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 There is an acute need to evaluate the energy consumption of buildings in response to climate 
change. The “occupant” factor has been largely overlooked in building energy analysis. This 
research aims at investigating occupancy existence in the office environment using a hybrid 
artificial neural network with metaheuristic algorithms for improved energy management. It 
proposes and compares three classification models, namely particle swarm optimization (PSO), 
gravitational search algorithm (GSA), and hybrid PSO-GSA in combination with the 
feedforward neural network (FFNN). The inputs to these models are data related to temperature, 
humidity, light, and carbon dioxide emissions. Two data sets are used for testing the models 
while the office door is open and closed. The capabilities of the optimized models are evaluated 
using best, average, median, and standard deviation of the mean squared error. Most of the 
performance metrics indicate that the FFNN-PSO-GSA model exhibits better performance 
compared to the other models using the two datasets. The proposed model yields a classification 
accuracy ranging between 98.47-98.73% using one predictor (i.e., temperature). Besides, it 
yields an accuracy ranging between 85.45-94.03% using temperature and CO2 predictors. It can 
be concluded that the FFNN combined with PSO and GSA algorithms can be a useful tool for 
occupancy detection modeling.  
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1. Introduction 

The energy intensity is expected to improve by only 0.8% in 2020 as a result of the Covid-19 pandemic. This is considered 
as slow progress towards achieving the global energy and sustainability goals (International Energy Agency, 2020). 
Meanwhile, climate change is foreseen to be one of the greatest threats in modern times (Delzendeh et al., 2017). The public 
concerns regarding climate change have increased the focus on analyzing the energy consumption of buildings (Janda, 
2011). In recent years, the energy consumption of buildings has increased rapidly because of the increased population 
growth and the global climate changes, etc (Tang et al., 2021). Buildings are responsible for consuming 40% of the global 
energy and emitting more than 30% of the worldwide greenhouse gas emissions (Chen et al., 2018; Ahmad et al., 2020). 
Distinct building types present differences in both energy usage and consumption. For instance, the major areas of energy 
consumption in residential and commercial buildings are heating and lighting, respectively (De Simone and Fajilla, 2018). 
The energy crisis and climate change challenge could be addressed by developing energy-efficient buildings and promoting 
sustainable construction initiatives (Chen et al., 2018; De Simone & Fajilla, 2018). Buildings consume energy based on 
various factors related to the construction and maintenance quality of the installed systems, thermo-physical properties of 
the building elements, climatic characteristics, and occupant behavior towards energy utilization (Page et al., 2007; Chen et 
al., 2015). The importance of evaluating the occupant energy-use has been highlighted in several research studies. For 
example, the occupant behavior has a larger influence on building energy performance than the building façade (Degelman, 
1999). Branco et al. (2004) and Lindén et al. (2006) found that similar or identical buildings, with different occupancy 
numbers and behavior, are associated with different levels of energy consumption. Furthermore, Martinaitis et al. (2015) 
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referred to the occupant behavior and preferences as major contributors to the deviation between the predicted and actual 
building energy performance. Determining the occupant behavior has the potential for energy savings, ranging between 10-
25% for residential buildings and 5-30% for office buildings (Zhang et al., 2018). With the rapid advances in technology, 
it has been possible to lower the energy consumption of buildings by determining the occupancy behavior and adjusting the 
indoor conditions (Trivedi and Badarla, 2020). The indoor conditions reflect many building properties such as temperature, 
humidity, and carbon dioxide levels. These properties can be modified by controlling some devices, e.g. opening and closing 
doors and turning on/off fans, lights, and computers (Hong et al., 2016). Therefore, the number and activity of occupants in 
a building significantly affect the values of these parameters (Fisk, 2000; Erickson et al., 2011; Hong and Lin, 2013; 
Oldewurtel et al., 2013). It has been reported that occupants who do not have control over the parameters affecting the 
building's internal environment are unsatisfied compared to users in control (Brager et al., 2004). Besides, it has not been 
confirmed that the building occupants have an energy-aware point of view regarding the equipment (De Simone & Fajilla, 
2018). The occupant information could be described using six properties: presence, location, track, activity, identity, and 
count (Labeodan et al., 2015).  The occupant behaviors are derived by a variety of factors (Tam et al., 2018): (1) subjective 
factors such as preferences, lifestyle, age, gender, expectations, etc. (Nisiforou et al., 2012; Kavousian et al., 2013), (2) 
objective factors such as climate, air temperature, velocity, wind speed, noise, building properties, etc. (Schweiker and 
Shukuya, 2009; Fabi et al., 2011), and (3) external factors such as economics, politics, and culture. Occupants can adapt to 
the conditions of the indoor environment in one of three ways (Fabi et al., 2013; Polinder et al., 2013): (1) controlling the 
indoor environment (e.g. thermostats, windows, or shadings), (2) unintentionally (e.g. appliances), (3) adjusting themselves 
to the existing environmental conditions (e.g. changing clothing or activity level) (Andersen, 2012).  
 
This research proposes hybrid classification models to detect occupant existence based on data recorded from temperature, 
humidity, light, and carbon dioxide sensors as well as a digital camera. The models are feedforward neural network (FFNN) 
trained using particle swarm optimization (PSO), gravitational search algorithms (GSA), and hybrid PSO-GSA algorithm. 
The performance of the trained models is assessed using best, average, median, and standard deviation of the mean squared 
error (MSE). Rankings of the optimized models are aggregated using an approach based on the half-quadratic theory. This 
model helps building managers and occupants anticipate an accurate occupancy estimation, resulting in an automated energy 
management system. 
  
2. Occupancy detection models 
 
The occupancy data collection methods can be grouped into four categories: in situ, questionnaire surveys, laboratory, and 
virtual reality (O'Brien et al., 2017). The first method applies one sensor or sensor fusion to evaluate the presence and 
actions of occupants as well as the indoor environmental quality. On the other hand, the main drawbacks of this method are 
represented by privacy, cost, accuracy, sample size, location availability, and social acceptability concerns (Amayri et al., 
2019; Ahmad et al., 2020). Questionnaire surveys and interviews aim at collecting quantitative results from a population 
sample regarding the lifestyles of occupants. These aspects could not be measured using sensors. The laboratory 
experiments create a controllable environment to study occupant behavior. However, this method might yield negative 
results in case the occupants feel observed. Finally, virtual reality experiments enable occupants to stimuli and interact with 
the virtual environment. However, this method is still limited to only visual and acoustics sectors. There has been a 
continuous growth of research studies interpolating the occupant’s behavioral aspects into building energy analysis (Hong 
et al., 2015). The number of these studies has increased by 230% in the past ten years (Pereira et al., 2018). Some researchers 
used different in situ measurements such as cameras and sensors to achieve an accurate estimation of occupant behavior. 
For example, Dziedzic et al. (2019) proposed the usage of a depth registration camera to monitor the indoor occupant 
behavior while maintaining and satisfying privacy concerns. This technique did not require any interaction from the 
occupants and had proved its ability to improve the accuracy of building monitoring systems. Sembroiz et al. (2019) applied 
a wireless sensor network inside smart buildings. The optimum locations of different types of sensors and gateways were 
optimized to maintain connectivity and reduce energy consumption. Furthermore, an occupants’ behavioral model was 
developed to ensure occupant comfort with minimum energy consumption. Rinaldi et al. (2018) examined occupant 
preferences and behavior in residential buildings using questionnaire surveys. Besides, multivariate regression analyses 
were applied to determine the correlations among building characteristics, occupant behaviors, and energy consumption. It 
was found that there was a strong relationship between occupant behaviors and building age. It was also recommended to 
conduct further studies to investigate the occupants’ behavior patterns in existing and modern buildings. Zhang et al. (2020) 
conducted questionnaire surveys to explore the occupant behavior related to cooking, lighting, water heating, space heating 
and cooling, and usage of other appliances in residential buildings. The results showed that the usage behavior was efficient 
for most of the appliances except for air conditioners. Besides, the occupants’ habitual reactions were found to be consistent 
across all categories. These findings could assist policymakers in improving the energy efficiency of residential buildings 
on a city scale. While some researchers conducted questionnaire surveys to extract the dominant factors influencing the 
energy behavior of occupants, others adopted building energy simulation modeling. Fabi et al. (2017) assessed the impacts 
of different lifestyles of occupants and automation systems on the building energy performance. The needs and behavior of 
occupants were understood by conducting a questionnaire survey. Besides, the effect of occupant behavior on building 
energy use was studied using energy simulation software. It was concluded that the application of automation systems and 
the conscious behavior of the occupants could lead to significant energy savings in the building. Berger and Mahdavi (2020) 
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evaluated the building energy and indoor environmental performance using an agent-based model. The capability of this 
modeling technique to capture the dynamics and complexities of occupant behavior was highlighted. On the contrary, its 
limitation regarding the requirement of excessive computational loads was discussed. Finally, it was recommended to 
integrate agent-based modeling in virtual reality frameworks. The energy simulation is used to forecast the energy 
consumption of buildings at the design stage. However, building simulation can only yield accurate results if the building 
use is predictable (Degelman, 1999). It has been reported that the actual energy consumption could reach up to three times 
greater than the predicted consumption. This considerable discrepancy between the energy consumption at the design and 
as-built stages refers to the difference in the workmanship and installations, equipment and material choice, and the occupant 
behavior, which is often overlooked in the energy simulation process (Fabi et al., 2013; Calì et al., 2016). Artificial 
intelligence models have been widely applied in many applications, because of their ability to handle complex relationships. 
Artificial neural network (ANN) has been widely used in modeling occupant behavior. Its performance relies on input 
combinations, model architecture, activation function, and training algorithm of the network (Raza and Khosravi, 2015). 
Candanedo and Feldheim (2016) developed a model to determine the occupant's existence in an office room. The models 
were developed using linear discriminant analysis (LDA), classification and regression trees (CART), and random forest 
(RF) algorithms. The results affirmed that the LDA and RF models yielded the best and worst prediction accuracies in the 
two testing datasets, respectively. For temperature as well as CO2 and temperature predictors, the CART model yields 
accuracies of 67-87% and 79-85%, respectively. Ekwevugbe et al. (2016) investigated the number of occupants in an office 
building using a network of sensors. The main features were selected using symmetrical uncertainty analysis and a genetic-
based search. The accuracy of occupant detection was reported to be more than 74% using ANN. This approach had proved 
its usefulness in predicting building occupancy for improving heating, ventilation, and air conditioning operations and 
promoting energy savings.  
 
Yang et al. (2014) simulated occupancy existence in the office environment using six machine learning models. It had been 
found that average accuracy improved with increasing the number of sensors. For temperature predictor, the decision tree 
model yielded accuracies of 55-65%. Meanwhile, its accuracy ranged between 69% and 89% for temperature and CO2 
predictors. Salamone et al. (2020) evaluated occupant thermal comfort in real and virtual scenarios by combining the 
application of the internet of things and machine learning. Different machine learning techniques were fed with users’ 
biometric and feedback data about their thermal comfort along with the environmental parameters. Extra trees classifier was 
found to be the best algorithm. Besides, the most significant parameters affecting the personal thermal comfort perception 
in real and virtual scenarios were identified with an average accuracy of greater than 0.99.   
After reviewing the literature, the major contributions of this research are identified as follows: 
 

(1) Applying hybrid classification models (i.e., machine learning models trained using metaheuristic algorithms) to 
investigate occupancy existence.  

(2) Comparing the performance of models using evaluation metrics.  
(3) Ranking the models by deploying an ensemble approach based on the half-quadratic theory.  
(4) Evaluating the accuracy of the proposed model to be validated against the surveyed literature using different 

predictor combinations. 
 

3. Materials and methods  
 
This research comprises employing a neural network model trained using a hybrid PSO-GSA algorithm for detecting 
occupancy existence in the office environment. The proposed model is evaluated against the neural network coupled with 
PSO and GSA algorithms using evaluation metrics. The rakings of the models are aggregated using a group decision making 
technique. The descriptions of these methods are presented in the next subsections. The author coded the hybrid neural 
network trained using metaheuristic algorithms and the ensemble ranking by using MATLAB R2015a software. 
 
3.1. Feedforward neural network  
 
FFNN is one of the most common and powerful binary classification techniques (Rumelhart et al., 1985). As illustrated in 
Fig. 1, the topology of a neural network consists of three layers: an input layer, a hidden layer(s), and an output layer. The 
input layer contains the input data to the model, whereas the output layer comprises the model’s outcome. The neural 
network has training and testing/validation phases. The learning/training phase is responsible for training the network to 
model the relationship between input(s) and output(s). Meanwhile, the recalling phase forecasts the output(s) based on the 
trained network (Elshaboury & Marzouk, 2020a).  
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Fig. 1. Neural network typology  

 
3.2. Metaheuristic optimization algorithms 
 
Two metaheuristic optimization algorithms are examined with occupancy detection, namely PSO and GSA. The 
descriptions of these algorithms are provided in the next subsection. 
 
3.2.1. Particle swarm optimization algorithm  
 
PSO algorithm has many merits such as simplicity of implementation, requirement of setting few parameters, effectiveness 
in global search, and insensitivity to scaling of variables (Poli et al., 2007; Gong et al., 2009; Bai, 2010). It was developed 
to mimic the behavior of bird flocking (Kennedy & Eberhart, 1995). A flock of birds can search for food without colliding 
with each other. Birds share information within the flock to adjust their velocities and directions, searching for the best 
solution. In this algorithm, each particle represents a potential solution to the problem (Lynn and Suganthan, 2015). The 
objective function of the problem refers to the closeness of each particle to the best possible solution. Each particle is 
represented by four attributes; current position, current velocity, distance to particle best solution, and distance to the global 
best position to modify its position (Mirjalili et al., 2012). The particle and global best positions are automatically updated, 
whenever a better position is found, and stored for subsequent iterations. This process will continue until a termination 
criterion is met (Elshaboury et al., 2020).  
 
3.2.2. Gravitational search algorithm  
 
GSA is a recent algorithm developed to solve non-linear problems (Rashedi et al., 2009). It is a simple algorithm that can 
find near-global optimum solutions (Kumar and Sahoo, 2014). It is based on Newton’s law of gravity in physics, such that 
a mass in the space corresponds to a candidate solution. The mass of each solution is proportional to its fitness function 
value. There exists a gravitational force between masses such that heavier objects are characterized by bigger attraction 
forces compared to smaller ones (Mirjalili et al., 2012). Therefore, heavier masses (solutions close to the global minimum) 
attract the other masses to ensure convergence (García-Ródenas et al., 2021). The positions and velocities of particles are 
updated as a result of the interaction between particles and gravity. The fitness values of all particles are updated and 
recorded accordingly. The iteration continues until a stopping criterion is met (Mirjalili et al., 2012). 
 
3.2.3. Hybrid particle swarm optimization and gravitational search algorithm  
 
Two inherent characteristics of population-based algorithms with social behavior, such as PSO and GSA, should be 
considered: the algorithm's ability to explore the whole problem area and to exploit the best solution. These two important 
characteristics should be included in a population-based algorithm to ensure obtaining the right solution. The basic idea of 
the hybrid PSO-GSA algorithm is to combine the exploitation ability of PSO with the exploration capability of GSA. It has 
proved its ability to solve a wide range of optimization problems (Jiang et al., 2014; Shaheen et al., 2021). In this algorithm, 
the agents (i.e., candidate solutions) are randomly initialized. Then, the gravitational constant, gravitational force, resultant 
forces, and accelerations among agents are calculated. The best solution shall be updated in each iteration. After that, the 
velocities and positions of agents are calculated and updated. This process terminates when meeting an end criterion. This 
hybrid algorithm ensures the following points: (1) considering the quality of solutions in the updating procedure, (2) 
attracting the agents exploring the search space to the agents near the good solutions, (3) moving slowly nearby a good 
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solution to exploit the global best solution, (4) storing the global best solution to be accessible at any time, (5) observing 
and tending towards the global best solution, and (6) balancing between the global and local searching abilities (Mirjalili et 
al., 2012). 
 

3.3. Neural network trained using metaheuristic algorithms 
 
As illustrated in Fig. 2, the flowchart of the proposed models comprises specifying the input and output parameters from 
the dataset. The dataset is then divided into training and testing groups to run the models. The neural network relies on 
adjusting initial weights, based on the differences between desired and actual values, using the gradient-search 
algorithm. However, the network performance is affected by the values of initial weights and biases. It is worth noting that 
the neural network can be trained in one of three ways: (1) manipulating weights and biases with fixed network architecture, 
(2) employing heuristic algorithms to obtain the optimum network structure, or (3) applying an evolutionary algorithm to 
tune the parameters of the learning algorithm (Mirjalili et al., 2012). Besides, selecting the most suitable approach depends 
on the classification problem and the dataset type. In this study, the first method is adopted to optimize the randomly 
assigned weights and biases in the FFNN model using PSO, GSA, and hybrid PSO-GSA algorithms. The output for the 
FFNN model is computed, and the error objective function is minimized using Eq. (1) (Lazzús, 2013). The optimization 
process stops when a termination criterion (i.e., minimum error function) is achieved.  
 𝑀𝑆𝐸 = ∑ (𝑦 − 𝑦௫)ଶேವୀଵ 𝑁   (1) 

where; 𝑀𝑆𝐸 refers to the mean squared error, 𝑁 refers to the number of data points, and 𝑦 and 𝑦௫ refer to the 
actual and desired values, respectively.  

 

 
Fig. 2. Flowchart of the optimized machine learning models 

 
3.4. Group decision making technique 
 
The evaluation metrics rank the hybrid classification models in different orders. Therefore, the final rankings of the 
optimized neural network models are obtained using a new approach based on the half-quadratic theory (Mohammadi and 
Rezaei, 2020). The proposed approach uses the half-quadratic theory to calculate a weight for each of the classification 
models. It generates weights that satisfy the non-negativity and unit-sum properties. Since the weights are calculated without 
expert feedback, the recommended approach is objective. Furthermore, the proposed method, unlike averaging, is 
unaffected by outliers (i.e., ranks that are far from the rest of rankings) due to using stable half-quadratic functions. This 
implies that outliers are supposed to contribute less to the overall aggregated ranking. In addition to calculating the final 
ranking, a consensus index and a trust level are computed. The consensus index refers to the consensus of different methods 
on the final aggregated rankings while the trust level is an indicator of how reliable the final aggregated ranking is. This 
approach has proven its efficiency in some publications (Elshaboury & Marzouk, 2020b; Ridha et al., 2021). The proposed 
method develops the aggregated ranking by minimizing the Euclidean distance to each calculated ranking, as per Eqs. (2-
4). 𝛼 = 𝛿(‖𝑅 − 𝑅∗‖ଶ) (2) 𝑤 = 𝛼  𝛼ൗ  (3) 

𝑅∗ = 𝑤 × 𝑅  (4) 
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where; 𝑚 refers to the number of optimized models, 𝛼 refers to the half-quadratic auxiliary variable, 𝑅 refers to the 
ranking acquired from each model, 𝑤 refers to the weight of each model, and  𝑅∗ refers to the ensemble ranking. 
The consensus and trust in the aggregated ranking are estimated using Equations 5 and 6, respectively.  𝐶(𝑅∗) = 1𝐾𝑀𝒩ఙ(𝑅∗ − 𝑅)𝒩ఙ(0)ெ

ୀଵ

ୀଵ  (5) 

𝑇(𝑅∗) = 1𝐾 𝑤 × ቆ𝒩ఙ(𝑅∗ − 𝑅)𝒩ఙ(0) ቇெ
ୀଵ


ୀଵ  (6) 

where; 𝐶(𝑅∗) and 𝑇(𝑅∗) refer to the consensus and trust in the ensemble ranking, respectively, 𝐾 refers to the number of 
alternatives, and 𝒩ఙ refers to the probability density of the Gaussian distribution, with zero mean and  𝜎 standard deviation.  
 
4. Model validation 
 
The accuracy of the proposed model is evaluated using a confusion matrix (see Table 1) for the two assessed datasets. The 
sum of true positives (A) and true negatives (D) divided by the total number of observations determines the model accuracy, 
as per Equation 7 (Candanedo & Feldheim, 2016). 
 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝐴 + 𝐷) (𝐴 + 𝐵 + 𝐶 + 𝐷)⁄  (7) 

Table 1. Confusion matrix 
 Predicted 
Reference Not occupied Occupied 
Not occupied A B 
Occupied C D 

 
5. Model development  
 
This research presents the application of hybrid machine learning models for detecting occupant existence. As shown in 
Fig. 3, the model comprises ten major steps: 1) preparing the data matrix, 2) identifying the input and output parameters, 3) 
splitting the data into training and testing, 4) selecting the machine learning algorithm, 5) initializing the model parameters, 
6) performing the hybrid classification models, 8) comparing the models using performance evaluation metrics, 9) 
aggregating the rankings for the models, and 10) suggesting the optimum classification model.  
 
6. Case study 
 
The occupancy detection data used in this research was acquired from an office room in Belgium (Candanedo & Feldheim, 
2016). The dimensions of this room are stated as follows: width of 5.85 meters, depth of 3.50 meters, and height of 3.53 
meters. The data was collected in February during the winter. The input factors comprised of temperature (ºC), humidity 
(%), light (lux), CO2 (ppm) while the output factor referred to the occupancy status (0 for non-occupied, 1 for occupied). 
The monitoring sensors were employed to acquire the temperature, humidity, light, and CO2 levels while the occupation 
status was determined using a digital camera, and then the pictures were labeled manually. As outlined in Table 2, the 
classification models were trained and tested using two data sets with the office door open and closed. 
 
Table 2  
Descriptions of datasets 

Dataset Description  Number of observations Distribution of classes 
Non-occupied Occupied 

1 Most of the measurements were taken when the door was closed. 8143 0.79 0.21 
2 Most of the measurements were taken when the door was open. 9752 0.79 0.21 

 
As for the first dataset, Fig. 4 portrays data gathered between the evenings of two consecutive working days. As seen in the 
graphs, as the first person enters the building just before 8:00, all of the temperature, humidity, and CO2 sensors display a 
rise in their measurements. Besides, the lights in the office have been switched out. The slope of all the curves also rises as 
the second occupant arrives shortly after 09:00. The light and CO2 sensors detect a large drop while the room is not occupied 
between 13:00 and 13:30. Meanwhile, the humidity and temperature sensors record a slight reduction in their readings 
during this period. All of the sensors display a downward slope when space is left empty after 18:00. The most significant 
decline is exhibited by the light sensor. More statistical parameters about the five factors are depicted in Table 3. 
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Data matrix  

 Temperature Humidity Light CO2 Occupancy  

 23.18 27.272 426 721.25 1  

 23.15 27.2675 429.5 714 1  

 23.15 27.245 426 713.5 1  

 …… …… …… …… ……  

 23 27.2 0 681.5 0  

       

 
Model preparation    

 Define the input and output parameters  Split the data into training and testing  

     

 Select machine learning algorithm   Initialize parameters of the model  

           

 
Training and testing phases   

 Train and test the 
developed model  

 Compare the models using 
evaluation metrics 

 Aggregate the rankings 
for the models 

 

 
Validate the 

model 
 

               

 
Optimum classification model  

 
  

 

Fig. 3. Flowchart of the modeling process for detecting occupant existence  
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Fig. 4. Measurement profiles throughout a working day 
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Table 3  
Statistical parameters of occupancy detection for the first dataset 

Variable Minimum Maximum  Median  Mean  Standard deviation Skewness  Kurtosis  
Temperature  19.00 23.18 20.39 20.62 1.02 0.45 -0.81 

Humidity 16.75 39.12 26.22 25.73 5.53 0.27 -0.93 
Light  0.00 1546.33 0.00 119.52 194.76 1.24 0.12 

Carbon dioxide  412.75 2028.50 453.50 606.55 314.32 2.38 5.78 
Occupancy  0.00 1.00 0.00 0.21 0.41 1.41 -0.02 

Table 4 displays the correlation among all the variables detecting occupancy existence. It is worth noting that variables with 
correlation coefficients between 0.5 and 0.7 can be deemed moderately correlated. This applies to the pairs: temperature 
and light, temperature and CO2, and light and CO2. Furthermore, variables with correlation coefficients between 0.3 and 
0.5 have a low correlation. This applies to the pair: humidity and CO2. Correlation coefficients of less than 0.3 have little 
correlation and this is the case between humidity and light variables. Finally, there exists an inversely proportional 
relationship between the temperature and humidity variables. 
 
Table 4 
Correlation between input variables for occupancy detection for the first dataset 

Temperature -0.14 0.65 0.56 

 

Humidity 0.04 0.44 

  

Light 0.66 

   

CO2 

Statistical parameters about the input and output factors in the second dataset are depicted in Table 5. The correlation among 
these factors is illustrated in Fig. 5. It can be noted that light and temperature variables are strongly correlated. Furthermore, 
there is a little correlation between temperature and CO2, and light and CO2 pairs of variables. Finally, there exists an 
inversely proportional relationship between the temperature and humidity, humidity and light, and humidity and CO2 
variables. 
 
Table 5  
Statistical parameters of occupancy detection for the second dataset 

Variable Minimum Maximum  Median  Mean  Standard deviation Skewness  Kurtosis  
Temperature  19.50 24.39 20.79 21.00 1.02 1.23 1.27 

Humidity 21.87 39.50 30.20 29.89 3.95 0.12 -0.85 
Light  0.00 1581.00 0.00 123.07 208.22 1.51 1.23 

Carbon dioxide  484.67 2076.50 639.00 753.22 297.10 1.55 1.48 
Occupancy  0.00 1.00 0.00 0.21 0.41 1.42 0.03 
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Fig. 5. Correlation between input variables for occupancy detection for the second dataset 

 
7. Results and discussion  
 
This research examines the performance of three meta-heuristic algorithms (i.e., PSO, GSA, and PSO-GSA) for training 
neural network model to detect occupant existence in an office room, Belgium. The parameters of these algorithms are 
summarized in Table 6. The models are tested using two datasets with the office door open and closed.  Each dataset is 
classified into two groups such that the first 80% and 20% of the data points are used for training and testing purposes, 
respectively.  
 
Table 6  
Parameters of metaheuristic algorithms 

PSO GSA PSO-GSA 
Maximum iterations= 100 Maximum iterations = 100 Maximum iterations= 100 

Population size= 30 Population size = 30 Population size= 30 
Inertia weight= 2 Gravitational constant= 1 Inertia weight= 2 

Maximum inertia weight= 0.9  Maximum inertia weight= 0.9 
Minimum inertia weight= 0.5  Minimum inertia weight= 0.5 
Global learning coefficient= 2  Gravitational constant= 1 

Personal learning coefficient= 2   

For the first dataset, a comparison of the convergence curves of the classification models is visualized in Fig. 6. It shall be 
noted that the models are run ten times and the average results are computed to provide a fair comparison of the models. In 
each run, the number of iterations is set at 100 times. It is clear from Fig. 6 that the models seem to run horizontally after 
20 iterations. PSO-GSA end up with a smaller MSE of 0.049 than PSO and GSA, which have MSEs of 0.207 and 0.279, 
respectively. This figure confirms that the FFNN-PSO-GSA model has the best convergence rate compared to other models. 

 
The performance of the machine learning models is assessed using four different metrics, as summarized in Table 7. These 
metrics are the best MSE, average MSE, median MSE, and standard deviation MSE. These metrics evaluate whether or not 
the modeled values match or mismatch with the actual values. As shown in Table 7, there is a substantial improvement in 
the best MSE, average MSE, and median MSE values of the FFNN-PSO-GSA model compared to the other models. The 
results show that the FFNN-PSO-GSA model is associated with the lowest best MSE (0.049), average MSE (0.078), and 
median MSE (0.049) values. On the other side, the FFNN-GSA model exhibits better performance than the other two models 
in terms of the standard deviation of MSE (0.144). In this regard, the rankings of the three classification models are different 
according to the performance metrics (see Table 8). Therefore, this can be regarded as a multiple criteria decision making 
problem. These calculations are implemented in Microsoft Excel. 
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Fig. 6. Convergence curves of the classification models 

 
Table 7 
Evaluation metrics of classification models for the first dataset 

Classification model  Best MSE Average MSE Median MSE Standard deviation MSE 
FFNN-PSO 0.207 0.230 0.207 0.155 
FFNN-GSA 0.279 0.296 0.279 0.144 
FFNN-PSO-GSA 0.049 0.078 0.049 0.173 

 
In the decision making problem, the classification models are considered as the alternatives and the evaluation metrics are 
regarded as the attributes. Since the FFNN-PSO-GSA model obtains the minimum best, average, and median MSE, it is 
ranked first with respect to the referenced metrics. However, this model is associated with the highest standard deviation 
MSE, and it is therefore ranked as the worst model based on this metric. The rankings of the remaining models could be 
interpreted similarly. It is clear that the rankings of the classification models are not consistent, except for the FFNN-PSO 
model. Thus, the rankings of the hybrid machine learning models are aggregated using a new approach based on the half-
quadratic theory. The results indicate that FFNN-PSO-GSA is the first-ranked classification model, as shown in Table 8. 
The final ranking obtains a consensus index of 0.83 and a trust level of 1.00, indicating consistency between the rankings. 
  
Table 8  
Final ranking of the classification models for the first dataset 

Classification model  Best MSE Average MSE Median MSE Standard deviation MSE Final ranking 
FFNN-PSO 2 2 2 2 2 
FFNN-GSA 3 3 3 1 3 
FFNN-PSO-GSA 1 1 1 3 1 

For the second dataset, the FFNN-PSO-GSA model (best MSE= 7.54E-22, average MSE= 2.85E-06, median MSE= 7.70E-
22, and standard deviation of MSE= 2.06E-05) exhibits superior performance compared to other classification models (see 
Table 9). Based on the results of all the metrics, the proposed model is ranked first, yielding a consensus index and a trust 
level of 1.00. It can be therefore concluded that the proposed FFNN-PSO-GSA model outperformed the other models for 
the two datasets. This can be attributed to its ability to obtain global minima rather than a local minimum error by being 
independent of the parameters of the initial weights and biases. 

 
Table 9  
Performance metrics and rankings of the classification models for the second dataset 

Metrics  FFNN-PSO FFNN-GSA FFNN-PSO-GSA 
Best MSE 1.08E-17 1.49E-07 7.54E-22 

2 3 1 
Average MSE 2.98E-06 3.31E-06 2.85E-06 

2 3 1 
Median MSE 1.39E-17 1.49E-07 7.7E-22 

2 3 1 
Standard deviation MSE 2.14E-05 2.2E-05 2.06E-05 

2 3 1 

The FFNN-PSO-GSA model is trained using different predictor combinations to be compared against the results reported 
in the literature. The suggested model yields a classification accuracy ranging between 98.47-98.73% using one predictor 
(i.e., temperature), higher than the reported value of 67-87% by Salamone et al. (2020)  and substantially higher than 55-
65% reported in Sembroiz et al. (2019). As for the temperature and CO2 predictors, the proposed model has an accuracy 
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ranging between 85.45-94.03% compared to 79-85% in Salamone et al. (2020) and 69-89% in Sembroiz et al. (2019). It can 
be concluded that incorporating PSO and GSA algorithms into the classical FFNN model enhances the robustness of 
modeling occupancy detection. Therefore, the proposed optimized model can be widely applied in different applications. 
 
8. Conclusion  
 
Accurate occupancy detection is crucial in energy planning and management. It is an important factor for the facility 
manager to assess and then enhance the building's energy efficiency and indoor environmental quality. In this regard, this 
research examined occupancy existence in the office environment using a feedforward neural network (FFNN) model 
trained using particle swarm optimization (PSO), gravitational search algorithm (GSA), and hybrid PSO-GSA algorithm. 
The performance of the proposed models was examined using data obtained from an office room, Belgium. Two datasets 
were used for testing the models while the office door was open and closed. The data was divided into 80% and 20% for 
training and testing purposes, respectively. Four factors related to the temperature, humidity, light, and carbon dioxide levels 
were selected as input parameters for the models. The proposed classification models were evaluated using best, average, 
median, and standard deviation of mean squared error (MSE) metrics. For the first dataset, the results showed that the 
FFNN-PSO-GSA model (best MSE= 0.049, average MSE= 0.078, median MSE= 0.049, and standard deviation of MSE= 
0.173) enhanced most of the performance indices compared to the other models. The rankings of the classification models 
were further examined using an approach based on the half-quadratic theory. The proposed model was identified as the 
best-ranked classification model, yielding a consensus index of 0.83 and a trust level of 1.00. The classification models 
were further tested and validated using a second dataset. The FFNN-PSO-GSA model (best MSE= 7.54E-22, average MSE= 
2.85E-06, median MSE= 7.70E-22, and standard deviation of MSE= 2.06E-05) exhibited superior performance to that of 
the FFNN-PSO and FFNN-GSA models. Therefore, the suggested model was ranked first, yielding a consensus index and 
a trust level of 1.00. It can be concluded that the proposed FFNN-PSO-GSA model outperformed the other models for the 
two datasets. For temperature predictor, the FFNN-PSO-GSA model had accuracies of 98.47-98.73%, higher than the 
accuracies reported in the literature. Finally, it had accuracies of 85.45-94.03% which exceeded the reported range for CO2 
and temperature predictors. The main findings of the research could be summarized as follows:  
 

• FNN-GSA did not perform properly because of the weak exploitation potential of the GSA algorithm. 
• The performance of the FNN-PSO was better than that of the FNNGSA owing to the precise exploitation ability 

of the PSO algorithm.  
• FNN-PSO-GSA combined the strong exploitation and exploration abilities of the PSO and GSA algorithms, 

yielding outstanding performance in training neural networks. 
• FNN-PSO-GSA boosted the problem of trapping in local minima and enhanced the convergence rate compared to 

the other models.  
• FFNN-PSO-GSA improved the classification accuracy of the other models and it can be therefore used for 

occupancy detection modeling.  
 

On the other hand, the limitation of the suggested model might be the data splitting technique for training and testing 
purposes. For future work, it is recommended to assess the performance of the developed models based on cross-validation. 
This helps in demonstrating the effectiveness of the classification models, particularly in addressing overfitting and 
underfitting.  
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