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 Preliminary normalization is central to the decision process of several popular, recent or 
completely new multi-attribute decision-making (MADM) methods. However, a number of 
authors have pointed out serious pitfalls attributed to normalization methods. One major pitfall, 
which has been identified, is that normalization methods may lead to different final rankings of 
alternatives when a ranking procedure (RP) based on them is used for solving a MADM problem. 
The current paper aims to ascertain and illustrate the effectiveness of some RPs based on 
prominent primary WEighted Self-NORmalizing Distance (WESNORD) metrics and their 
averages. The effectiveness of the selected RPs is demonstrated by solving a logistics service 
provider (LSP) selection problem taken from the literature. The results reveal that the RPs 
considered deliver final rankings of alternatives, which are very similar to the SAW-produced 
reference ranking.  
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1. Introduction 
 

Multi-attribute decision-making (MADM) is a prominent branch of operations research and management science. It refers 
to “making preference decisions (such as evaluation, prioritization, and selection) over the available alternatives that are 
characterized by multiple, usually conflicting attributes” (Hwang & Yoon, 1981). In MADM, preliminary normalization 
(i.e., mathematical transformation of all initial attribute values to eliminate the effects of different scales of measurement 
before using a given method) is central to the decision process of various well-established, recent or completely new 
methods. Some of these are: the Simple Additive Weighting (SAW) (McCrimmon, 1968), the Technique for Order of 
Preference by Similarity to Ideal Solution (TOPSIS) (Hwang & Yoon, 1981), the TOmada de Decisao Interativa e 
Multicriterio (TODIM) (Gomes & Lima, 1992), the Complex Proportional Assessment (COPRAS) (Zavadskas et al., 1994), 
the VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) (Opricovič, 1998), the Multi-Objective 
Optimization on the basis of Ratio Analysis (MOORA) (Brauers et al, 2006), the Relative Ratio (RR) (Li, 2009), the 
Performance Selection Index (PSI) (Maniya & Bhatt, 2010), the Additive Ratio Assessment  (ARAS) (Zavadskas & Turskis, 
2010), the Weighted Aggregated Sum Product Assessment (WASPAS) (Zavadskas et al., 2012), the Weighted Euclidean 
Distance Based Approach (WEDBA) (Rao & Singh, 2012), the Multi-Attribute Range Evaluations (MARE) (Hodgett, 
2013), the Multi-Attributive Border Approximation area Comparison) (MABAC) (Pamucar & Cirovic, 2015), the 
Combinative Distance-based Assessment (CODAS) (Keshavarz-Ghorabaee et al., 2016), the Total Area based on 
Orthogonal Vectors (TAOV) (Hajiagha et al., 2016), the Double Normalization-based Multiple Aggregation (DNMA) (Liao 
& Wu, 2017), the Combined Compromise Solution (CoCoSo) (Yazdani et al., 2019), the Proximity Indexed Value (PIV) 
(Mufazzal & Muzakkir, 2018), the Simultaneous Evaluation of Criteria and Alternatives (SECA) (Keshavarz-Ghorabaee et 
al., 2018), the Mixed Aggregation by Comprehensive Normalization Technique (MACONT) (Wen et al., 2020), the 
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Measurement of Alternatives and Ranking According to Compromise Solution (MARCOS)  (Stevic et al., 2020). Numerous 
types of normalization methods can be found in the MADM literature (see e.g., Aytekin, 2021; Ploskas & Papathanasiou, 
2019; Shekhovtsov & Kołodziejczyk, 2020). The most common classical normalization methods are vector normalization, 
linear max normalization, linear max-min normalization and linear sum normalization.   
 
In the literature, a number of authors have pointed out serious pitfalls associated with normalization methods (e.g., Aytekin, 
2021; Bhowmik et al., 2018; Çelen, 2015; Ginevičius, 2008; Jafaryeganeh, 2020; Jahan & Edwards, 2015; Kaplinski & 
Tamošaitiené, 2015; Kosareva et al., 2018; Lakshmi et al., 2019; Milani et al., 2005; Mokotoff et al., 2010; Palczewski & 
Sałabun, 2019; Pavlicic, 2001; Podviezko, 2014; Podviezko & Podvezko, 2015; Vafaei et al., 2018; Shekhovtsov & 
Kołodziejczyk, 2020). One major pitfall attributed to normalization methods is that they may lead to different final rankings 
of alternatives when a ranking procedure (RP) based on them is used for solving a MADM problem.   
 
For at least this reason, the current work aims to ascertain and illustrate the effectiveness of some RPs based on prominent 
primary WEighted Self-NORmalizing Distance (WESNORD) metrics and their averages (see Section 2 and Section 3 for 
details). The WESNORD metrics of interest are listed below.  
 

I) The three prominent primary distance metrics involved are:  
 Weighted Canberra distance; 
 Weighted Gower distance; 
 Weighted Wave-Hedges distance. 
II) The four averages of  distance metrics considered are:  
 The average of weighted Canberra and Gower distances; 
 The average of weighted Canberra and Wave-Hedges distances; 
 The average of weighted Gower and Wave-Hedges distances; 
 The average of weighted Canberra, Gower, and Wave-Hedges distances. 

 
In the above, all seven of these distance metrics are normalized and computationally quite simple, and therefore suitable for 
practical applications. 
 
The main contribution of this work is threefold: First, we introduce the cornerstone concept of WEighted Self-
NORmalized Distance (WESNORD) metrics. Second, we define an original ranking index exploiting the duality of 
normalized similarity and distance metrics.  Third, we ascertain that the WESNORD metrics based methodology is 
worthwhile. We organize the rest of the paper as follows. The next section presents the definitions, notation and ideas 
related to the WESNORD metrics based methodology. The third section explains how to rank alternatives by using 
WESNORD metrics. To ascertain and illustrate the effectiveness of the use of WESNORD metrics, a logistics service 
provider (LSP) selection problem adapted from the paper by Hidouri and Rebaï (2019) is solved in the fourth section. The 
resulting rankings are then compared to the SAW-produced reference ranking. Finally, the fifth section concludes the article 
and points out two directions for future research.  
 
2. Basic mathematical definitions 
 
Let us start by presenting some basic preliminary mathematical definitions such as normalized distance metrics (NDMs) 
and normalized similarity metrics (NSMs). 
 
Definition 1 (Muscat, 2014).  Let ℝ denote the set of all real numbers and let X be an arbitrary nonempty set. A function d 
: X × X → ℝ is called a distance metric on X if, for all x, y, z ∈ X, it holds: 
 

 d(x, y) = d(y, x) (symmetry), 
 d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality), 
  d(x, y) = 0 if and only if x = y (identity of indiscernibles).  

 
Consequently, we have that d(x, y) ≥ 0 (non-negativity) for any x, y ∈ X. 
 
Definition 2 A distance metric d(x, y) is said to be normalized if and only if d(x, y) ≤ 1. 
 
Note that for nonnegative real numbers, all three below-mentioned distances are WESNORD metrics.   
 
Definition 3 (Lance & Williams, 1967).  A function 𝑑஼ : ℝ଴ା௡ × ℝ଴ା௡ → ℝ଴ା is an n-dimensional Canberra distance if  
 𝑑஼(𝑥, 𝑦) = ෍ ห𝑥௝  −  𝑦௝ห𝑥௝  + 𝑦௝௝ ୀ ௡ 

௝ ୀ ଵ  
 

(1) 
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where ℝ଴ା denotes the set of all nonnegative real numbers, and where x = (𝑥 ଵ, 𝑥ଶ, ..., 𝑥௡) and  y = (𝑦ଵ, 𝑦ଶ, ..., 𝑦௡) ∈ ℝ଴ା௡ . 
 
Definition 4 (Gower, 1971).  A function 𝑑ீ : ℝ଴ା௡ × ℝ଴ା௡ → ℝ଴ା is an  n-dimensional  Gower distance if   
 𝑑ீ(𝑥.𝑦) = ∑ ห௫ೕ ି ௬ೕหோೕ    ௝ ୀ ௡ ௝ ୀ ଵ     (2) 

where 𝑅௝ is a normalizer, usually equal to the range of the jth attribute. 
 
Definition 5 (Cha, 2007).  A function 𝑑ௐு : ℝ଴ା௡ × ℝ଴ା௡ → ℝ଴ା is an n-dimensional Wave-Hedges distance if   
 𝑑ௐு(𝑥,𝑦) = ∑ ห௫ೕష௬ೕห୫ୟ୶ (௫ೕ , ௬ೕ)௝ ୀ ௡ ௝ ୀ ଵ      (3) 

 
In the above, it seems obvious (1) that all three of these distances self-normalize separately the absolute difference between 
the components of the vectors x and y prior to summing and (2) that the mathematical convention employed is that ଴଴ = 0. 
We now present the axiomatic system introduced by Rozinek and Mareš (2021) for NSMs. 
 
Definition 6 (Rozinek & Mareš, 2021).  A function sim(x, y): X × X → [0, 1] is a NSM if, for all x, y, z ∈ X, it satisfies the 
following conditions:  
 

 sim(x, y) = sim(y, x) (symmetry), 
 sim(x, z) + 1 ≥  sim(x, y) + sim(y, z) (triangle inequality), 
 sim(x, y) = 1 if and only if x = y (identity of indiscernibles), 
 sim(x, y) ≥ 0 (non-negativity). 

 
According to Rozinek and Mareš (2021), the two statements below hold true: 

− Associated with every NDM, dist(x, y), is a NSM, sim(x, y), in the sense of definition 6, given by the equation 
sim(x, y) = 1 - dist(x, y).  

− Convex combinations allow assembling different primary NSMs together to produce a composite NSM. 
 
As a result, convex combinations allow assembling different primary NDMs together to produce a composite NDM. 
The previously presented definitions and ideas lay the foundation for the WESNORD metrics based RPs as it is shown in 
the next section.  
 
3. The WESNORD metrics based methodology 
 
In what follows, we assume that 𝑚 alternatives (𝐴௜  , i = 1, 2, ..., m) are judged upon n attributes (𝐶௝ , j = 1, 2, ..., n). 
Moreover, we denote by 𝑎௜௝ the nonnegative crisp attribute value of each alternative 𝐴௜ with respect to the attribute 𝐶௝. We 
also denote by 𝑊 by the vector of attribute weights, (𝑤ଵ,𝑤ଶ, … ,𝑤௡) ∈  0, 1௡ satisfying  ∑ 𝑤௝ = 1௡௝ୀଵ . 
The following enumerated list represents the selected WESNORD metrics to be used: 
 

I) The three primary WESNORD metrics:  
1) The weighted Canberra distance 𝑑ௐ஼(𝑥, 𝑦) defined as:  

 𝑑𝑖𝑠𝑡ଵ(𝑥,𝑦) = 𝑑ௐ஼(𝑥,𝑦) = ∑ 𝑤௝௝ ୀ ௡ ௝ ୀ ଵ  × ห௫ೕ ି ௬ೕห௫ೕ ା ௬ೕ  (4) 

   
2) The weighted Gower distance 𝑑ௐீ(𝑥,𝑦) defined as: 

 𝑑𝑖𝑠𝑡ଶ(𝑥,𝑦) =  𝑑ௐீ(𝑥, 𝑦) = ∑ 𝑤௝௝ ୀ ௡ ௝ ୀ ଵ  × ห௫ೕ ି ௬ೕหோೕ  (5) 

 
3) The weighted Wave-Hedges distance 𝑑ௐௐு(𝑥,𝑦) defined as:  

 𝑑𝑖𝑠𝑡ଷ(𝑥,𝑦) =  𝑑ௐௐு(𝑥, 𝑦) = ∑ 𝑤௝௝ ୀ ௡ ௝ ୀ ଵ  × ห௫ೕ ି ௬ೕห୫ୟ୶ (௫ೕ , ௬ೕ)   (6) 

                                                             
II) The four averages of WESNORD metrics:  

 𝑑𝑖𝑠𝑡ସ(𝑥,𝑦) = ௗೈ಴(௫,௬) ା ௗೈಸ(௫,௬)ଶ  (7) 
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(8) 

𝑑𝑖𝑠𝑡଺(𝑥,𝑦) =  𝑑ௐீ(𝑥, 𝑦)  +  𝑑ௐௐு(𝑥,𝑦)2  
(9) 

𝑑𝑖𝑠𝑡଻(𝑥,𝑦) =  𝑑ௐ஼(𝑥,𝑦)  +  𝑑ௐீ(𝑥, 𝑦)  +  𝑑ௐௐு(𝑥,𝑦)3  
(10) 

 
It is clear that the corresponding NSMs are given by:  
 𝑆𝑖𝑚௞(𝑥,𝑦) = 1 − 𝑑𝑖𝑠𝑡௞(𝑥,𝑦) , (11) 
 
where 1 ≤ k ≤ 7. 
 
Finally, the determination of the degree of suitability 𝑆௞(𝐴௜) of the alternative 𝐴௜ is calculated according to the formula:   
 𝑆௞(𝐴௜) = ඥ𝑠𝑖𝑚௞(𝐴௜ ,𝐷𝑃) × 𝑑𝑖𝑠𝑡௞(𝐴௜ ,𝑈𝑃), (12) 
 
where 1 ≤ i ≤ m and 1 ≤ k ≤ 7. 
 
As defined, the degree of suitability of the alternative 𝐴௜, 1 ≤ i ≤ m, is expressed as the geometric mean of its similarity 
score 𝑠𝑖𝑚௞(𝐴௜ ,𝐷𝑃) and its dissimilarity score 𝑑𝑖𝑠𝑡௞(𝐴௜ ,𝑈𝑃),  where DP denotes the desired point formed from the most 
preferable values of the attributes, and UP the undesired point formed from the least preferred values. The alternatives are 
then ranked according to the degree of suitability (the highest degree represents the most suitable alternative). 
The figure below shows the flowchart of the WESNORD metrics based methodology. 

 
 

 
Fig. 1. Flowchart of the WESNORD metrics based methodology 
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For demonstration purposes, we provide the following logistics service provider (LSP) selection problem adapted from the 
paper by Hidouri and Rebaï (2019). 
 
4. Illustrative example 

  
4.1 Problem description 
 
The problem at hand is to rank thirteen competing logistics service providers (LSPs) (𝑃௜, i  = 1 to 13). Each LSP is evaluated 
in terms of his ratings according to five attributes. The five attributes are Responsiveness (𝐶ଵ), Price (𝐶ଶ), Delivery time 
(𝐶ଷ), Services (𝐶ସ), and Quality (𝐶ହ). The respective attribute weights are w1 = 0.50, w2 = 0.20, w3 = 0.15, w4 = 0.10, and 
w5 = 0.05. The LSPs ratings are expressed in the same unitless scale from 0 (worst) to 10 (best). Table 1 below shows the 
ratings assigned to the thirteen LSPs. 
 
Table 1      
Ratings of the LSPs with respect to the attributes 

Attribute 
 𝑃ଵ 𝑃ଶ 𝑃ଷ 𝑃ସ 𝑃ହ 𝑃଺ 𝑃଻ 𝑃  𝑃ଽ 𝑃ଵ଴ 𝑃ଵଵ 𝑃ଵଶ 𝑃ଵଷ 𝐶ଵ 
 

9 0 1 7 0 1 5 8 8 5 7 5 0 𝐶ଶ 
 

8 6 7 10 6 6 7 8.5 8.5 7 6 6 5 𝐶ଷ 
 

9 0 2 5 0 1 5 5 8 1 0 0 0 Cସ 
 

5 0 0 8 0 8 3 7 6 1 0 0 0 Cହ 
 

5 0 0 9 1 1 9 8 8 1 7 7 5 
 

As said earlier, after using the WESNORD metrics based RPs to rank the thirteen competing LSPs (from most to least 
suitable), we will compare the resulting rankings to the reference ranking produced by applying the SAW method with 
‘’raw’’ (not normalized) ratings of the LSPs, using the following three rankings similarity coefficients (see Shekhovtsov 
and Kołodziejczyk, 2020):  
 

− Spearman coefficient (𝑟ௌ);  
− Weighted Spearman coefficient (𝑟ௐ);  
− Rank similarity coefficient (WS). 

 
4.2 Ranking results analysis 
 
The ranking results obtained are summarized in Table 2.  
 
Table 2    
Rankings produced by the different RPs and SAW  

LSP 𝑑𝑖𝑠𝑡ଵ 𝑑𝑖𝑠𝑡ଶ 𝑑𝑖𝑠𝑡ଷ 𝑑𝑖𝑠𝑡ସ 𝑑𝑖𝑠𝑡ହ 𝑑𝑖𝑠𝑡଺ 𝑑𝑖𝑠𝑡଻ SAW 𝑃ଵ 1 1 1 1 1 1 1 1 𝑃ଶ 13 12 13 13 13 13 13 13 𝑃ଷ 10 10 10 10 10 10 10 10 𝑃ସ 3 3 3 3 3 3 3 4 𝑃ହ 11 11 11 11 11 11 11 11 𝑃଺ 8 9 9 9 9 9 9 9 𝑃଻ 5 5 5 5 5 5 5 5 𝑃  4 4 4 4 4 4 4 3 𝑃ଽ 2 2 2 2 2 2 2 2 𝑃ଵ଴ 6 7 6 6 6 7 6 7 𝑃ଵଵ 7 6 7 7 7 6 7 6 𝑃ଵଶ 9 8 8 8 8 8 8 8 𝑃ଵଷ 12 13 12 12 12 12 12 12 
 
Based on Table 2, it can be indicated that all seven of these WESNORD metrics lead to the same most suitable LSP, 𝑃ଵ and 
that at the same time, the LSP 𝑃ଽ receives the second place, but additionally, except for the weighted Gower distance, the 
indication of the least suitable LSP is the same. 
 
As said, to measure the resulting rankings similarity to the SAW-produced ranking, the following rank measures of 
correlation will be employed: 
 

i) The Spearman coefficient (𝑟ௌ) defined as: 
                                                                                                                         



  468𝑟ௌ = 1 − 6∑ 𝑑௜ଶ  𝑚 (𝑚ଶ − 1) 
 

(13) 
 
where 𝑑௜ is the difference in rankings for each object i, i  ∈ {1, 2, ..., m}. 
 

ii) The weighted Spearman coefficient (𝑟ௐ) expressed as 
 𝑟ௐ = 1 − 6 ∑  ௠௜ୀଵ (𝑅𝑥௜  −  𝑅𝑦௜)ଶ( (𝑚 −  𝑅𝑥௜  +  1)  +  (𝑚 −  𝑅𝑦௜  +  1))𝑚 (𝑚ଷ  +  𝑚ଶ  −  𝑚 −  1)  

(14) 𝑅𝑥௜ and 𝑅𝑦௜ are defined as the position in the ranking of the ith element in ranking x and ranking y respectively. 
 

iii) The rank similarity coefficient (WS) given by 
 𝑊𝑆 = 1 − ∑ 2ି௫೔|𝑅𝑥௜  −  𝑅𝑦௜|௠௜ୀଵ𝑚𝑎𝑥ሼ|1 −  𝑅𝑥௜| ;  |𝑚 −  𝑅𝑥௜|ሽ (15) 

Table 3 below summarizes the correlation coefficients values obtained. 
  
Table 3    
Correlation coefficients between the rankings provided by the RPs and the reference ranking 

WESNORD metric  𝑟ௌ 𝑟ௐ WS 𝑑𝑖𝑠𝑡ଵ 0.901 0.976 0.976 𝑑𝑖𝑠𝑡ଶ 0.956 0.980 0.980 𝑑𝑖𝑠𝑡ଷ 0.956 0.977 0.978 𝑑𝑖𝑠𝑡ସ 0.956 0.977 0.978 𝑑𝑖𝑠𝑡ହ 0.956 0.977 0.978 𝑑𝑖𝑠𝑡଺ 0.993 0.982 0.981 𝑑𝑖𝑠𝑡଻ 0.956 0.977 0.978 
 
From Table 3, we can obviously see that all seven WESNORD metrics perform very well. Besides, the weighted Canberra 
distance yields the least similarity values than the other ones, but the average of weighted Gower and Wave-Hedges 
distances leads to the best results. Further, the weighted Gower distance leads to the second best results. Finally, for all the 
remaining distance metrics, the results are similar to each other. In sum, the values of the similarity coefficients used 
ascertain the soundness and effectiveness of all seven WESNORD metrics as a useful tool for ranking alternatives. 
 
5. Conclusions  
 
To conclude, preliminary normalization in multi-attribute decision-making (MADM) is a necessary and unavoidable stage 
of the decision process of many methods. Nevertheless, a number of authors have pointed out significant pitfalls associated 
with normalization methods. One major pitfall, which has been pointed out is that normalization methods may lead to 
different final rankings of alternatives when a ranking procedure based on them is used for solving a MADM problem. We 
have investigated, in this work, whether three given primary WESNORD metrics and their averages can be employed 
effectively in MADM. To ascertain and illustrate the effectiveness of WESNORD metrics based RPs, we have solved a 
logistics service provider (LSP) selection problem. The obtained results show that the seven RPs used produce final rankings 
of alternatives, which are very similar to the reference ranking provided by the popular SAW method. The two avenues 
envisaged for future research involve: 
 

− Carrying out a thorough performance comparison among WESNORD metrics based ranking procedures; 
− Applying the WESNORD metrics based ranking procedures to solve real-world MADM problems in various 

practical fields. 
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