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 Rank reversal in decision making is a common phenomenon resulting in confusion and ambiguity 
in selection procedure especially while multiple multi-criteria decision making (MCDM) 
techniques are independently applied. To eradicate this confusion, this paper proposes a novel 
MCDM methodology namely Technique of Accurate Ranking Order (TARO). The TARO 
method is an extension of conventional MCDM approaches. The proposed method commences 
at the end of conventional methodologies with the final selection values. The proposed technique, 
using an advanced version of entropy weighting method, initially measures weights of the final 
selection values. Subsequently, based on the final section values and their computed weights, 
TARO measures accurate selection indices that determine the accurate ranking order of the 
alternatives. The proposed technique is illustrated by three real life examples on robot selection 
problems. The results obtained by TARO justify the validity, applicability and requirements of 
the proposed techniques for proper decision making under the MCDM environment. 
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1. Introduction 

 
An industrial robot can be defined as a reprogrammable, self controlled, general purpose device consisting of an electrical, 
electronic or mechanical unit designed especially for certain desirable work functions. With advances in technology 
especially in robotics a number of manufacturing processes, entail fewer employees, are more efficient and can be 
continuously operated twenty fours a day without any rest. A company having the ability of affording industrial robots sees 
a dramatic growth in production, higher throughput and enhanced profitability.  

Industrial robots can perform a wide range of work functions including assembly, finishing, machine loading, material 
handling, painting, pick and place type operation, palletizing, packaging and surface mount technology, product inspection, 
testing and welding. Accuracy, control resolution, cost, degrees of freedom, geometrical dexterity, life expectancy, load 
carrying capacity, man machine interfacing ability, maximum tip speed, memory capacity, path measuring system, 
programming flexibility, repeatability, rest time, stability, supplier’s service quality, travelling time, types of drive, velocity, 
vertical reach and weight of robots are the most significant attributes for selecting an industrial robot for a specified 
industrial application. These criteria are classified in two ways; firstly, as objective (quantitative) subjective (qualitative), 
and critical criteria (that need to be satisfied before further processing) and secondly as benefit criteria (higher value is 
better) and cost criteria (lower value is better). Objective criteria are associated with certainty and subjective criteria are 
associated with fuzziness (Galetto et al.,  2018, Samani et al.,  2019). Past literature on robot selection are divided into four 
broad categories: multi-criteria decision making methods (MCDM), computer-assisted models, general category of 
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solutions, and production system performance optimization models. Out of these four models, MCDM is chiefly used for 
ranking robots. Other models are rarely used.   

Chodha et al. (2021) used entropy for measuring weight of criteria and TOPSIS for ranking of arc welding robots for 
industrial purposes. Narayanamoorthy et al. (2019) utilized interval valued intuitionistic hesitant fuzzy VIKOR method for 
selection of industrial robots and entropy for weight estimation. Li et al (2019) proposes a multiple criteria decision 
framework for assessment of robotic disassembly to maintain recycling and recovery. This framework is composed of three 
key phases: recycling options analysis, assessment criteria selection, and disassembly operations evaluation. Fu et al (2019) 
suggested industrial robot selection using stochastic multiple criteria acceptability analysis with group decision making 
process. Goswami and Beher (2021) solved a MHE selection Problem for industrial purposes using entropy weighting 
methods combined with ARAS and  COPRAS  techniques under MCDM. Nasrollahi et al. (2020) applied the FBWM based 
PROMETHEE method for ranking and selection of industrial robots. Ali and Rashid (2020) employed best–worst method 
for proper selection of robots for performing specific functions in industry. Yalcin and Uncu (2019) utilized the EDAS 
method for selection of industrial robots. Mathew et al.,   (2017) assessed and ranked alternatives in robot selection problem 
by applying weighted aggregated sum product. The authors also analyzed the consequences of normalization procedure on 
decision making.  Rashid et al. (2021) adopted a BW based EDAS hybrid MCDM approach for the most favorable selection 
of robots used for industrial functionality.  Liu et al. (2018) suggested a combined MCDM approach using Pythagorean 
interval‐valued linguistic variables under uncertainty. Ahmad et al. (2020) selected the best robot by using an integrated 
MCDM approach in a flexible manufacturing system. 

The analysis shows that, though the above papers can rank and select robots, these papers cannot  rectify the rank reversal 
issues that arise when different MCDM techniques are applied to solve the same problem. Some of the abovementioned 
papers also suffer from the same problem but the authors did not address the way to fix the problems of rank reversal 
phenomenon.    

Computer assisted models have been advocated by researchers to deal with a large number of robot attributes and a large 
number of robots (Boubekri, Shahou & Lakrib, 1991). Tansel, Yurdakul and Dengiz (2013) developed a two phase robot 
selection DSS, namely ROSEL, to assist the decision makers in their problems of robot ranking. In development of ROBSEL 
an independent set of criteria is first obtained and arranged in the Fuzzy Analytical Hierarchy Process (FAHP) decision 
hierarchy. 

Statistical models, the general category of solution, are also proposed by some researchers. Layek and Lars (2000) developed 
a DSS based statistical model for robot selection. Khouja, Booth, Suh and Mahaney (2000) presented a statistical model for 
performance measuring, ranking, and selecting the best robots. Karsak, Senser and Dursun, (2012) developed and presented 
a fuzzy regression-based  decision making approach performance evaluation and selection of robots considering multiple 
criteria viz. cost, velocity, repeatability and load carrying capacity. Parkan and Wu (1999) suggested a method that 
demonstrated and compared some of the current MADM and performance measurement procedures through a robot 
selection problem. Kahraman, Cevik, Ates, and Gulbay (2007) proposed a fuzzy hierarchical TOPSIS method for selection 
of industrial robotic systems. Shih (2008) proposed group TOPSIS to select robots using incremental benefit cost ratio. 
Chatterjee, Athwaale, and Chakraborty (2010) solved a robot selection problem using two MCDM methods and compared 
their relative importance.  

Bairagi, Dey, Sarkar and Sanyal (2012) proposed a novel multiplicative model for multi criteria analysis (MMMCA) to 
solve the robot selection problem. In this approach, all performance ratings are converted into numerical values greater than 
or equal to unity and converting all non-benefit categories. Each normalized weight is considered as the index of related 
normalized rating to get the resulting score. The best alternative is related to the maximum resultant score. Bairagi, Dey 
Sarkar and Sanyal (2014) employed three FMCDM methodologies in the evaluation of robots for automatic foundry 
operations. In these methodologies, FAHP was integrated individually with FTOPSIS, FVIKOR (Fuzzy VIsekriterijumska 
optimizacija I KOmpromisno Resenje) and COPRAS-G. Pamuc and  Cirovic (2015) presented DEMATEL–MABAC model 
in the procedure of making investment decisions on the acquisition of controlling transportation (Forklifts) in a logistics 
hub. Parameshwaran, Kumar  and Saravanakumar (2015) developed an integrated method for the optimal selection of robots 
based on  both objective and subjective criteria  utilizing Fuzzy Delphi Method (FDM), Fuzzy Analytical Hierarchical 
Process (FAHP), Fuzzy modified TOPSIS, Fuzzy VIKOR and Brown–Gibson model. Rashid, Beg and Husnine (2014) 
propose an approach to combine the judgment of several decision makers on diverse criteria for selection of robots 
employing generalized interval-valued trapezoidal fuzzy numbers. Bairagi et al. (2015) proposes an TOPSIS -based fuzzy 
multi criteria decision-making approach capable of selecting the best robotic system by considering tangible and intangible 
factors.  

Bhangale, Aggarwal and Saha (2004) employed graphical method and the technique for order preference by similarity to 
ideal solution to compare the priority of the robots as obtained by applying the two methods. A coding system is used as 
well in support of different robot selection characteristics and a merit value is utilized to find the ranking order of the robots 
in the order of their fitness for a specified industrial purpose. Goh (1997) employed the well-known analytical hierarchy 
process (AHP) to select robots with both objective and subjective criteria. Rao and Padmanabhan (2006) employed the 
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digraph and matrix method for the evaluation, ranking and selection of the robots for a particular industrial purpose, by 
means of similarity and dissimilarity coefficient values. Kahraman, Cevik, Ates Ulbayet (2007) presented a fuzzy TOPSIS 
approach for solving the multi criteria robot selection problems. Karsak (2008) suggested a decision algorithm for robot 
selection on the basis of quality function deployment (QFD) and fuzzy linear regression approach to combine the customer 
requirements with the technological attributes of the robots.  

The above literature survey shows that a large number of various approaches have been proposed by the past researchers 
on robot selection problems. It is also seen that while multiple MCDM approaches are employed on the same robot selection 
problem, ranking order may differ giving rise to inconsistency and rank reversal (Chackraborty, 2010; Chatterjee et al., 
2010; Rao, Patel and Parnichkun, 2011). Kir and Yazgan (2019) suggested a new hierarchical method for a problem 
associated with heterogeneous 3D pallet loading under delivery constraints and factual loading. In most of the cases rank 
reversal is a common phenomenon that makes the decision makers confused in proper selection of alternatives. This 
confusion and difficulty misleads the decision makers causing inappropriate choices that badly affects the profit and 
productivity of the business. This dilemma due to inconsistencies in robot ranking/selection motivates us to develop a new 
model that eliminates this contradiction and give a unanimous solution with a view to guide the decision makers to determine 
the precise ranking order. Therefore in this circumstance the introduction of the novel technique capable of providing 
accurate order preference of alternatives in a MCDM problem is essential in removing the ambiguity and confusion thus 
enhancing the state-of-the-art. The originality of the current paper can be pointed as follows. This study explores a new 
approach (TARO) for accurate order preference and selection of alternatives in MCDM. This study makes the advanced 
version of the entropy weighting method the integral parts of the proposed method TARO, which provides acceptable 
relative weights. Additionally this investigation makes group decisions using final selection values obtained by other 
conventional methods. This concept is new in literature. The objectives of the research paper are to assist and guide the 
decision makers by eliminating (a) rank reversal found using diverse conventional MCDM methods, (b) confusion and 
ambiguity in evaluation, ranking and selection of alternatives in MCDM environments. These objectives are achieved by 
exploring the new approach (TARO) for precise order preference and incorporating the advanced version of the entropy 
weighting method in the decision process.  
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Fig. 1: Cognitive navigation of robot selection 

Cognitive navigation regarding robot ranking and selection problems is diagrammatically depicted in Fig.1. This figure 
illustrates that the physical world phenomenon is the source of problems involving robot ranking and selection. Realizing 
the importance the human brain takes to evaluate the performance of robots. Using the sense organs of the human body the 
brain identifies the tactile and non-tactile attributes/criteria for the better perception of evaluation procedure. Thereafter the 
brain, with the mental abilities of judgment, evaluation, reasoning, decision making, comprehension and computation, 
develops a new method or applies an existing suitable methodology.  Then the cognitive process is navigated to the domain 
of real/physical world phenomena in order to provide an appropriate solution to the robot ranking and selection problem.  

The remainder of the paper is organized as follows. Section 2 describes the proposed methodology TARO. Section 3 
illustrates the new technique with three real life problems. Section 4 discusses and analyzes the results. Finally section 5 
makes some essential conclusions encompassing the overall work along with few suggestions for possible direction of future 
research.     

2. Technique of Accurate Ranking Order (TARO): The proposed methodology 
 
This section presents the proposed methodology entitled Technique of Accurate Ranking Order (TARO) for finding the 
accurate ranking order of the alternatives. Past experience of the researchers says that while multiple MCDM approaches 
are individually applied to determine the proper ranking order of the alternatives, inconsistency in ranking orders is an 
ordinary trend (Bairagi,   Dey,  Sarkar, & Sanyal,    2014; Bairagi,   Dey,  Sarkar, and  Sanyal,    2015; Chatterjee, Athawale, 
and Chakraborty, 2010; Rao, Patel and Parnichkun, 2011). The decision makers often fail to select appropriate alternatives 
being confused due to rank reversal. Hence it is essential to introduce a logical as well as a systematic technique in order to 
guide the decision makers in finding precise order preference and in selecting the most suitable alternative from a given set, 
because a wrong selection may often negatively contribute to the productivity and flexibility of the entire manufacturing 
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process (Chatterjee, Athawale, & Chakraborty, 2010). Thus this paper proposes the new method TARO to find accurate 
ranking order of alternatives to eliminate confusion and ambiguity in ranking order.   
  
Since each MCDM tool has its own functional and computational capability in evaluation, ranking and selection of 
alternatives, it is logical to consider different weights of the final selection values determined by the tools.  Hence this 
investigation computes the importance/weights of the final selection values by advance entropy weighting method. 
Advanced entropy weighting method is logical extension of the conventional entropy method (Bairagi, Dey, Sarkar & 
Sanyal, 2015). The purpose of the advanced entropy method is to compute more rational and acceptable weights than those 
obtainedby conventional entropy methods.  The steps of the proposed approach TARO are described below.  
Step 1: Construct a matrix comprising final selection values obtained by a number of suitable conventional MCDM 
approaches. Let a decision problem, having m alternatives and n criteria (m × p final selection values) are solved by p 
conventional approaches. If the approaches give the alternatives inconsistent ranking orders to the alternatives then 
application of TARO may be initiated by constructing a matrix in the following way. 
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where, ijξ is the final selection value of ith alternative )( iA  obtained by jth conventional approach.  

Step2: Normalize the final selection values for finding their weights. The magnitudes of the final selection values calculated 
by the diverse conventional methodologies may vary over an extensive range. Even the sign of the final selection values 
may differ in different methods. Consequently, the final selection values of the alternatives need normalization for attaining 
compatibility and removing biasness. For the purpose normalization, the following equation is recommended.  
 


=

= m

i
ij

ij
ij

1

ξ

ξ
λ ,   

 
(2) 

where, ,10 ≤≤ ijλ  
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Step3: Compute the entropy of the final selection values using the following equation. 
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where je  represents the entropy of final selection value computed by jth approach; Entropy is the measure of the degree 
of disorderliness of final selection values.   

Step4: Estimate the pre-final weight ( jr ) of jth method using the g Eq. (4) 
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where )1( je− may be treated as the complement of the entropy of final selection value determined by the jth method 
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)1(  is treated as the sum of the complements of the entropies of all the final selection values. The value 

of rj ranges from 10 ≤≤ ijr and  =
=

p
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1

1 . In the conventional entropy method this js value is considered as the weight. 

In practice, the conventional entropy method usually gives excessively bulky weight to particular criteria that strongly 
govern over other criteria and thus control the decision. On the other hand conventional entropy weighting method grants 
very small weights to some criteria that the affect of the related criteria is negligible in the entire evaluation process. This 
paper attempts both to lessen the impact of the criteria with very large weights and to enlarge the affect of the criteria with 
insignificant weights. Therefore, steps 5-7 are rationally included for this reason, incorporating and employing advanced 
version of conventional entropy method in the work. 
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Step 5: Determine the value of jr′ using the following recommended equation.  
 

)1( jj rr +=′    (5) 

where, 21 ≤′≤ jr  and .,...,2,1 pj = The reason of incorporation of Eq. (5) is to diminish the ratio of )max( jr′ to )min( jr′ .  

As 10 ≤≤ jr
 
i.e., the maximum rj value is 1 and the minimum rj value is 0 (zero). Therefore the ratio of the maximum rj to 

the minimum rj may be infinite. This is not desirable because it may make some criteria insignificant in comparison with 
the others. As jj rr +=′ 1  is a  parabolic function, it has minimum value 1 at rj =0 and maximum value 2 at rj =1, hence 

this function limits the ratio of maximum rj to minimum rj at 2/1=2, it can be considered as the acceptable range/limits.  
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Here jR′ stands for the sum of all jr′  values, i.e., j
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Step 7: Calculate the final and accurate weight for the final selection values determined by the jth method. 
 
The final and accurate weight ( )jw of the final selection value is computed by the ratio of  jr′  to jR′   as follows.  
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where jw is the weight of the final selection values assessed by using jth method, and  =
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Since zero weight of any individual final selection value means that the corresponding final selection value is insignificant 
whereas 1 or 100% weight of any individual final selection value implies that the corresponding final selection value alone 
completely governs the decision process making the others insignificant. That is why above constraint on jw value implies 
that the weight of any individual final selection value under MCDM environment can be neither 0 (zero) nor 1.  

Step 8: Normalize the final selection values for evaluation of alternatives using the following equation.  
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Hij ∈ξ  implies that higher value of ijξ  is desirable and Lij ∈ξ  implies that 
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lower value of ijξ  is desirable. Higher value of ijξ  indicates that the corresponding alternative is closer to the optimal 
solution and hence higher value of ijg is desirable. 

Step9: Compute the exponentially weighted normalized final selection values (EWNFSV) using the following equations. 
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where ijh  is EWNFSV of ith alternative with respect to jth approach. Exponential function (monotonic increasing) is 
employed for weighted normalized final selection values. EWNFSV increases more than proportionate increase of the 
product of weight and normalized final selection value.    

Step 10: Compute non-linear selection indices (NLSI) for each alternative using non-linear function of first kind. TARO 
measures two pre-selection indices that find the precise order preference for each alternative. The first pre-selection index, 
termed as Non-linear selection indices NLSI of first kind, is computed using the following equation.   
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Step 11: Compute non-linear selection indices (NLSI) for each alternative using non-linear function of second kind.  

This paper proposes an algorithm which uses a nonlinear selection index (NLSI). NLSI is a nonlinear function of its both 
performance ratings of an alternative and weights of the associated criteria. The contribution of benefit criteria in the NLSI 
increases at an increasing rate and this contribution is determined by the exponential function of normalized performance 
rating. Normalized rating varies in the range 0 to 1. Hence, contribution of each benefit criteria varies from 1 to 2.7182.  On 
the contrary, the contribution of non-benefit criteria in the final selection factor decreases at a decreasing rate, this is 
computed by the modulus of negative logarithm of the normalized performance ratings. Normalized performance rating 
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varies in the range ≤< ijξ0 1. Hence, contribution of each non-benefit criterion inversely varies from 1 to below 

infinity ( ∝). Thus the integration of the contributions of both benefit and non-benefit criteria measure the NLSI of second 
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Step 12: Compute the accurate selection indices by integrating the non-linear selection indices of first and second kind. 
Linear selection index varies linearly with the performance rating of alternatives. This linear evaluation of performance 
rating has the ability to rank and select alternatives but ignores additional benefit of its superiority as well as additional 
detriment of its inferiority. In contrast, the nonlinear selection index has the ability of evaluation, ranking and selection of 
robots at the same time it regards additional benefit for its superiority as well as additional detriment for its inferiority. 
Hence both the index should be integrated for their trade off by using Eq. (14).  
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where iASI  is the non-linear accurate selection index

 

for ith alternative. Here, )2,1( =iiμ  represents the decision making 
attitude/weight that ranges from 0 to1 and 121 =+ μμ .  
 

Arrange the alternatives in decreasing order of their ASI values. ASI resembles net benefit. Hence first rank is assigned to 
the alternative having the maximum ASI, second rank to the alternative having ASI just lower to the maximum ASI (i.e. 
second maximum) and so on.   In other word, select the best alternative with the highest ASI and the worst alternative with 
the lowest ASI. The framework of the above algorithm is shown in Fig. 2.  

The proposed technique TARO is demonstrated with three examples on industrial robot ranking and selection presented in 
section 3. 
 
3. Case Study:  Illustrations of the proposed method  
 
In this section validity and applicability of the proposed technique are illustrated with three examples on robot ranking 
and selection.  
 
3.1. Example 1: Robot ranking and selection  
 

A set of seven industrial robots perform a certain pick-n-place operation. Many past researchers have solved the  robot 
ranking problem using conventional or their own methodologies (Bhangale, Agrawal and Saha, 2004; Chatterjee, Athawale 
and Chakraborty, 2010; Rao, Patel and Parnichkun, 2011). In this problem, the seven robots are designated as R1, R2, R3, 
R4, R5, R6 and R7. The performance of an industrial robot is evaluated with respect to five conflicting criteria such as  load 
carrying capacity (LC), maximum tip speed (MTS), memory capacity (MC), manipulator reach (MR) and repeatability (R). 
Load capacity refers to the maximum load that a robot manipulator can bear without affecting its specified performance. 
Maximum tip speed of a robot refers to the highest speed at which it can move in an inertial reference frame. Memory 
capacity of a robot is expressed by the number of points or steps that it can store in its memory while traversing its specified 
path. Manipulator reach refers to the maximum distance that the robot manipulator can envelop for grasping the desired 
object.  Repeatability of a robot can be defined as the ability to repeatedly return to the same position with same orientation.  

Table 1 depicts the decision matrix consisting of robots’ performance ratings that has directly been used by previous 
researcher in their works. The results found by the previous researchers with the application of conventional/their own 
approaches are analyzed for the realization of the relevance of the current proposed methods.  
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Fig. 2. Frame work of TARO for robot ranking and selection  

Table 1 
Decision matrix with performance scores of alternatives (example 1) 

Robot 
  Load capacity 

(LC) (kg) 
Maximum Tip Speed 

(MTS) (mm/s) Memory Capacity (MC) (MB) Manipulator Reach (MR) (mm) Repeatability (R) (mm) 
R1 60.00 2540 500 990 0.40 
R2 6.35 1016 3000 1041 0.15 
R3 6.80 1727 1500 1676 0.10 
R4 10.00 1000 2000 965 0.20 
R5 2.50 560 500 915 0.10 
R6 4.50 1016 350 508 0.08 
R7 3.00 177 1000 920 0.10 
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3.1.1. Results obtained by past researchers for the industrial robot selection problem(example 1)  

The robot ranking and selection problem furnished in example 1 has been previously solved by several groups of past 
researchers using their own/conventional MCDM methods. The comparison of ranking orders obtained by the different past 
researchers for the industrial robots using five different methods is shown in Table 2. Chackraborty (2010) uses MOORA 
method and obtains the ranking order of the robots as 2-3-1-4-7-5-6. Preference order of the robots is 
R3>R1>R2>R4>R6>R7>R5. This ranking order indicates R3 is the first and the best choice and R5 is the last and the worst 
choice. Rao et al. (2011) determine the ranking order of the robots in the sequence 1-3-2-4-7-5-6 that gives the preference 
orders as R1>R3>R2>R4>R6>R7>R5. In these two methodologies, the researchers found that robot R1 and robot R3 
exchange their ranking orders leading to ambiguity and confusion in the decision making process. Chaterjee et al (2010) 
apply two distinct conventional techniques ELECTRE and VIKOR for ranking the robots of the same problem. According 
to ELECTRE (Concordance) the ranking order is 4-2-1-5-7-6-3 that suggests the preference of alternative as 
R3>R2>R7>R1>R4>R7>R5 whereas as per ELECTRE (Discordance), the ranking order is 2-3-1-4-7-6-5 that indicates the 
preference order in the sequence R3>R1>R2>R4>R7>R6>R5. Continuation of inconsistency in ranking order is observed. 
Using VIKOR method the researchers determined the ranking order of the robots as 5-2-1-4-7-6-3 and the preference order 
R3>R2>R7>R4>R1>R6>R5. It is seen that ranking order in VIKOR method drastically changes that makes decision 
making procedure ambiguous and confusing.  

Table 2 
Comparison of ranking order obtained  by the previous researchers using conventional techniques (example 1) 

Robots MOORA Rao (2011) ELECTRE ( C) ELECTRE(D) VIKOR 
R1 2 1 4 2 5 
R2 3 3 2 3 2 
R3 1 2 1 1 1 
R4 4 4 5 4 4 
R5 7 7 7 7 7 
R6 5 5 6 6 6 
R7 6 6 3 5 3 

 

The authors found inconsistent ranking order of the alternative robots according to the final selection values obtained by 
respective methods. Fig.3 graphically shows the ranking orders of the robots obtained by the previous researchers using 
their own conventional MCDM approaches. It is evident that rank reversal is a common phenomenon in ranking and 
selection problems by conventional methods. Example 1 evidently explores that different MCDM techniques may give 
different ranking order to the same decision problem. For example 1 the rank reversal is clearly explained in sub-section 
3.1.2.   

 

Fig 3: Ranking order of the robots by various MCDM methods (Example 1) 
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3.1. 2. Rank reversal in example 1 

In example 1 four out of five alternative robots have been provided distinct ranks by the past researchers using their own 
conventional ranking methods. Industrial robot R1 is assigned four diverse ranks viz.1, 2, 4 and 5. Industrial robot R2 is 
given two distinct ranks viz. 2 and 3 whereas R3 also has two distinct ranks viz. 1 and 2. Industrial robot R4 is provided 
two distinct ranks viz. 4 and 5 though the robot R5 is unanimously granted rank 7. Industrial robot R6 is given two distinct 
ranks viz. 5 and 6 whereas R7 is assigned by three distinct ranks viz. 3, 5 and 6. Since industrial robots R1, R2, R3, R4, R6 
and R7 are assigned with reversed ranking orders, consequently this is an example of MCDM problem with rank reversal 
that is eradicated by the application of TARO in section 3.1.3. 

3.1.3. Application of proposed method (TARO) on example 1 for the elimination of rank reversal  

In the above analysis it is observed that the conventional MCDM methods fail to determine the unique ranking order of the 
industrial robots. Now, in this circumstance to get rid of ambiguity and confusion one can apply TARO for unique and 
accurate ranking order of the industrial robots. For the purpose, the alternative robots with final selection values and the 
corresponding methodologies are summarized in Table 3. To determine the accurate ranking order of the alternative robots, 
TARO exploits the final selection values obtained by previous researchers with their own methods. The higher final 
selection values in MOORA, Rao’s method and ELECTRE (Concordance) are better and desirable because they are 
beneficial.  Whereas the lower final selection values in VIKOR and ELECTRE (Discordance) are better and desirable 
because they are in non-benefit/cost sense. Therefore normalization of these final selection values for the estimation of the 
weights of the methodologies is carried out with an advanced entropy weighting method, using Eq. (2).  

Table 3 
Final selection values obtained by past researchers for industrial robots  (example 1) 

Robots MOORA1 Rao (2011)2 ELECTRE( C)3 ELECTRA(D)3 VIKOR3 
R1 0.3104 0.64215 0.282 -2.6271 0.6953 
R2 0.2965 0.48394 1.726 -2.3735 0.2701 
R3 0.3341 0.49188 2.480 -2.9277 0 
R4 0.2202 0.39842 -0.624 -2.2070 0.4829 
R5 0.1134 0.26497 -3.246 5.5282 1 
R6 0.1188 0.31240 -1.922 4.4478 0.9646 
R7 0.1163 0.27867 1.304 0.1593 0.3855 

Max 0.3341 0.64215 2.480 5.5282 1 
Min 0.1134 0.26497 -3.246 -2.9277 0 

Source: 1Chackraborty (2010), 2Rao (2011), 3Chatterjee et al. (2010) 
 
The normalization process for the final selection value 0.3104 (determined by MOORA) is illustrated as follows.  

2056.0
1163.01188.01134.02202.03341.02965.03104.0

3104.0
11 =

++++++
=λ

 
 
Similarly, the normalized final selection value of each remaining alternative by each conventional approach is calculated. 
For robot R1, the final selection values in normalized form are ,2056.011 =λ 1964.021 =λ ,2213.031 =λ 1459.041 =λ  and

,0751.0 51=λ ,0787.061 =λ 0770.071 =λ .  Calculation of entropy 1e  for the method 1 (MOORA) is demonstrated as follows. 
 

( ) .9515.00770.00787.00751.01459.02213.01964.02056.0ln)7(ln 0770.00787.00751.01459.02213.01964.02056.01
1 =×××××××= −e  

 
Similarly, the entropy values ( )5,4,3,2=jje  for the other remaining methods are computed and found as ,  9757.02 =e

,  9054.03 =e   9055.04 =e  and  8698.05 =e . The values ,1r 1r  
and 1r′

 
for alternative robot R1 is calculated as follows.

 
 

( ) ( ) ( ) 1238.0)}8698.01()9055.01()9054.01()9757.01()9515.01{(9515.011/1 5
111 =−+−+−+−+−−=−−=  =j jeer  

,3519.01238.01 ==r  ( ) .3519.13519.011 11 =+=+=′ rr  The others )5,4,3,2( =′ jjr values are ,2490.12 =′r ,  4912.13 =′r

,  4908.14 =′r  and ,  5760.15 =′r   jR′ is computed as follows. 

( ) ( ) 1590.7 5760.14908.14912.12490.13519.115
1 =++++=+=′  =j jj rR  

So, quantitative weight ( )1w for the method1 (MOORA) is measured using Eq. (7) as follows 
 

( ) ( ) .1888.0  1590.7/  3519.11/ 1/ 5
1111 ==++=′′=  =j jj rrRrw
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Table 4 
Normalized final selection values  for  weights of the approaches  in example 1 

  MOORA Rao (2011) ELECTRE (C) ELECTRE  (D) VIKOR Sum 
 
 
 
 

Normalized 
final selection 

values 

R1 0.2056 0.2236 0.0243 0.1296 0.1831 --- 
R2 0.1964 0.1685 0.1490 0.1171 0.0711 --- 
R3 0.2213 0.1712 0.2141 0.1444 0 --- 
R4 0.1459 0.1387 0.0539 0.1089 0.1271 --- 
R5 0.0751 0.0922 0.2802 0.2727 0.2633 --- 
R6 0.0787 0.1088 0.1659 0.2194 0.2539 --- 
R7 0.0770 0.0970 0.1126 0.0079 0.1015 --- 

 je (entropy) 0.9515 0.9757 0.9054 0.9055 0.8698 --- 
 je−1  0.0485 0.0243 0.0946 0.0945 0.1302 0.3921 
 jr  0.1238 0.0620 0.2412 0.2409 0.3320 1.0000 
 

jr  0.3519 0.2490 0.4912 0.4908 0.5762 2.1590 
 

jr+1  1.3519 1.2490 1.4912 1.4908 1.5760 7.1590 

                jw  (weight) 0.1888 0.1745 0.2082 0.2082 0.2203 1.0000 
 
Similarly, remaining weights are obtained as ,  1745.02 =w  ,  2082.03 =w  2082.04 =w  and  2203.05 =w  for the 
respective conventional techniques used in example1 viz. Rao’s method, ELECTRE(C), ELECTRE (D) and VIKOR.  These 
weights of the methods of example 1 are presented in Table 4. Eq. (3) – (7) are used for the measurement of the weights. It 
is noted that VIKOR method is assigned the maximum importance weight and Rao’s (2011) method the minimum 
importance weight based on the industrial robot selection problem of example 1.  

In the example 1, the MOORA method, Rao’s (2011) method and VIKOR method have non-negative final selection values 
whereas ELECTRE (C) and ELECTRE (D) methods have some negative final selection values (though remaining are non-
negative). The proposed method TARO uses two different normalization techniques, one for weight estimation, whereas 
another for final selection values evaluation.   
 
Final selection values having the positive sense (higher value is desirable) are normalized using same course of action. The 
technique of normalization for the evaluation of final selection value   3104.011=ξ  (with positive sense) is illustrated as 
follows.

  ( )
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All the final selection values determined by MOORA, Rao (2011) and ELECTRE(C) have the same (positive) sense. 

Therefore they are calculated using same formula. Normalized value of    6122.021 =ξ  is   0000.11212 == Hgg  and that of  

282.031 =ξ  is 8236.0.01313 == Hgg . 
  

Therefore these values are normalized using Eq. (9) to convert them to positive sense. For example normalization procedure 
of 2672.241 −=ξ  is demonstrated by calculating Lg41 as follows. 
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For 6953.051 =ξ  normalized final selection value is .4605.015 =Lg  Normalized final selection values computed for 
performance evaluation of alternative robots of example 1is shown in Table 5. 
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Table 5 

Normalized final selection values  computed  for performance evaluation of alternative robots (example 1) 
 MOORA Rao (2011) ELECTRE (C) ELECTRE(D) VIKOR 

R1 0.9858 1.0000 0.8236 0.9984 0.4605 
R2 0.9644 0.7906 0.9787 0.9947 0.9113 
R3 1.0000 0.8105 1.0000 1.0000 1.0000 
R4 0.6890 0.5276 0.6588 0.9910 0.7258 
R5 0.0000 0.0000 0.0000 0.0000 0.0000 
R6 0.0384 0.1962 0.3553 0.1993 0.0556 
R7 0.0206 0.0570 0.9484 0.8400 0.8222 

 

Calculation procedure of exponentially weighted normalized final selection values (EWNFSV) for 
Hg11 and

Lg41 are shown 

by determining Hh11  and Lh41 using Eq. (10) and Eq. (11) as follows. 

( ) ( ) 2368.39895.01888.0expexp 11111 =+=+= HH gwh  

( ) ( ) 3422.39984.02082.0expexp 11141 =+=+= LL gwh  

Non-linear selection indices of first kind 




 )1(   iNLSI  for the alternatives are calculated using Eq. (12). Calculation  

procedure for )1(
1NLSI  is illustrated as follows.  

( ) ( ) ( ) ( ) ( )(1)
1 exp  0.1888 0.9858 exp 0.1745 1.0000 exp 0.2082 0.8236 exp 0.2082 0.9984 exp 0.2203 0.4605 14.5970NLSI = + + + + + + + + + =  

Similarly, ,5004.15)1(
2 =NLSI ,0439.16)1(

3 =NLSI ,6965.12)1(
4 =NLSI ,1078.6)1(

5 =NLSI  and 
3613.11)1(

7 =NLSI are computed by same procedure and using same equation. All EWNFSVs and NLSIs of first kind are 
presented in Table 6.  
 

Table 6 
Weighted normalized final selection values (EWNFSV) and non-linear selection indices of first kind (example 1) 

 MOORA* Rao (2011) ELECTRE (C) ELECTRE (D) VIKOR 
)1(

iNLSI  
R1 3.2368 3.2365 2.8062 3.3422 1.9755 14.597 
R2 3.1683 2.6252 3.2768 3.3297 3.1006 15.5006 
R3 3.2831 2.6777 3.3475 3.3475 3.3882 16.0439 
R4 2.4056 2.0179 2.3798 3.3176 2.5757 12.6965 
R5 1.2078 1.1907 1.2315 1.2315 1.2465 6.1078 
R6 1.2551 1.4488 1.7567 1.5031 1.3179 7.2814 
R7 1.2330 1.2605 3.1791 2.8525 2.8362 11.3613 

      )1(
iNLSI  83.5889 

 
 
Non-linear selection indices of second kind ( ))2(   iNLSI  are calculated using Eq. (12). Calculation procedure for ,)2(

1NLSI is 
demonstrated as follows.  
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Non-linear selection indices of second kind ( ))2(   iNLSI  for the remaining alternative are similarly computed and the values 
are found as  

,4217.1)2(
2 =NLSI ,6545.1)2(

3 =NLSI ,9990.0)2(
4 =NLSI ,3784.0)2(

5 =NLSI ,4423.0)2(
6 =NLSI .9196.0)2(

7 =NLSI  
,70474.07

1
)2( = =i iNLSI  EWNFSVs and NLSIs of second kind are shown in Table 7. 

 
Non-linear selection indices of first kind ( ))1(   iNLSI  and non-linear selection indices of second kind ( ))2(   iNLSI are integrated 
to find accurate selection indices using Eq. (14).  The calculation of the accurate selection index for the alternative robot 1 
is illustrated as follows. 

,2814.7)1(
6 =NLSI
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Table 7 
Weighted normalized final selection values (EWNFSV) and non-linear selection indices of second kind (exam ple 1) 

 MOORA Rao  (2011) ELECTRE(C) ELECTRA(D) VIKOR )2(
iNLSI  

R1 0.4781* 0.4743 0.2333 -0.1549 0.0790 1.2616 
R2 0.4586 0.3707 0.4176 -0.1761 0.0013 1.4217 
R3 0.5132 0.3754 0.5659 -0.1324 -0.0676 1.6545 
R4 0.3650 0.3245 0.1619 -0.1912 0.0436 0.9990 
R5 0.2651 0.2636 0.0563 0.1148 0.1215 0.3487 
R6 0.2694 0.2838 0.0960 0.0900 0.1170 0.4423 
R7 0.2674 0.2693 0.3522 -0.0559 0.0252 0.9196 

      )2(
iNLSI  7.0474 

 
Table 8 
Accurate selection indices and accurate ranking order  (example 1) 

Robots  )1(

)1(

i

i

NLSI
NLSI

 
 )2(

)2(

i

i

NLSI
NLSI

 
iASI  Rank 

R1 0.1746 0.1790 0.1768 3 
R2 0.1854 0.2017 0.1936 2 
R3 0.1919 0.2348 0.2134 1 
R4 0.1519 0.1417 0.1468 4 
R5 0.0730 0.0495 0.0613 7 
R6 0.0871 0.0627 0.0749 6 
R7 0.1359 0.1305 0.1332 5 

 
Similarly, using Eq. (14) remaining ASIs are calculated as  , 1936.02 =ASI  , 2134.03 =ASI , 1468.04 =ASI , 0613.05 =ASI

 0749.06 =ASI   and  1332.07 =ASI . Since, the higher ASI values are better; hence ASIs are arranged in the descending 
order of their values. Obviously ASIs in descending order are 5674123 ASIASIASIASIASIASIASI >>>>>>  that 
suggests ranks of the robots in the order of 5674123 RRRRRRR >>>>>> . The alternative robots along with 
corresponding ASIs values and accurate ranking orders are presented in Table 8.  The ranking order of the robots in example 
1 obtained by the proposed TARO methods is also graphically represented in Fig. 4. It clearly shows that TARO is capable 
of removing the rank reversal, confusion and ambiguity generated by conventional MCDM approaches.  

 

 

Fig 4: Ranking order of the robots by TARO method (Example 1) 
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3.2. Example 2: Robot ranking and selection  
 

Example 2 is robot ranking and selection problem for industrial application, which is taken from Chatterjee, Athawale, 
Chakraborty (2010). This example considers four robots and seven selection criteria. The robots are designated as R1, R2, 
R3 and R4. The seven criteria are velocity, load capacity, vendor’s service quality, robot’s programming flexibility, cost 
and repeatability. The first four are benefit criteria and the last two are cost/non-benefit criteria. The attributes vendor’s 
service quality and robot’s programming flexibility are subjective criteria whereas the remaining are objective criteria.  The 
subjective measure of vendor’s service quality and robot’s programming flexibility are assigned by a group of experts using 
a 10-point judgment scale. A summary of the subjective and objective performance measure of the criteria for alternate 
robots is presented in Table 9.  The result of this industrial robot selection problem of example 2, determined by the previous 
researchers using conventional approaches, is elucidated in sub-section 3. 2.1.  

Table 9 
Decision matrix comprising of performance ratings of alternative robots (Example 2) 

 C1 C2 C3 C4 C5 C6 
R1 1.8 90 9500 0.45 6 4 
R2 1.4 80 5500 0.3 7 5 
R3 0.8 70 4000 0.2 6 6 
R4 0.8 60 4000 0.15 4 7 

Max 1.8 90 9500 0.45 7 7 
Min 0.8 60 4000 0.15 4 4 

 

3.2.1. Results of the industrial robot selection problem (example 2) using conventional approaches 

The robot ranking and selection problem described in example 2 is solved by Chaterjee et al. (2010) using the ELECTRE 
and VIKOR method. The same problem is also solved using MOORA, TOPSIS and SAW in the current research work. The 
final selection values for alternative robots by various MCDM methods are shown in Table 10. The corresponding ranking 
orders of the alternative robots are presented in Table 11. Ranking order using MOORA and SAW method is 4-1-2-3 that 
indicates preference should be given in the sequence R2>R3>R4>R1. Ranking order using the TOPSIS, ELECTRE and 
VIKOR method is 2-1-3-4 that shows preference in the sequence of R2>R1>R3>R4. Fig. 5 compares the ranking order of 
the robots obtained by various MCDM methods. This comparison clearly shows the difference in ranking order of the 
alternative industrial robots as per various conventional MCDM approaches.   

Table 10 
Final selection values for alternative robots  by various MCDM methods (Example 2) 

 MOORA TOPSIS SAW ELECTRE(C) ELECTRE(D) VIKOR 
R1 0.3453 0.5248 0.7298 0.3480 -0.3283 0.4848 
R2 0.4384 0.6313 0.7836 0.4416 -1.6868 0.0000 
R3 0.4055 0.5139 0.7706 -0.1624 0.7730 0.7559 
R4 0.3704 0.4427 0.7550 -0.6272 1.2421 1.0000 

Max 0.4384 0.6313 0.7836 0.4416 1.2421 1.0000 
Min 0.3453 0.4427 0.7298 -0.6272 -1.6868 0.0000 

 

 

Fig 5: Ranking order of the robots by various MCDM methods (Example 2) 
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Table 11 
Ranking order of the robots by conventional  MCDM methods (Example 2) 
Robots MOORA TOPSIS SAW ELECTRE(C) ELECTRE(D) VIKOR 

R1 4 2 4 2 2 2 
R2 1 1 1 1 1 1 
R3 2 3 2 3 3 3 
R4 3 4 3 4 4 4 

 

3.2.2. Rank reversal  in example 2 

The analysis shows that industrial robot R1 receives two different preference orders, ranks 2 (four times) and rank 4 (twice). 
Robot R3 attains two different ranks 3 (twice) and 4 (four times) though robot R3 has the ranking order 1 in each method. 
Ambiguity arises when a comparison between the performances of two distinct robots is essential.  Due to this ambiguity 
decision makers often suffer from uncertainty. 

3.2.3. Application of proposed method (TARO) on example 2  for the elimination of rank reversal  
 
The rank reversal in example 2 creates ambiguity; ambiguity causes uncertainty, which leads to the   application of proposed 
method TARO. The final selection values obtained by MOORA, TOPSIS, SAW, ELECTRE and VIKOR method for the 
alternatives  are normalized through Eq. (1) to Eq. (7) with a view to  attain importance of these methods. Table 12 shows 
that the weights of the methodologies are in the normalized ratio of ,1268.0=MOORAw ,1494.0=TOPSISw

,1296.0=SAWw ,1853.0)( =CELECTREw ,1931.0)( =DELECTREw    2158.0=VIKORw . The final selection values of the 
alternative robots are normalized using Eq. (8) and is presented in Table 13. Non-linear selection indices (NLSI) for each 
alternative using non-linear function of first kind is measured using Eq. (9) and is presented in Table 14. Non-linear selection 
indices (NLSI) of second kind for each alternative robot are shown in Table 15. Accurate selection index is calculated using 
Eq. (15), as given in Table 16. These accurate selection indices are found as 8071.01 =ASI 0219.12 =ASI 6755.03 =ASI and

.4955.04 =ASI ASIs in descending order are 
.4312 ASIASIASIASI >>> Obviously the accurate ranking order achieved by using the proposed method for the robots is 

2-1-3-4. This ranks indicate the preference order in the sequence R2>R1>R3>R4, which is compatible with that as derived 
by previous researchers. Fig. 6 exhibits the ranking orders of the alternative robots as achieved using the proposed method.  
 

Table 12 
Weights of the methodologies (example 2) 

 MOORA TOPSIS SAW 
ELECTRE 

(C) ELECTRE(D) VIKOR Sum 

Normalization 

R1 0.2214 0.2484 0.2401 0.2204 0.0815 0.2164 --- 
R2 0.2811 0.2988 0.2578 0.2796 0.4185 0.0000 --- 
R3 0.2600 0.2432 0.2536 0.1028 0.1918 0.3373 --- 
R4 0.2375 0.2095 0.2484 0.3972 0.3082 0.4463 --- 

ijiji ξξθ ln=

 

R1 -0.3338 -0.3460 -0.3426 -0.3333 -0.2043 -0.3312 --- 
R2 -0.3567 -0.3609 -0.3495 -0.3563 -0.3645 0.0000 --- 
R3 -0.3502 -0.3439 -0.3479 -0.2339 -0.3167 -0.3666 --- 
R4 -0.3414 -0.3275 -0.3460 -0.3667 -0.3628 -0.3601 --- 

sum -1.3822 -1.3782 -1.3859 -1.2903 -1.2483 -1.0579 --- 
je (entropy) 0.9971 0.9942 0.9997 0.9307 0.9004 0.7631 --- 

je−1  0.0029 0.0058 0.0003 0.0693 0.0996 0.2369 0.4147 

jr  0.0071 0.0140 0.0006 0.1670 0.2400 0.5713 1.0000 

jr  0.0842 0.1183 0.0246 0.4087 0.4899 0.7558 1.8816 

jr+1  1.0842 1.1183 1.0246 1.4087 1.4899 1.7558 7.8816 

jw  (weight) 0.1376 0.1419 0.1300 0.1787 0.1890 0.2228 1.0000 
 

Table 13 
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Normalization of the final selection values (example 2) 

 MOORA TOPSIS SAW ELECTRE(C) ELECTRE(D) VIKOR 
R1 0.0000 0.4356 0.0000 0.9124 0.5362 0.5152 
R2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
R3 0.6466 0.3774 0.7584 0.4349 0.1602 0.2441 
R4 0.2696 0.0000 0.4684 0.0000 0.0000 0.0000 

 

Table  14 
Non-linear selection indices (NLSI) of first kind for each alternative robot (Example 2) 

 MOORA TOPSIS SAW ELECTRE (C) ELECTRE 
(D) VIKOR 

)1(
iNLSI  

R1 1.1475 2.1677 1.1388 3.2194 2.5469 2.5761 12.7963 
R2 3.1192 3.1327 3.0957 3.2502 3.2839 3.3966 19.2783 
R3 2.6836 2.0144 2.8824 2.2472 1.5494 1.8161 13.1930 
R4 1.7303 1.1524 2.2275 1.1957 1.2081 1.2495 8.7636 

       )1( iNLSI  54.0312 

 

Table 15 
Non-linear selection indices (NLSI) of second kind for each alternative robot (Example 2) 

 
MOORA TOPSIS SAW ELECTRE 

(C) 
ELECTRE 

(D) VIKOR )2(
iNLSI  

R1 0.3024 0.3258 0.3299 0.3930 -0.0867 -0.0355 1.4734 
R2 0.3739 0.3857 0.3534 0.4858 0.1032 -0.2228 1.7185 
R3 0.3469 0.3202 0.3476 0.1237 -0.0019 0.0260 1.1143 
R4 0.3202 0.2861 0.3407 0.0432 0.0592 0.0698 0.8612 

 
      )2(

iNLSI  5.1673 

 

Fig 6: Ranking order of the robots by TARO method (Example 2) 
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3.3. Example 3: Robot ranking and selection problem 3 
Example 3 is a robot ranking and selection problem cited from Tansel, Yurdakul and Dengiz (2013). This problem involves 
a set of nine robots and a group of seven criteria. The models of robots are MA1400, EA1400N, HP-20-6, HP-6, MA1900, 
UP20MN, MH6, KR16 and KR5ARC.  The criteria are Vertical reach (VR), S-axis motion range (S-AMR), L-axis motion 
range (L-AMR), T-axis motion range (T-AMR), Payload (P), Repeatability(R) and B-axis motion range (B-AMR). The 
decision matrix consisting of performance rating with respect to criteria for the alternative robots along with the criteria 
weights are furnished in Table 17.   

3.3.1. Results of the industrial robot selection problem (example 3) using conventional approaches 
 

The industrial robot ranking and selection problem cited in example-3 is solved using six conventional approaches viz. 
MOORA, SAW, TOPSIS, Buckley’s FAHP, ELECTRE, and VIKOR. The final selection values of the alternative robots 
using these methods are presented in Table 18. The final selection values of MOORA, SAW, TOPSIS, Buckley’s FAHP 
and ELECTRE (C) have the benefit i.e. positive sense,  whereas, that of ELECTRE (D) and VIKOR have the cost i.e. non-
benefit sense. These final selection values obtained by various conventional methods determine the ranking orders of the 
alternative robots as shown in Table 19. The result shows the ranking order as per the result found is ambiguous, except the 
models EA1400N and MA 1900 having the rank 9 and 7 respectively. Ranking order of the industrial robots by various 
conventional MCDM methods for example 3 is graphically presented in Fig.7.  

 

 

 

Table 18 

Accurate selection index and ranking order  of the alternative robots (Example 2) 

Robots   )1(

)1(

i

i

NLSI
NLSI

 
 )2(

)2(

i

i

NLSI
NLSI

 
ASI Accurate Rank 

R1 0.5220 0.2851 0.8071 2 
R2 0.6894 0.3326 1.0219 1 
R3 0.4598 0.2156 0.6755 3 
R4 0.3289 0.1667 0.4955 4 

Table 17   
Assessment of  robot selection criteria  (Example 3 ) 

 VR (mm) 
S-AMR 

(0) 
L-AMR 

(0) 
T-AMR 

(0) 
P 

 (kg) 
R  

(1/100 mm) B-AMR (0) 
Weight 0.0894 0.0275 0.0069 0.5183 0.1766 0.133 0.0482 
MA1400 2511 170 155 200 3 8 180 
EA1400N 1390 170 155 180 3 8 210 
HP-20-6 1915 180 155 360 6 6 220 
HP-6 1378 170 155 360 6 8 225 
MA1900 3437 180 155 200 3 8 180 
UP20MN 3106 180 135 360 20 15 130 
MH6 2486 170 155 360 6 8 235 
KR16 2412 185 35 350 16 10 130 
KR5ARC 2207 155 65 350 5 10 130 
sum 20842 1560 1165 2720 68 81 1640 
Max 3437 185 155 360 20 15 235 
Min 1378 155 35 180 3 6 130 
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Final selection values for alternative robots  by various MCDM methods (Example 3) 

Model MOORA SAW TOPSIS Buckley’s 
FAHP 

ELECTRE 
(C ) 

ELECTRE 
(D) VIKOR 

MA1400 0.3779 0.5486 0.2141 0.31 -3.8422 5.8638 0.4607 
EA1400N 0.3261 0.4968 0.1746 0.23 -6.0838 7.4065 0.5183 
HP-20-6 0.6467 0.8329 0. 6781 0.83 1.2456 0.5669 0.1454 

HP-6 0.6145 0.7852 0. 6640 0.79 1.4208 0.6349 0.1454 
MA 1900 0.4035 0.5742 0.2414 0.37 -3.4312 2.5202 0.4607 
UP20MN 0.7021 0.8883 0.7847 0.88 4.4224 -7.2756 0.0482 

MH6 0.6454 0.8161 0.6797 0.84 1.7266 -3.4007 0.1454 
KR16 0.6750 0.8434 0.8148 0.85 0.0818 -5.1488 0.0739 

KR5ARC 0.5694 0.7379 0.6359 0.71 0.0257 -1.1672 0.1558 
max 0.7021 0.8883 0.8148 0.88 4.4224 7.4065 0.5183 
Min 0.3261 0.4968 0.1746 0.23 -6.0838 -7.2756 0.0482 

 

 

Fig 7: Ranking order of the robots by various MCDM methods (Example 3) 

3.3.2. Rank  reversal in example 3 

The study shows that rank reversal occurs in case of example 3.  Table 19 depicts that the model of industrial robot MA1400 
gets two different ranks 7(once) and 8 (6 times). Model HP-20-6 receives three different preference orders, rank 3 (thrice), 
rank 4 (thrice) and 5(once).  
 

Table 19 
Ranking orders of the robots by various MCDM techniques (Example 3) 

Model MOORA SAW TOPSIS Buckley’s 
FAHP ELECTRE (C ) ELECTRE (D) VIKOR 

MA1400 8 8 8 8 8 8 7 
EA1400N 9 9 9 9 9 9 9 
HP-20-6 3 3 4 4 4 5 3 

HP-6 5 5 5 3 3 6 3 
MA 1900 7 7 7 7 7 7 7 
UP20MN 1 1 2 1 1 1 1 

MH6 4 4 3 2 2 3 3 
KR16 2 2 1 5 5 2 2 

KR5ARC 6 6 6 6 6 4 6 
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Model HP-6 attains three different ranks, 3 (thrice), 5 (thrice) and 6 (once). UP20MN gets two distinct ranks, 1 (six times) 
and 2(once). MH6 obtains ranks 2 (twice), 3(thrice) and 4(twice). The model KR16 also receives three different ranking 
orders, 1(once), 2(four times) and 5(twice).  The model KR5ARC gets two different ranks 4(once) and 6(six times). The 
models of robot EA1400N and MA 1900 unanimously obtain the rank 9 and rank 7 respectively. The fact of rank reversal 
causes ambiguity that makes decision makers fail to rank and select the alternative properly. The detrimental phenomenon 
of rank reversal in example 3 leads to the application of proposed method TARO for finding the accurate ranking orders of 
the alternatives that is described in section 3.3.3. 
 
3.3.3. Application of proposed method (TARO)on  example 3  for the elimination of rank reversal  

The final selection values determined by conventional MCDM techniques for the alternative industrial robots are used as 
the basis or raw material of the proposed TARO method. This raw data are normalized for measuring weights of the 
conventional methodology and performance assessment of alternative. For example, normalization of the final selection 
values for measuring weights of the MCDM techniques are carried out and presented in Table 20. Exponentially weighted 
normalized final selection values for evaluation of alternatives are computed and shown in Table 21. Non-linear selection 

indices of first kind 




 )1(

iNLSI for each alternative industrial robot of example 3 are computed and presented in Table 22.  

Non-linear selection indices of second kind 




 )2(

iNLSI for each alternative industrial robot are computed and presented in 

Table 23. Accurate selection index ( )iASI and accurate ranking order of the industrial robots are determined and shown in 
Table 24. It is seen that accurate selection indices for the models of the robots are found as ,0652.01400 =MAASI

,0545.01400 =NEAASI ,1344.0620 =−−HPASI ,1314.06 =−HPASI ,0740.01900 =MAASI ,1488.020 =MNUPASI
,1337.06 =−MHASI 1350.016 =−KRASI  and 1230.05 =ARCKRASI . Therefore the ranking order of the industrial robots is 8-

9-3-5-7-1-4-2-6. The preference order of the models of robots is UP20MN> KR-16> HP-20-6> MH-6> HP-6> KR5ARC 
> MA1900> MA1400> EA1400N.  Fig. 8 exhibits the ranking orders of the alternative industrial robots as achieved by 
using the proposed method TARO. It clearly implies that UP20MN is the best option and EA1400N is the worst option and 
so on.  
  

Table 20 
Normalized final selection values, entropy, and weight of the MCDM techniques (Example 3) 

 Model MOORA SAW TOPSIS Buckley’s  
FAHP 

ELECTRE 
      (C) 

ELECTRE 
(D) VIKOR Sum 

N
or

m
al

iz
at

io
n 

MA1400 0.0762 0.0841 0.0438 0.0534 0.1707 0.1725 0.2139 --- 
EA1400N 0.0657 0.0762 0.0357 0.0396 0.2703 0.2179 0.2406 --- 
HP-20-6 0.1304 0.1277 0.1387 0.1429 0.0553 0.0167 0.0675 --- 

HP-6 0.1239 0.1204 0.1359 0.1360 0.0631 0.0187 0.0675 --- 
MA1900 0.0813 0.0880 0.0494 0.0637 0.1524 0.0742 0.2139 --- 

UP20MN* 0.1415 0.1362 0.1606 0.1515 0.1965 0.2141 0.0224 --- 
MH-6 0.1301 0.1251 0.1391 0.1446 0.0767 0.1001 0.0675 --- 
KR-16 0.1361 0.1293 0.1667 0.1463 0.0036 0.1515 0.0343 --- 

KR5ARC 0.1148 0.1131 0.1301 0.1222 0.0114 0.0343 0.0723 --- 
 je  0.9855 0.9914 0.9475 0.9614 0.8487 0.8797 0.8826 --- 

 je−1  0.0145 0.0086 0.0525 0.0386 0.1513 0.1203 0.1174 0.5032 

 jr  0.0287 0.0170 0.1043 0.0767 0.3007 0.2392 0.2334 1.0000 

 
jr  0.1695 0.1305 0.3229 0.2769 0.5484 0.4890 0.4831 2.4204 

 
jr+1  1.1695 1.1305 1.3229 1.2769 1.5484 1.4890 1.4831 9.4204 

 jw (weight) 0.1241 0.1200 0.1404 0.1355 0.1644 0.1581 0.1574 1.0000 

 
Table 21 

Exponentially weighted  normalized final selection values for evaluation of alternatives (Example 3) 
Model MOORA SAW TOPSIS Buckley’s AHP ELECTRE (C) ELECTRE (D) VIKOR 

MA1400 0.2166 0.2062 0.0968 0.1920 0.3287 0.1642 0.1911 
EA1400N 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
HP-20-6 0.9731 0.9752 0.9441 0.9926 0.8891 0.6679 0.9475 

HP-6 0.9335 0.9154 0.9321 0.9763 0.9007 0.6625 0.9475 
MA1900 0.3175 0.3053 0.1630 0.3317 0.3861 0.4991 0.1911 
UP20MN 1.0000 1.0000 0.9972 1.0000 1.0000 1.0000 1.0000 

MH-6 0.9719 0.9581 0.9454 0.9953 0.9196 0.9151 0.9475 
KR-16 0.9935 0.9837 1.0000 0.9973 0.7964 0.9741 0.9963 

KR5ARC 0.8499 0.8230 0.9050 0.9166 0.8120 0.7937 0.9358 



B. Bairagi / Decision Science Letters 11 (2022) 
 

583

 

 

Table 23 

Non-linear selection indices ( )2(
iNLSI ) of second kind (Example 3) 

Model MOORA SAW TOPSIS Buckley’s 
FAHP 

ELECTRE 
 (C) 

ELECTRE 
(D) VIKOR )2(

iNLSI  

MA1400 0.2127 0.2225 0.1826 0.1928 0.0689 0.02341 0.0359 0.8202 
EA1400N 0.1975 0.2099 0.1740 0.1760 0.0415 0.04952 0.0493 0.7002 
HP-20-6 0.3118 0.3065 0.3228 0.3481 0.2178 -0.1282 -0.0681 1.7034 

HP-6 0.2979 0.2905 0.3172 0.3326 0.2266 -0.1249 -0.0681 1.6580 
MA1900 0.2206 0.2290 0.1889 0.2064 0.0757 -0.0545 0.0359 0.9391 
UP20MN 0.3375 0.3262 0.3679 0.3685 0.4468 0.04746 -0.1219 1.9213 

MH-6 0.3113 0.3007 0.3234 0.3521 0.2429 -0.03 -0.0681 1.6286 
KR-16 0.3247 0.3101 0.3817 0.3561 0.1674 0.00967 -0.1058 1.6363 

KR5ARC 0.2793 0.2754 0.3065 0.3037 0.1742 -0.1017 -0.0633 1.5042 

         
 

 

Fig 8: Ranking order of the robots by TARO method (Example 3 

Table 24 
Accurate selection index ( iASI )  (Example 3) 

 
Model 

 =
9

1
)1(

)1(

i i

i

NLSI
NLSI

  =
9

1
)2(

)2(

i i

i

NLSI
NLSI

 

 
iASI  

 
Rank 

MA1400 0.0649 0.0656 0.0652 8 
EA1400N 0.0530 0.0559 0.0545 9 
HP-20-6 0.1327 0.1361 0.1344 3 

HP-6 0.1303 0.1325 0.1314 5 
MA1900 0.0730 0.0751 0.0740 7 

UP20MN* 0.1441 0.1536 0.1488 1 
MH-6 0.1372 0.1302 0.1337 4 
KR-16 0.1391 0.1308 0.1350 2 

KR5ARC 0.1258 0.1202 0.1230 6 
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Table 22 

Non-linear selection indices ( )1(
iNLSI ) of first kind for each alternative robot (exam ple3) 

Model MOORA SAW TOPSIS Buckley’s  
FAHP 

ELECTRE 
(C) 

ELECTRE 
(D) VIKOR )1(

iNLSI  

MA1400 1.4032 1.3857 1.2677 1.3876 1.6374 1.3803 1.4171 9.8790 
EA1400N 1.1322 1.1275 1.1508 1.1452 1.1786 1.1712 1.1705 8.0760 
HP-20-6 2.9960 2.9898 2.9580 3.0900 2.8674 2.2841 3.0190 20.2043 

HP-6 2.8797 2.8162 2.9227 3.0400 2.9011 2.2717 3.0190 19.8504 
MA1900 1.5552 1.5301 1.3545 1.5957 1.7341 1.9292 1.4171 11.1158 
UP20MN 3.0776 3.0649 3.1194 3.1129 3.2039 3.1838 3.1817 21.9442 

MH-6 2.9923 2.9391 2.9619 3.0982 2.9565 2.9245 3.0190 20.8913 
KR-16 3.0576 3.0153 3.1281 3.1045 2.6138 3.1023 3.1699 21.1915 

KR5ARC 2.6487 2.5677 2.8446 2.8637 2.6547 2.5902 2.9839 19.1535 
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4. Discussions    
 

Applicability and validity of the proposed technique are illustrated with the solutions of ranking and selection problems of 
robots. It is noted that for application of the proposed technique TARO, a number of conventional MCDM methods need 
to be used to determine the final selection values on which TARO acts upon.  

A matrix consisting of final selection values determined by a set of conventional approaches for the alternatives is 
constructed. Final selection value is used as the basis of evaluation because it is more fundamental than the ranks of the 
alternatives.  Final selection values are infinite and continuous over a range whereas ranks are discrete and finite in number. 
Final selection values can take any values- positive, negative or zero whereas ranks are some fixed natural number starting 
from unity. Besides final selection values are also the basis of ranks of the alternatives. These are the reasons for using final 
selection values in lieu of ranks as the basic raw data in proposed technique TARO. 

The final selection values obtained by different conventional techniques have significant differences due to which they give 
distinct ranks to an alternative though the conventional techniques use the same information regarding performance rating 
and weights of criteria. This significant difference deserves distinct weights to the different set of final selection values as 
per some logical basis. The current paper employs the advanced entropy weighting method proposed by Bairagi et al. (2015).  

To assimilate the final selection values, weights are granted to the methods using an advanced version of the entropy method 
introduced in the paper. It is observed in example 1 the methods in descending order of their importance weights are VIKOR, 
ELECTRE(C) or ELECTRE (D), MOORA and Rao et al. (2011) respectively. Obviously the VIKOR method attains the 
highest importance and the method of Rao et al. (2011) the least importance, where ELECTRE (C) and ELECTRE (D) 
possess equal amounts of importance. In example 2 the methods in increasing order of their importance weights are VIKOR, 
ELECTRE (D), ELECTRE (C), TOPSIS, SAW and MOORA respectively. Obviously VIKOR once again attains the highest 
importance weight and MOORA the least one. Unlike the example 1 ELECTRE (C) and ELECTRE (D) obtain unequal 
importance weights. In example 3, the methods in increasing order of their importance weights are ELECTRE(C), 
ELECTRE (D), VIKOR, TOPSIS, Buckley’s AHP, MOORA and SAW respectively. In this case ELECTRE(C) attains the 
highest importance weight, ELECTRE (D) the second highest. Next important method is VIKOR. MOORA attains the least 
important weight. The analysis clearly shows that relative importance of different conventional approaches vary from 
decision problem to decision problem.  Naturally accuracy of the results depends on the number of the conventional methods 
used. Accuracy increases with increase of the number of conventional methods and decreases with decrease of the same.  

For accurate ranking order of the alternative final selection values determined by the other conventional MCDM 
methodologies are assessed twice by the new technique TARO using two independent Eqs. (11) and (12) for higher accuracy 
and robustness of the approaches. An average assessed value is taken assuming . One may consider unequal values of  and 
with reasonable basis. TARO integrates final selection values with corresponding weights to measure accurate selection 
index (ASI). ASI is the proportional distance of an alternative from the ideal reference point.  

Advantages of the proposed TARO method can be furnished as follows. 

•       In TARO, final selection values obtained by past research for the alternatives may be directly used.  
•       TARO can determine the weight of the FSV as well as the conventional MCDM/FMCDM approaches. Weight 
measuring external methods such as AHP, ANP, and conventional entropy is not necessary.  
•       TARO makes group decisions. Each conventional MCDM/FMCDM approach has an implicit effect in measuring 
the accurate ranking by using the proposed method TARO.   
•       TARO is capable of distinguishing the alternatives by evaluating performance and assigning distinct rank. No 
iteration of the method to the same problem is required for ranking or selecting the alternatives.  
•       Estimation of the weight for the conventional methods is based on the crisp data of the final selection values that 
leads to accuracy avoiding subjective measure through use of linguistic variables.  

 

Main disadvantages of TARO are the prerequisite of the application of multiple MCDM approaches to obtain distinguished 
sets of final selection values. Besides, the proposed method is not compatible with the decision matrix consisting of 
performance ratings or with the weight matrix consisting of weights of the criteria. Comparisons of the proposed method 
with the conventional MCDM approaches are depicted in Table 25. 

 

 

 



B. Bairagi / Decision Science Letters 11 (2022) 
 

585

 

 

Limitation of the proposed TARO method is that it cannot incorporate the conventional methods incapable of generating 
final selection value for each individual alternative (Shih, 2008). Moreover, TARO cannot take account of experts’ opinion 
for estimation of criteria weights.  

5. Case Study  
 

To conduct a case study for the proposed approach I was searching for an automotive manufacturing organization which 
uses robotic systems for its Material handling purpose. Having received the information from a reliable source that a Kolkata 
based automotive automobile company (the authority does not want to disclose the name of the organization) are seeking a 
solution to the selection problem on robots, I personally  communicated with the manager of the manufacturing unit through 
email. After several communications, he became convinced and interested to consult decision making problems on 
collaborative robot selection for assembly operation for manufacturing of the organization.  

At a scheduled date and time, a meeting was held with the managers and other two personnel associated with the decision 
making process. Through long discussions with the manager and his colleagues, the decision making problem is defined 
and stated as below.  

The automobile company has an automotive manufacturing unit which the manager and his decision making team wants to 
extend by installing collaborative robots. After an extensive market survey the company came to the decision to buy the 
robots from FANUC robot manufacturing company.  FANUC has eight different collaborative robots. Two of the robots do 
not have minimum information to be considered. Therefore only six robots out of eight are taken into consideration for 
further assessment.  The six robots are: CR- 4iA, CR- 7iA, CR- 7iA/L, CR- 14iA/L, CR-15iA, and CR- 35iA. A decision 
making committee is formed including managers and two experts to take important decisions on the selection process. The 
committee chooses eight selection criteria: cost, repeatability, maximum payload, reach, speed, control, flexibility and 
reliability. Cost and repeatability are of the cost category and the remaining six criteria viz. maximum payload, reach, speed, 
control, flexibility and reliability are of benefit category. Moreover four criteria namely repeatability, maximum payload, 
and speed are quantitative criteria and considered as qualitative criteria due to lack of precise information. Alternatives 
regarding qualitative criteria are assessed by five degrees of linguistic terms. The importance of criteria is unanimously 
assessed by the experience, knowledge and opinion of the members of the decision making committee with five degrees of 
linguistic terms. The linguistic terms for performance ratings as well as weights of criteria are converted to respective fuzzy 
numbers. The decision matrix for collaborative robots is shown in Table 26.  
Now as per the proposed approach, each of the methods MOORA, SAW, TOPSIS, AHP, ELECTRE(C), ELECTRE (D) 
and VIKOR is individually applied for finding the rank of the alternatives. The final selection values of the above mentioned 
techniques are used in the entropy weighting method for calculating the weights of the respective techniques. Now, the 
respective final selection values and the corresponding weights are integrated to compute the selection index of the proposed 
method. The rank reversal by the conventional methods and rectification are shown in Table 27. Respective graphical 
representations of the same are in Fig. 9 and Fig.10. 

Table 25 
Comparisons of conventional methods with  the proposed method 

 Conventional methods Proposed TARO  method  
1. Inputs are performance ratings of alternatives and 

weights of decision criteria. 
1. Inputs are final selection values determined by 

different conventional MCDM methods.  
 

2. Outputs are final selection values and ranking orders 
of the alternatives.  

2.  are accurate selection indices and ranks of the 
alternatives. 

 
3. Important entities are alternatives, criteria. In some 

cases decision makers are also considered an entity.  
 

3. Important entities are alternatives and 
conventional methodologies. 

4. Weight measuring method is an external to the 
performance evaluation procedure. 

4. Weight measuring method is an integral part of the 
performance evaluation procedure of the proposed 
technique. 

 
5. Individual technique cannot take the account of the 

results obtained by other methods.  
5. TARO takes the account of the results obtained by 

the others conventional methods.  
 

6.  Application of multiple MCDM techniques may 
generate rank reversal.  

6. A single application of TARO on the results 
obtained by multiple MCDM techniques removes 
the rank reversal. 
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From the above analysis of the case study it is evident that the proposed method is capable of rectifying the rank reversal 
phenomenon that occurred in the decision making process. Thus, this method can assist decision makers in removing 
confusion as well as ambiguity and in taking appropriate decisions with confidence.  
 
Table 26 
Decision matrix collaborative robots 

Robots  Cost Repeatability 
(mm) 

Maximum 
Payload 

(kg) 

Reach 
(mm) 

Speed 
mm/sec Control Flexibility Reliability 

CR- 4iA L ± 0.01 4 550 1000 VH H H 
CR- 7iA H ± 0.03 7 717 1000 H L VH 
CR- 7iA/L VH ± 0.03 7 911 1000 L VH H 
CR- 
14iA/L VH ± 0.01 14 911 500 VH H L 

CR-15iA H ± 0.02 15 1441 800-15000 H VH VH 
CR- 35iA VH ± 0.01 35 1813 750 H H VH 

Criteria 
Weight  

Low  
Important Important  Extremely 

Important  Important Extremely 
Important Important High 

Important  Important 

 
Table 27 
Rank reversal by conventional methodologies and rectification  by proposed method 

Robots MOORA SAW TOPSIS FAHP ELECTRE 
(C) 

ELECTRE 
(D) VIKOR Proposed 

Method 
CR- 4iA 3 4 4 2 4 4 5 4 
CR- 7iA 6 6 6 6 5 5 6 6 
CR- 7iA/L 5 5 5 5 6 6 4 5 
CR- 
14iA/L 4 3 3 4 2 2 3 3 

CR-15iA 2 2 2 3 3 3 1 2 
CR- 35iA 1 1 1 1 1 1 2 1 

 
 

 

Fig.9. Rank reversal by conventional methodology 
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Fig. 10. Rectification of rank reversal by proposed method (TARO). 

6. Conclusions  
 

This paper proposes a multi-approach multi-criteria technique named TARO for eclectic decisions in industrial robot 
ranking and selection. TARO uses final selection values determined by conventional MCDM methods. TARO incorporates 
an advanced version of entropy weighting method for measuring weights of the final selection values/conventional MCDM 
techniques. The proposed technique assigns unique ranking order by removing rank. This technique clearly eradicates the 
ambiguity from the decision making process and ensures the certainty regarding the ranking order of alternative robots in 
the MCDM environment. 

In the past decade various MCDM techniques have been developed and proposed by many researchers. Application of these 
different conventional MCDM techniques to rank a set of industrial robots commonly shows inconsistency/ rank reversal 
giving rise to a new problem of ambiguity and confusion. In this case TARO can be suitably applied to remove the rank 
reversal as well as confusion for making accurate decisions.  

Though TARO is employed only on robot ranking problems, this technique is equally effective for finding accurate ranking 
order alternatives in any other field provided that inconsistency in ranking order is found. The limitation of the techniques 
is that it can be employed in those cases where conventional methods generate final selection values. Incorporation of 
methods having no capability of providing final selection values and inclusion of decision makers opinion in 
estimating  importance weights of conventional methods may be the important directions of future research.  
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