, (1-α) and (1-β), are employed to indicate suitable detection appraisals; 
the greater the two measures, the more correct the examination consequences. Fake alert error α, considering regular regions 
as distortion flaws, divides the districts of regular regions inspected as distortion flaws by the districts of detected results as 
distortion regions to acquire the error. Losing alert error β, defeating to alert true distortion flaws, divides the districts of 
undetected true distortion flaws by the districts of overall true distortion flaws to gain the error.  
 
 
4.1 Detection results of using the concentric circles pattern with various line thicknesses 
 
The pixel size of line thickness in the concentric circles image will affect the detection performance of distortion flaws by 
the proposed method. If a suitable pixel size of line thickness is selected in the concentric circles image, the smaller 
distortion flaws will be more completely identified. We examine the concentric circles pattern with 1 to 6-pixel sizes of line 
thicknesses in the concentric circles images by the proposed method. Figure 8 shows the captured and resulting images for 
the defective sample by the proposed method using the concentric circles pattern with the six-pixel sizes of line thicknesses, 
respectively. We find that the smallest pixel thickness is less sensitive to the detection of distortion flaws and causes the 
lowest detection rate. In addition, the larger pixel thicknesses are more sensitive to the detection of distortion flaws and 
cause more fake alert errors. Table 3 indicates the detection results using the 2 and 3-pixel sizes of line thicknesses for the 
concentric circles pattern is suitable and has better distortion inspection performance because of the higher detection rate 
and lower fake alert rate.  
 

 
Fig. 8. The defective captured images and their corresponding resulting images of distortion flaw inspection by the 
proposed method for producing the concentric circles with various line thicknesses.  
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Table 3  
Performance indices of distortion flaw inspection by the proposed method for captured images using the concentric circles 
pattern with various line thicknesses 

Line thicknesses 1-pixel 2-pixel 3-pixel 4-pixel 5-pixel 6-pixel 

Fake alert rate (α) 0.0507 0.0398 0.0398 0.0953 0.0468 0.0894 

Detection rate (1-β) 0.5436 0.8072 0.8012 0.7590 0.7915 0.7749 
 
 
4.2 Detection results of using various small variation control methods by the proposed method 
 
To assess the performance of the distortion flaw inspection on spectacle lenses, Table 4 summarizes the inspection results 
of the proposed method in this study. Two small variation control methods, the MA (Moving Average) (Montgomery, 2019) 
method and the EWMA method, of the proposed approach are assessed against the outcomes by empirical evaluators. The 
average distortion detection rates (1-β) of whole test trials by the two schemes are 66.18% (MA method) and 81.09% 
(EWMA method). Nevertheless, the MA method has a significantly larger fake alert rate (α), 56.51%. Otherwise, the EWMA 
method has a fairly smaller fake alert rate, 10.94%. The suggested EWMA method has a larger distortion inspection rate 
and a smaller fake alert rate than does the MA method applied to distortion flaw detection on curved spectacle lenses. Figure 
9 demonstrates the fractional results of imaging distortion inspection by the proposed approach using two distinct small 
variation control methods. The average execution time for processing a testing image is as below: 0.3045 sec. by the MA 
method and 0.3249 sec. by the EWMA method. The mean conducting time of the two schemes is nearly the same. Hence, 
the suggested EWMA method conquers difficulties of detecting distortion flaws on spectacle lenses and surpasses its ability 
to accurately differentiate slight distortion flaws from regular regions.  
 
Table 4 
Performance indices of distortion inspection by the proposed method for detecting distortion regions and determining 
quality levels on spectacle lenses.  

Distortion inspection 
methods MA method EWMA method 

Fake alert rate (α) 0.5651 0.1094 
Detection rate (1-β) 0.6618 0.8109 

Processing time (Sec.) 0.3045 0.3249 
Severity classification 

methods ANFIS GA-ANFIS ANFIS GA-ANFIS 

Correct classification rate 
(CR) 0.6467 0.8067 0.7067 0.9404 

 

 
Fig. 9. Partial results of imaging distortion inspection by the proposed method using two distinct small variation control 
methods.  
 
To evaluate the performance of classifying the severity of distortion flaws on spectacle lenses, two classification models, 
ANFIS and GA-ANIFS, are also assessed against the outcomes by professional inspectors. From Table 4, no matter which 
distortion inspection method is used, the correct classification rate of distortion severity by the GA-ANFIS model is higher 
than that of the ANFIS model. From the above analyses, we conclude that the proposed hybrid approach of combining the 
EWMA method and GA-ANFIS model is a better detection and classification method for imaging distortion inspection and 
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quality level determination on spectacle lenses.  
4.3 Comparisons of distortion detection results by the existing methods and the proposed approach using different 
standard patterns 
 
Two common standard patterns, checkers pattern and dots pattern, were used to detect distortions by the Lin and Lo 
approach (2016) for differentiating outcomes of distortion flaw inspection. Since we use the three standard patterns to 
produce consistent images of distortion flaws by selecting the same distortion areas and the same degrees of distortions, the 
distortion differences among the three standard patterns can be compared more accurately. To reveal the distortion 
inspection effects of the consistent captured images, Fig. 10 illustrates partial results of inspecting distortion flaws by the 
Lin and Lo method and the proposed method using the checkers pattern, dots pattern, and concentric circles pattern, and the 
gold standard (ground truth) supplied by empirical evaluators, separately.  
 

 
Fig. 10. Partial results of imaging distortion inspection by the Lin and Lo method and the proposed method using three 

common standard patterns  
 
The Lin and Lo method using the checkers pattern produces many incorrect discernments not only in losing alerts but also 
in fake alerts, and the same approach using the dots pattern also causes some of the incorrect discernments in losing alerts 
and fake alerts on distortion flaw inspection of spectacle lenses. The proposed method using the concentric circles pattern 
inspects most of the distortion flaws and produces fewer incorrect discernments. Table 5 summarizes the detection outcomes 
of imaging distortion inspection by the Lin and Lo method and the proposed method using the three standard patterns. It 
indicates that the proposed method using the concentric circles pattern is superior to the existing methods with the checkers 
pattern and dots pattern in the distortion flaw inspection on spectacle lens images.  
 
 
Table 5  
Performance indices of imaging distortion inspection by the Lin and Lo method and the proposed method using three 
common standard patterns  

Standard patterns Fake alert rate Detection rate Correct classification rate 

Checkers pattern 0.6236 0.3324 0.9470 

Dots pattern 0.1878 0.5820 0.9894 

Concentric circles pattern 0.2314 0.7703 0.9947 
 
 
5. Concluding Remarks 
 
This study attempts to find a way to substitute the human evaluators in the fabrication process by developing a hybrid 
approach established on computer vision and machine learning to inspect distortion flaws and determine quality levels on 
spectacle lenses. This research investigates the detection of imaging distortion flaws and the classification of distortion 
severity in spectacle lens images. We first developed a vision system using the concentric circles’ pattern to capture testing 
images displaying imaging distortion regions. Next, the concentric circle edges in the image are binarized and thinned. If 
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the distances from the boundary points of the concentric circles to the centroid exceed the control limits of the proposed 
EWMA method, it indicates the presence of distortion flaws. Then, we compare the detected flaw image with the standard 
pattern and calculate the number of distortions. By dividing the possible flaw locations into three areas A, B, and C, we 
summarize the individual distortion amounts in these three areas. Finally, the GA-ANFIS model is proposed to classify the 
levels of distortion severity on spectacle lenses. The proposed method effectively detects distortion flaws and classifies the 
severity of distortion regions on spectacle lens images. Trial outcomes reveal the proposed approach attains a high 94% 
correct classification rate of quality levels in distortion severity, 81.09% distortion flaw detection rate, and 10.94% fake 
alert rate, in distortion inspection of spectacle lenses. Further research can expand the suggested approach to the defect 
detection problems of imaging distortion of similar products, such as deformation inspection of transparent glass and 
deformation detections of mirror products.  
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