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 In most of the machining processes, the complexity arises in the selection of the right process 
parameters, which influence the machining process and output responses such as machinability 
and surface roughness. In such situations, it is important to estimate the inter-relationships among 
the output responses. One such method, Decision-Making Trial and Evaluation Laboratory 
(DEMATEL) is applied to study the inter-relationships of the output responses. Estimation of 
proper weights is also crucial where the output responses are conflicting in nature. In the current 
study, DEMATEL technique is used for estimating the inter-relationships for output responses 
in machining of EN 24 alloy under dry conditions. CRiteria Importance Through Inter-criteria 
Correlation (CRITIC) method is used to estimate the weights and finally the optimal selection of 
machining parameters is carried out using Techniques for Order Preference by Similarity to an 
Ideal Solution (TOPSIS) method. The model developed guides the decision maker in selection 
of precise weights, estimation of the inter relationships among the responses and selection of 
optimal process parameters. 
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1. Introduction 

 
During the machining process, the friction developed at the tool-workpiece contact, which is generally reduced using a 
coated cutting tool or a coolant. Using coolants might affect the operator's health, hence dry machining, with coated cutting 
tool, (Viswanathan et al., 2018) is preferred and is widely used. The primary objective of machining is to obtain high quality 
and reliable products. Machining is a complex process (Akkuş & Yaka, 2021); machining parameters optimization is quite 
important to achieve the desired dimensions of the machined part, and it increases productivity (Shastri et al., 2021). 
Therefore, in the literature the focus of researchers in machining is on the modeling and optimization of the machining 
process (Sabiya et al., 2019).  It is essential to conduct many machining trials in optimizing the process parameters, which 
increases manufacturing costs (Shilpa et al., 2020). To avoid these manufacturing costs, the Design of Experiments (DoE) 
methodology is applied. Some DoE methods based on Taguchi Orthogonal Array (OA) (Gaitonde et al., 2009) and Response 
Surface Methodology (RSM) (Mir & Wani, 2018) allow the user to conduct least number of experiments, as well as they 
are helpful in analyzing the effect of each factor, interaction effects between the process parameters. They also aid to study 
the effect of each factor and generate mathematical models such as regression equations and predict the optimal process 
parameters. As machining involves multiple conflicting criteria, it is preferred to adopt Multi Criteria Decision-Making 
(MCDM) methods for performing optimization. MCDM (Rao & Patel, 2010) is further divided as Multi-Objective Decision-
Making (MODM) and Multi-Attribute Decision-Making (MADM) methods (Venkata Ajay Kumar G et al., 2019). MODM 
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has continuous decision variables, whereas MADM has discrete decision variables. Most commonly used MADM methods 
are Analytical Hierarchy Process (AHP) (Saaty, 2002), Simple Additive Weighting (SAW) (Kaliszewski & Podkopaev, 
2016), TOPSIS (Lai et al., 1994)  and Grey Relational Analysis (GRA) (Julong, 1988).  
  
DEMATEL is used to estimate the interrelationships among the responses and identifying the cause and effects was 
proposed and designed at the Geneva Research Centre - Battelle Memorial Institute (Si et al., 2018). The researchers (Das 
& Chakraborty, 2020) applied the DEMATEL to estimate the interrelationships among the responses of the green electric 
discharge machining process. The CRITIC method proposed by Diakoulaki, Mavrotas, and Papayannakis (Diakoulaki et 
al., 1995) is  used mainly to determine the objective weights of the responses based on the decision matrix. In machining of 
ultra-high-strength steel 300 M using four various ceramic tool combinations, (Wang & Zhao, 2016a) AHP-CRITIC method 
is applied for mechanical properties optimization of ceramic tool materials. TOPSIS is used for finding out the optimal 
parametric combination and is widely used in the sustainable turning of 17-4 Precipitated Hardened (PH) stainless steel 
(Sivaiah & Uma, 2019)  and dry machining of EN AW-2011 alloy (Jozić et al., 2020). Researchers have investigated Surface 
Roughness (SR), tool wear (flank wear & crater wear) and chip coefficient reduction in machining of titanium grade 5 alloy 
using Physical Vapor Deposition (PVD) AlTiN coated carbide as a cutting insert (Pradhan & Maity, 2018). They have 
optimized the machining parameters with desirability function approach, and found cutting speed is the most significant 
parameter.  (Aouici et al., 2017) compared the TiN coated and uncoated ceramic tools especially on the cutting force in 
machining of AISI H11 steel by Taguchi method and RSM. Depth of cut was found as the most contributing factor on axial 
force.  Uncoated carbide inserts show better performance in terms of cutting force and tool wear. Optimum conditions are 
estimated by using desirability function approach, quadratic models are estimated by RSM. Researchers have (Parida & 
Routara, 2014) applied the multi-response optimization technique TOPSIS in machining of GFRP composite and this 
method led to more reliable solutions when compared to experimental results. Cutting speed is significant for SR and depth 
of cut is significant for the material removal rate (MRR). The authors (Balasubramaniyan Singaravel, 2015) simultaneously 
optimized microhardness, SR and MRR in machining of EN 25 steel with coated carbide using TOPSIS methodology. (Tic 
& Steel, 2018) improved the surface quality and productivity of turning AISI D3 steel with mixed ceramic tools under dry 
condition. Feed rate is most significant for the SR and depth of cut for MRR, applied GRA for simultaneous optimization, 
grey relational grade was also improved and had a good agreement with the experimental value. (Kuntoglu et al., 2020) 
modelling the machining parameters in machining of AISI 5140 steel under dry conditions using coated carbide tools. 
Prediction of parameters estimated for SR and vibration for three components viz axial, radial and tangential showed a good 
agreement to the measured values. Feed rate is more effective for the SR and axial vibration followed by cutting-edge angle 
for radial vibration and cutting speed for tangential vibration. (Bouzid et al., 2018) optimized the flank wear in turning of 
AISI 304 stainless steel with multilayer TiCN/Al2O3/TiN coated carbide using Desirability Function Analysis (DFA). 
Cutting time is identified as the most influential factor on SR and cutting speed significantly influences the tool lifespan. 
Increased cutting speed and feed rate reduces the tool life to about 77%. Further, different optimization techniques as applied 
to dry turning are summarized in Table 1.  
  
In the literature, Precise weight allocation for the output responses is not addressed; formulation of the inter-relationships 
between the responses is important when more responses are measured. In this paper, DEMATEL method is applied to dry 
machining of alloy steel to identify the relationships among the responses; CRITIC method is used to identify the weights 
for the responses, and TOPSIS employed for optimal process parameters estimation. This is a novel integrated MADM 
approach, which combines the three techniques: DEMATEL-CRITIC-TOPSIS.  

 
Table 1  
Summary of different optimization techniques in dry turning for alloy steels 

Work material DoE used Optimization technique applied 
AISI H11 (Aouici et al., 2017) L36 OA Desirability function approach 
EN 25 steel (Singaravel et al., n.d.) L18 OA AHP-TOPSIS 
AISI D3 steel (Tic & Steel, 2018) L18 OA GRA 
AISI 52100 steel (Alok & Das, 2019) 20 experiments, Central Composite Design (CCD) RSM 
AISI 304 stainless steel (Bouzid et al., 2018) RSM – two full factorial designs – 27 runs Desirability function approach 
ultra-high-strength steel 300M (Wang & Zhao, 
2016b) 

12 experiments with three levels of cutting speed (no 
DoE used) 

AHP-CRITIC 

17-4 PH stainless steel (Sivaiah & Uma, 2019) L9 OA TOPSIS 

 
2. Methodology 
 
The methodology employed for estimation of interrelationships between the output responses, weight and optimal 
parameters in machining of EN24 steel under dry condition is presented in Fig. 1. 
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Fig. 1. Methodology employed 

3. MADM approaches 

This section presents the various approaches involved in MADM. 

3.1 DEMATEL method  

The DEMATEL method is widely used to identify the cause and effect of the responses. Major steps involved are identifying 
the threshold value, estimating the cause and effects and finally the formulation of the diagraph or causal relationships 
diagram 
 
Step 1: Establishing the direct-relation matrix 
The decision maker needs to establish the correlation between the criteria on a scale of 0 to 4 (Diakoulaki et al., 1995).  
Step 2: Normalizing the direct-relation matrix 
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Step 3: Calculate the total-relation matrix (T) 
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Here, I is identity matrix; tij is indirect effect of the ith criterion on jth criterion.  
Step 4: Evaluate the sum of rows (R) and columns (C) of the matrix T. The vectors R and C obtained using the equations 
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Step 5: Derive the threshold value (α), which obtained by averaging of the elements in the T matrix. Here N represents the 
number of elements in the T matrix. 
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Step 6: Construction of the causal diagram 
 
The prominence vector (Rk + Ck) on the horizontal axis when added with R and C values gives the importance of the 
criterion; the relation vector (Rk - Ck) divides the cause group and effect group. If (Rk - Ck) is positive then cause group, (Rk 
- Ck) is negative, then it is effect group. By establishing the causal diagram, the most important criteria for a problem can 
be identified.   
  
3.2 CRITIC Method 
 
The CRITIC method is an objective weight estimation based on the responses. After formulating the decision matrix, it is 
required to normalize and estimate the linear correlation coefficient between the criteria’s. Finally, the individual weights 
of the responses are calculated.  
 
Step 1: Determining the normalized decision making matrix using the Eq. (6) 
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Step 2: Estimating the criterion information 
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Here jσ  is the standard deviation of the each criterion and jkr  linear correlation coefficient between the criteria’s 
Step 3: Determining the weights of the individual output 
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3.3 TOPSIS  

TOPSIS method uses the compromise ranking methodology and ranks the alternatives. Here the major step is to frame 
the positive and negative ideal solutions. TOPSIS method is explained as follows: 
 
Step1: Decision matrix normalized based on the output responses  
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Step 2: Estimated weights multiplied to the normalized decision matrix  
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Step 3: Identifying the positive (A+) and negative (A-) ideal solutions  
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Step 4: Estimating the separation measures for the alternatives 
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Step 5: Calculating the Relative closeness value (CCi )  
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Step 6: Ranking of the alternatives in the descending order of (CCi). 

4. Parametric analysis of a dry machining on EN 24 alloy steel 

A hard turning of EN 24 alloy steel experiments are (A. Das et al., 2019) conducted on the specimen of 40mm diameter and 
500 mm length under dry machining conditions. Based on Taguchi L9 Orthogonal Array (OA) with Cutting speed at three 
levels (80, 100, 120 m/min), feed at three levels (0.05, 0.1, 0.15 mm/rev) and depth of cut at three levels (0.1, 0.2, 0.3 mm) 
the layout for experimentation is created. The five output responses estimated are cutting force (FZ) (in N), flank wear (VBC) 
(in mm), crater wear width (KW) (in mm), surface roughness (Ra) (in μm) and micro-hardness of the chip (MH) (in HV) 
which are summarized in the Table 2. 

 
Table 2  
Experimental details of EN 24 machining using coated cermet under dry machining environment (A. Das et al., 2019) 

Exp. 
Run 
no. 

Cutting 
speed 

(v)  

Feed (f)  Depth 
of cut 

(d)  

Fz (N) VBc 
(mm) 

Kw 
(mm) 

Microhardness, 
MH (HV) 

Surface roughness, 
Ra (µm) 

1 1 1 1 104 0.18932 0.29341 280 1.20 
2 1 2 2 118 0.12932 0.24437 420 1.29 
3 1 3 3 159 0.11223 0.18621 519 1.34 
4 2 1 2 99 0.13996 0.24753 395 1.60 
5 2 2 3 123 0.05178 0.18762 530 1.67 
6 2 3 1 76 0.08036 0.23672 452 1.82 
7 3 1 3 119 0.16833 0.19902 458 2.10 
8 3 2 1 71 0.11132 0.2639 416 2.39 
9 3 3 2 88 0.13894 0.19832 516 2.61 

 

In DEMATEL method, the initial step is to establish the direct relation matrix on the integer scale ranging from 0 to 4. The 
developed direct-relation matrix for the five output responses shown in the Table 3. By using the Eq (1), the matrix then 
normalized as given in Table 4. Then, Eq. (2) applied to estimate the T matrix consequently the summation of rows and 
columns of the developed T matrix defined as R and C vectors by applying the Eq. (3) and Eq. (4) shown in Table 5. The 
net effect of the responses (R+C) and (R-C) is also estimated and grouped as cause and effect, as shown in Table 6. The 
threshold value (α) is calculated using Eq. (5). Based on the cause and effect, the causal diagram is constructed and depicted 
in Fig 2. Flank wear has the highest net influence followed by surface roughness followed by cutting force in dry machining 
(turning) of EN 24 alloy steel.  

 
Table 3  
Formulated initial direct-relation matrix 

 Output responses Fz VBc Kw MH Ra 
Fz 0 3 2 3 3 

VBc 3 0 1 2 3 
Kw 2 1 0 1 3 
MH 3 2 3 0 1 
Ra 3 2 3 3 0 
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Table 4  
Normalized values for the direct-relation matrix 

  Output responses Fz VBc Kw MH Ra 
Fz 0 0.272727 0.181818 0.272727 0.272727 

VBc 0.272727 0 0.090909 0.181818 0.272727 
Kw 0.181818 0.090909 0 0.090909 0.272727 
MH 0.272727 0.181818 0.272727 0 0.090909 
Ra 0.272727 0.181818 0.272727 0.272727 0 

 

Table 5  
Total relational-matrix for the output responses 

  Output responses Fz VBc Kw MH Ra 
Fz 1.418133* 1.322915* 1.368454* 1.440178* 1.524426* 

VBc 1.452701* 0.971393 1.14941* 1.229787* 1.359118* 
Kw 1.136204* 0.855682 0.850714 0.94289 1.133699* 
MH 1.379839* 1.065618 1.215897* 1.002587 1.180604* 
Ra 1.609812* 1.243221* 1.418547* 1.419685* 1.294039* 

*tij > 1.0916 

Table 6  
Computation of vectors D and K and net effects of response 

  Output responses Rk Ck R+C R – C Criteria group 
Fz 7.074105 6.996688 14.07079 0.077417 Cause 

VBc 6.162409 5.458828 11.62124 0.703581 Cause 
Kw 4.919189 6.003022 10.92221 -1.08383 Effect 
MH 5.844546 6.035127 11.87967 -0.19058 Effect 
Ra 6.985303 6.491886 13.47719 0.493418 Cause 

 

The threshold value (α) is 1.0916 which is obtained by averaging the all the elements in the T matrix of Table 5. In the 
Table 5 the tij × represents the elements of T matrix which are greater than 1.0916, it represents the significant interaction 
between the two output responses. For example t12 × (1.322915) > α (1.0916), so in the diagraph an arrow shows the 
interaction of cutting force and micro hardness (unidirectional) as depicted in the Fig. 3. There are further bi-directional 
interactions between the output responses like flank wear to cutting force, cutting force to surface roughness, surface 
roughness to micro hardness, cutting force to crater wear width and cutting force to micro hardness.  

 

Fig. 2. DEMATEL causal diagram for the output responses 
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Fig. 3. DEMATEL diagraph for responses 

In MCDM problems, weights of the responses play important role; for this purpose CRITIC methodology is employed. The 
five output responses from the Table 2 is normalized using the Eq. (6), the normalized values are shown in Table 7. The 
criterion information calculated using Eq. (7) and correlation values are tabulated in table 8. The weights of the five output 
responses are estimated using Eq. (8) and are presented in the last column of Table 9.   
 
Table 7  
Normalized values of output responses by CRITIC method 

Exp. Run no. Fz VBc Kw MH Ra 
1 0.625 0 0 0 1 
2 0.465909 0.436237 0.457463 0.56 0.93617 
3 0 0.560491 1 0.956 0.900709 
4 0.681818 0.358877 0.427985 0.46 0.716312 
5 0.409091 1 0.986847 1 0.666667 
6 0.943182 0.792206 0.528825 0.688 0.560284 
7 0.454545 0.15261 0.880504 0.712 0.361702 
8 1 0.567108 0.27528 0.544 0.156028 
9 0.806818 0.366293 0.887034 0.944 0 

 

Table 8  
Correlation coefficient of the output responses 

  Fz VBc Kw MH Ra 
Fz 1 0.00311 -0.5283 -0.31981 -0.57292 

VBc 0.00311 1 0.434201 0.645073 -0.07848 
Kw -0.5283 0.434201 1 0.936909 -0.25513 
MH -0.31981 0.645073 0.936909 1 -0.38717 
Ra -0.57292 -0.07848 -0.25513 -0.38717 1 

 

Table 9 
Weights for the output responses estimated by using CRITIC method 

  Cj Wj 
Fz 1.673678 0.25214 

VBc 0.91627 0.138037 
Kw 1.200947 0.180923 
MH 0.979384 0.147545 
Ra 1.8676 0.281355 
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For finding the optimal set of parameters using TOPSIS, Table 2 output responses normalized with Eq. (9). The weights 
estimated using CRITIC method are utilized here and multiplied with the normalized values using the Eq. (10). Estimation 
of positive and negative ideal solutions is obtained by using Eq. (11). Further the separation measures using Eq. (12) and 
the closeness coefficient using Eq. (13). Now, the ranking of alternatives in descending order is carried out based on the 
closeness coefficient and ranking is established to identify the optimal parameters, which is presented in Table 10.  
 
Table 10  
Dj+ , Dj- , CCi and Rank by using the TOPSIS 

Exp. Run no. Dj+ Dj- CCi Rank 
1 0.067199 0.083348 0.553632 5 
2 0.049444 0.079748 0.617284 3 
3 0.071254 0.079931 0.528697 6 
4 0.048115 0.073328 0.603805 4 
5 0.046584 0.083134 0.64088 2 
6 0.03688 0.087924 0.704498 1 
7 0.072235 0.051577 0.416573 9 
8 0.068418 0.075712 0.525304 7 
9 0.079273 0.067627 0.460363 8 

 

From TOPSIS, run number six is identified as optimum parameter level combinations where in cutting speed is 100 m/min, 
feed is 0.15 mm/rev and depth of cut is 0.1 mm under dry machining.  In dry machining, the depth of cut influences the 
cutting force, feed influences the flank wear, depth of cut influence the crater wear, feed influences the micro hardness of 
chip, and cutting speed influences the surface roughness. The tool is continuously in contact with the work piece in turning 
operation, where the tool wear is more profound. In dry machining, the tool wears out quickly because of the absence of 
coolant in the cutting zone. The surface roughness of the material affects further because of tool wear. The worn out particles 
damage the surface integrity of the work piece. If the cutting forces in the cutting zone are reduced the work piece will have 
a better surface finish.  In dry machining, the tool wear, surface roughness and cutting forces are the main factors in the 
machining of alloy steels. As the hardness of the chip increases, there will be an increase in tool wear too. 

5. Conclusions 

In this work, a Hybrid technique by combining the DEMATEL-CRITIC-TOPSIS methods has been applied to estimate the 
interrelationship between the output parameters and finally we have found the optimal parametric combination in machining 
on EN 24 alloy steel under the dry machining. The cause and effects have been identified by DEMATEL as cutting forces, 
flank wear, and surface roughness. All the parameters finally affect the surface roughness of the machined part, and CRITIC 
method has shown the highest weightage to surface roughness. Finally, TOPSIS determined the optimal combination of 
parameters in dry machining of EN 24 alloy steel. The data obtained for verifying the proposed model are collected from 
the literature, as there is no scope for conducting the confirmation test.  This method can be applied to other machining 
processes to estimate optimal parameters and improve the performance of machining.  
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