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 This article has studied a full truckload transportation problem in the context of an empty return 
scenario, particularly an order selection and vehicle routing problem with full truckload, multiple 
depots and time windows (SFTMDVRPTW). The aim is to develop a solution where a set of 
truck routes serves a subset of selected transportation demands from a number of full truckload 
orders to maximize the total profit obtained from those orders. Each truck route is a chain of 
selected demands to serve, originating at a departure point and terminating at an arriving point 
of trucks in a way that respects the constraints of availability and time windows. It is not 
mandatory to serve all orders, and only the profitable ones are selected. In this study, we have 
formulated the SFTMDVRPTW as a mixed-integer linear programming (MILP) model. Finally, 
Computational results are conducted on a new data set that contains thirty randomly generated 
problem instances ranging from 16 to 30 orders using the CPLEX software. The findings prove 
that our model has provided good solutions in a reasonable time.  
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1. Introduction 
 

Transport has always been a pioneering sector in the economy of the market. Moreover, because of the progress of the 
globalization of international exchanges and the needs of carriers to meet the demands of the giant shippers, companies face 
everyday transport challenges with maximum efficiency of cost-competitive operations. The economic interest in the 
transport sector explains the interest of researchers in the optimization of routing problems. As a result of substantial 
collaboration between the operational research specialists (mathematical programming and combinatorial optimization) and 
transport managers, several implantations of optimization computer systems have been created. Optimization problems of 
transports are among the gorgeous achievements of operational research (OR). The problem of transport is not a recent one. 
Travelling salesman problem (TSP) and vehicle routing problem (VRP) are considered to have the lion’s share in 
combinatorial optimization problems in operations research. The fundamental problem, TSP, permits to visit a set of 
customers with one single truck. Therefore, it plans it's tour by finding the running sequence of clients at a minimal cost. 
The VRP treats the case in which each customer has a specific demand and wherein several trucks can be used. As to the 
above problems, many constraints can be added as well to adapt to practical problems encountered in the field of 
transportation. Thus, every vehicle has a limited capacity (capacitated VRP, CVRP) (Lysgaard et al. 2004; Uchoa et al. 
2017). The trucking company can serve its customers using a homogeneous fleet of trucks from more than one warehouse 
(multi-depot VRP, MDVRP) (Lahyani et al., 2019; Marín Moreno et al., 2019). These vehicles can be heterogeneous at 
distinct levels: the fixed vehicle utilization costs, loading capacity, variable operational costs, etc. (heterogeneous VRP, 
HVRP) (Bettinelli et al., 2011; Bolaños et al., 2018). Each customer must be serviced within a specified time window (VRP 
with time windows, VRPTW) (Solomon, 1987; Yu et al., 2011). The demand may be located on the arcs or on the nodes 
depending on the case (arc routing problem, ARP) (Golden et al., 1981; Ávila et al., 2017). In addition to the arc costs, each 
potential customer has an associated profit; the fleet of trucks and the travel time each truck can travel are limited. As a 
result, it is not obligatory to visit all customers, and only profitable ones are served within a certain time period (selective 
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VRP, SVRP) (Aras et al., 2011; Lahyani et al., 2017; Rincon-Garcia et al., 2017). The trucking company provides only full 
truckload (FTL) transportation service, where orders (transportation demands) are shipped from the location of pick-up to 
the location of the delivery with trucks located at one or several warehouses (full truckload VRP, FTVRP) (Ball et al., 
1983; Desrosiers et al., 1988). Each time a constraint is added or subtracted, a new problem appears. The FTVRP has many 
real-world applications such as the transportation of materials in the public works sector (Grimault et al., 2017), collection 
and delivery of round timbers in the forestry industry (Gronalt & Hirsch, 2007), chemical products distribution (Ball et al. 
1983), intermodal container transportation (Nossack & Pesch, 2013; Dimitriou, 2021), vaccine distribution1, etc. Despite 
its prominence, FTVRP has not been studied vigorously much as other VRP variants; only a few studies worked on this 
problem without focusing on the empty back return of trucks. We believe that it has not been given its due merit when it 
comes to research in the field of OR. This is why we are motivated and interested in studying this issue of FTL. 
 
This paper proposes a new mathematical formulation for a full truckload transportation problem in the context of an empty 
return scenario. The problem is selective FTVRP with time windows and multiple depots (SFTMDVRPTW). It is different 
from most others in the sense that only a subset of orders (transportation demands) are serviced. The objective is to come 
up with a solution where a set of truck routes serves a subset of selected transportation demands from a number of FTL 
orders while maximizing the total profit obtained from those orders. Each truck route is an arrangement of selected demands 
to serve, originating at a departure point and terminating at an arrival point of trucks in a way that respects the constraints 
of availability and time windows. In a particular context of an empty return scenario, our problem becomes apparent when 
a commercial truck returns from its original destination B to its original point A of departure (his home base), and after a 
normal delivery trip of its customers’ freight has been made from A to B. An empty return is not economically viable, so 
the truck has to select profitable transport orders out of all the ones placed in the network. There are several concerns related 
to this work, such as reducing the number of empty returns, increasing efficiency in the use of equipment of transport 
companies, reducing the cost of operations of transport companies, reducing CO2 emissions, etc. Noting that no matter how 
the constraints of the problem are, it remains NP-hard. This means that no recognized algorithm can guarantee to find, in 
polynomial time, the exact solution of these problems. EL Bouyahyiouy and Bellabdaoui (2016, 2017) have only presented 
a brief description of the problem; they have tried to adapt some heuristic approaches in a paper published in a conference 
proceeding that exposed the first result of a small instance, including one central depot. Thus, the contribution of this paper 
is as follows: 
 

• We present a variant of the FTL transportation problem that is inspired by logistic transportation in the context of 
an empty return scenario, which is not treated in the literature. 
 

• In the literature review section, we present the full truckload problems that comprise all constraints such as 
selective transportation demands, MD, TWs of orders, etc. 

 
• We formulate our SFTMDVRPTW problem as a mixed-integer linear programming (MILP) model. 

 
•  We test our model on a new set of randomly generated instances using the CPLEX software. Since our problem 

is a new variant of full truckload transportation problem with no benchmark instances, we believe that our 
benchmark will be beneficial for any variant of FTVRP. 

 
This article is organized as follows: in section 2, we describe our problem and illustrate it by means of a small example. A 
literature review is presented in section 3, where the contributions of this paper are also noted. Section 4 outlines the 
mathematical formulation for the optimization problem addressed. Section 5 proposes a set of random instances and presents 
numerical results obtained by the CPLEX solver on the mathematical model. The last section presents some conclusions 
and highlights for researchers interested in the field. 
 
2. Description of the problem 
 
2.1 Structure of the problem  
 
We have described our problem on an oriented graph 𝐺 = (𝑋,𝐸), where 𝑋 represents the ensemble of nodes and 𝐸 is the 
ensemble of possible arcs representing the feasible links. The nodes are the points of extremity {(𝐿ଵ,𝑈ଵ), . . . , (𝐿௡,𝑈௡) } of 𝑛 transportation demands (orders) that are linked to two sets of points: 𝐷 = {𝐷ଵ, … ,𝐷௠} and 𝐴 = {𝐴ଵ, … ,𝐴௠}, referring to 
the departure and arrival locations of trucks respectively. Fig. 1. shows an illustration of our problem that includes nine 
orders and two trucks. 
  

 
1 https://www.freightwaves.com/news/trucks-to-play-key-role-in-vaccine-distribution 
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Fig. 1. An illustration of SFTMDVRPTW 

2.2 The operational constraints 
 
Selective tour. The tours may not necessarily include all orders, but rather select those that are promising to the desired 
objective, mainly profit. 

Full truckload. An order 𝑂௜ (or simply order 𝑖) consists of a full truckload. It is defined by: 
    • A couple of points (𝐿௜ ,𝑈௜); a loading (or pickup) point 𝐿௜ and an unloading (or delivery) point 𝑈௜. 
    • A profit 𝑝௜. 
    • A distance 𝑑௜ between the loading point 𝐿௜ and the unloading point 𝑈௜. 
 
Time windows. The selected orders cannot be visited at any time. This allows the client to better predict the pickup and the 
delivery of the order. Thus, each selected order has double time windows: ൣ𝐿௜௠௜௡, 𝐿௜௠௔௫൧ and ൣ𝑈௜௠௜௡, 𝑈௜௠௔௫൧. 𝐿௜௠௜௡ and  𝐿௜௠௔௫ 
are the earliest and latest time to load the goods, respectively. 𝑈௜௠௜௡ and  𝑈௜௠௔௫ are the earliest and latest time to perform the 
unloading, respectively. If a truck arrives early at a loading or unloading point, it has to wait for the start of loading or 
unloading time. A truck is not allowed to finish its loading (or unloading) after time 𝐿௜௠௔௫ (or 𝑈௜௠௔௫). Multiple depots. Given 
a fixed fleet of 𝑚 homogeneous trucks, each truck 𝑣௞ (𝑘 = 1, … ,𝑚) is associated with two vertices representing the points 
of departure and arrival of its tour, 𝐷௞  and 𝐴௞  respectively. Each truck is subject to the time constraints in the 
interval ൣ𝐷௞௠௜௡, 𝐴௞௠௔௫൧, where 𝐷௞௠௜௡ is the earliest departure time for truck 𝑣௞ from the departure point 𝐷௞, and 𝐴௞௠௔௫ is the 
latest arrival time for truck 𝑣௞ at the arrival point 𝐴௞. 
 
2.3  Objectives 
 
The aim is to build truck routes 𝑇௞  to serve a subset of selected orders from the 𝑛  full truckload orders. The objective 
function is to maximize the net profits obtained from those orders. Each tour 𝑇௞  is an arrangement of chosen orders, 
originating at the departure point 𝐷௞ and terminating at the arrival point  𝐴௞ of truck 𝑣௞ so that the constraints of availability 
and time windows are respected. 
 
3. Literature review 
 
In this section, we have regrouped the diverse contributions claiming that the routing includes mainly the notion of full 
truckload (FTL), the selection of the truckload, and time windows constraint (TWs). This division is justified by the 
complexity of the problem treated and the diversity of the proposed approaches. It is also explained by the fact that only a 
few works have tackled the issue of the FTL. Table 1 summarizes the FTL literature and the characteristics of the present 
study. To our knowledge, the first efforts in the study of the FTL transportation problem are dated to the 80s. Ball et al. 
(1983) were the firsts that have introduced the FTVRP, which is about creating routes for private trucks and subcontracting 
orders of chemical products to common carriers. It can be seen as a full truckload multi-depot pickup and delivery problem 
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(FTMDPDP). The objective function is to reduce the cost and meet restrictions of maximum route-time. Three heuristics 
are suggested to resolve the problem. One of these heuristics is a greedy insertion procedure (GI); others are based on the 
route-first, cluster-second (RF-CS) method. Later, Desrosiers et al. (1988) presented an exact approach for the FTMDPDP, 
transforming it into an asymmetric traveling salesman problem (aTSP).  
 
Table 1  
Summary of the most related publications on FTVRP 

Het: heterogeneous fleet, MD: multi-depot, S: selective, RD: route duration, TD: total distance, NV: number of vehicles, EVM: Empty-Vehicle-Movement, 
E: exact, H: heuristic, SSBM: single solution based metaheuristic, PBM: population-based metaheuristic, DA: deterministic annealing algorithm, R: real 
data, RG: randomly generated data. 

There are no TWs requirements at pickup and delivery points, but a time limit is imposed on truck routes. The goal is to 
minimize empty movements of trucks. To resolve the problem, a branch-and-bound (BB) method is applied. Arunapuram 
et al. (2003) have introduced FTVRP with multiple depots and pickup TWs. They formulated the problem as an integer 
programming (IP) formulation, and they developed a column generation (CG) approach inside a BB method to solve it. 

Publication Acronym 
Constraints Objective 

function 
Solution approach Instances 

TW Het MD S FTL type Method type # orders 

Ball et al. (1983) FTMDPDP   ● ● ● Min. cost     H • RF-CS 
• Greedy insertion R Up to 

200 

Desrosiers et al. (1988) VRPFL   ●  ● Min. EMV E BB RG Up to 
104 

Wang and Regan (2002) FLPDPTW ●  ● ● ● Min. EMV  H WPB R Up to 75 

Arunapuram et al. 
(2003) VRPFL ●  ●  ● Min. cost     E CG RG Up to 

200 

Gronalt et al. (2003) FLPDPTW ●  ●  ● Min. EMV H savings algorithm RG Up to 
512 

Currie and Salhi (2003) FTPDPTW ● ● ●  ● Min. cost     E 
H 

• MILP 
• 3-phase CH 

R 
RG 

Up to 
208 
Up to 
500 

Currie and Salhi (2004) FTPDPTW ● ● ●  ● Min. cost     SSBM TS R 
RG 

Up to 
208 
Up to 
500 

Jula et al. (2005) FTPDPTW ●    ● Min. cost     
E 

PBM 
• 2Phase DP 
• Hybrid DP with 

AG 
RG 

Up to 20 
Up to 
100 

Imai et al. (2007) VRPFC  ●   ● Min. cost     H LG RG Up to 
200 

Gronalt and Hirsch 
(2007) FT-PDPTW ●  ●  ● Min. EMV    SSBM TS R Up to 85 

Caris and Janssens 
(2009) FTPDPTW ●    ● Min. cost     H • 2PIH  

• LS  RG Up to 
200 

Zhang et al. (2009) am-TSPTW ●  ●  ● Min. RD 
E 
H 

SSBM 

• CPLEX 
• Cluster  
• RTS 

RG Up to 
200 

Liu et al. (2010b) SFTVRP    ● ● Min. cost PBM MA RG Up to 
400 

Zhang et al. (2010) am-TSPTW ●  ●  ● Min. RD H 
SSBM 

WPB 
RTS RG Up to 75 

Liu et al. (2010a) FTMDCVRP    ●  ● Min. EVM H 2PH  RG Up to 
300 

Venkateshan and 
Mathur (2011) FTPDP  ● ●  ● Min. cost E CG RG Up to 20 

Braekers et al. (2013) FTPDPTW ●    ● Min. NV 
Min. TD SSBM DA RG Up to 

200 
Nossack and Pesch 
(2013) FTPDPTW ●  ●  ● Min. RD H 2-stage heuristic  RG Up to 75 

Braekers et al. (2014) FTPDPTW ●    ● Min NV 
Min. TD 

H 
SSBM 
SSBM 

• IM 
• DA  
• hybrid DA with TS 

RG Up to 
200 

Grimault et al. (2017) FTPDP-RS ● ● ●  ● Min. cost     SSBM ALNS R Up to 85 

Xue et al. (2021) MS- FTPDPTW ●    ● Min. cost     SSBM hybrid CG with 
GA/VNS RG Up to 

127 

This study SFTMDVRPTW ●  ● ● ● Max. profit E CPLEX RG Up to 30 
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Gronalt et al. (2003) have presented an exact formulation for FTPDPTW where full truckload orders are moved from and 
to distribution centers. Trucks are available at various warehouses and can be assigned several tours throughout the time of 
planning. The authors developed four different savings based heuristics that are compared on randomly generated instances. 
Venkateshan and Mathur (2011) have extended the FTVRP for heterogeneous trucks, where multiple visits are required by 
the same or different trucks to satisfy each order. Relying on the notations of Arunapuram et al. (2003), Venkateshan and 
Mathur (2011) formulated this problem as an IP problem, and they developed an exact approach from CG to resolve it. 
Currie and Salhi (2003, 2004) have tackled FTPDPTW with heterogeneous goods and trucks, where the location of orders’ 
pickup is undetermined. Their 2003 work presented a MILP model whose objective is to minimize the total costs. Then, 
they proposed a hybrid method combining a GI heuristic with three neighborhood operators. Thereafter, these three 
operators would be used in a tabu search (TS) algorithm (Currie and Salhi 2004). Gronalt and Hirsch (2007) studied a 
FTMDPDPTW in the context of log-truck scheduling with the goal of minimizing the total duration of trucks’ empty 
movements. They have proposed a TS to solve 20 instances with 30 to 85 orders and 9 to 28 trucks. Liu et al. (2010a) 
proposed an exact formulation and a two-phase GI heuristic to study FTL capacitated ARP with multiple depots 
(MDCARPFL) in the context of carrier collaboration with the aim of reducing empty movements of trucks. Liu et al. (2010b) 
developed a memetic algorithm for FVRP with order selection in collaborative transportation. It is assumed that carriers 
receive two types of orders: one given by their customers, while the other by outer carriers. The orders from the first type 
have to be served by one of the carriers’ internal vehicles or assigned to an external collaborative transporter, but a penalty 
cost is incurred. For each order given by outer partners, the carriers can refuse or process it with a compensative payment. 
The goal is to come up with a set of private truck routes that serve a subset of selected orders, aiming at minimizing the 
total cost minus the compensative payments for accepting orders from other carriers. Grimault et al. (2017) investigated the 
FTPDPTW with resource synchronization that appears in the context of public-work companies. The problem consists of 
optimizing the transport of materials between sites, using a fleet of heterogeneous trucks. The objective is to minimize the 
total cost (traveling, service time, truck utilization). They propose an Adaptive Large Neighborhood Search (ALNS) to 
solve this problem. The solving method ALNS was tested on real instances. 
  
Container drainage problem (CDP) represents a special class of FTPDP (Braekers et al. 2013). The goal is to carry 
containers, representing full truckloads, between customers and container terminals. When there are TWs at customers or 
container terminals, it becomes FTPDPTW. When we load a merchandise at a loading point in the FTL case, we are obliged 
to unload it at the unloading point in the next step. So, the FTPDPTW can be transformed into an asymmetric multiple 
traveling salesman problem with time windows (am-TSPTW) by considering each pickup-delivery pair as a node (Wang & 
Regan 2002; Jula et al. 2005; Zhang et al. 2009; Braekers et al. 2013). Wang and Regan (2002) studied FTPDPTW, in 
which only pickup TWs are considered. The objective is to reduce the empty truck movement cost while the number of 
served orders within their TWs is as large as possible. The authors developed an iterative method for solving the problem 
using the window-partition-based (WPB) method. Later, Jula et al. (2005) extended the earlier work to formulate the 
container movement by trucks with TWs at both pickup and delivery locations. The authors propose and compare three 
solving approaches: an exact two-phase algorithm based on dynamic programming (DP) for small instances with up to 20 
orders, a hybrid approach consisting of DP and GA, and an insertion heuristic method for large problem instances with up 
to 100 orders. Imai et al. (2007) addressed the same problem of Gronalt et al. (2003) without TWs, arising during the pickup 
and delivery of full containers that transport them between intermodal terminals. They present a new formulation for this 
problem as a 0-1 linear programming model (LP) and propose a Lagrangian relaxation (LR) to solve the mathematical 
formulation. Later, Caris and Janssens (2009) have extended the problem definition of Imai et al. (2007) to FTPDPTW by 
imposing hard TWs at the customer locations and the depot. Their solution approach employed a two-phase insertion 
heuristic to construct an initial solution, which was then improved by a local search. Zhang et al. (2009) defined an integrated 
CDP that handles full and empty containers between customers, one single terminal and multiple depots. Trucks don’t have 
to return to their departure depot; hard TWs are defined at the customer locations and the terminal. The objective is to 
minimize total travel time. The problem is formulated as am-TSPTW with multiple depots and is solved by a clustering 
method and a reactive tabu search (RTS) algorithm. Zhang et al. (2010) extended the work of Zhang et al. (2009) to multiple 
terminals and multiple depots. Wang and Regan (2002) presented a modified WPB method as a solution approach for the 
problem. The proposed method has been tested on randomly generated instances with up to 75 orders and compared with 
the RTS in Zhang et al. (2009).  Inspired by Zhang et al. (2010), Nossack and Pesch (2013) came with a new formulation 
for FTPDPTW that aims at minimizing the total operating time of all trucks in use. They propose a two-phase heuristic 
solution approach for solving the FTPDPTW. The results indicate that their 2-stage heuristic outperforms the WPB method 
used by Zhang et al. (2010) in terms of CPU time and solution quality. Braekers et al. (2013, 2014) studied FTVRP in a 
drainage operation that is very similar to the ones reviewed by Zhang et al. (2009, 2010). Braekers et al. (2013) propose 
two formulations that are based on an am-TSPTW problem. A hierarchical objective function, which first minimizes the 
number of vehicles and second minimizes the total distance, is proposed. For both formulations, they develop a single-phase 
and a two-phase DA. Braekers et al. (2014) extended their previous work by considering, for the first time, two objectives 
with equal priority: minimizing the number of vehicles and minimizing total distances. They propose three solution 
algorithms: iterative method, DA, and hybrid of DA and TS. They concluded that among the three methods, the hybrid 
algorithm DA-TS yielded the best results. Xue et al. (2021) presented a hybrid CG with GA and VNS for the FTVRPTW 
with multiple shifts; TWs of transportation containers cover several shifts, and each order's shift identification is part of 
decision-making. 
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This article describes a mathematical formulation for the FTL transportation problem, particularly an order selection and 
vehicle routing problem with full truckload, multiple depots and time windows (SFTMDVRPTW). The problem is 
characterized by several attributes: FTL, selective orders, loading and unloading TWs of the orders, waiting times, profit 
maximization, departure and arrival points for each truck subjected to time limit constraints. In contrast to most of the 
existing studies on FTL, the departure time of each truck from its departure point is a decision variable. The selective aspect, 
which relaxes the constraint that all orders should be serviced, refers to the situation where commercial trucks return back 
empty and must select certain orders out of all the orders placed in the network. However, Ball et al.’s, Wang and Regan’s 
and Liu et al.’s studies deal with the selective orders in the context of carrier collaboration, mainly the exchange of orders 
between carriers. There are three highlights in our work. First, we introduce an original selective FTL transportation 
problem, which combines several attributes as shown in Table 1, and accounts for characteristics that are not yet addressed 
in the literature but required in actual applications. Second, a new MILP model is formulated for this problem. Third, 
CPLEX was used to solve the MILP model on a new set of test instances. 
 
4. Mathematical formulation 
 
To formulate the proposed MILP model, parameters, and decision variables are presented below.  
 

Parameters 𝒎           Number of trucks  𝒗𝒌          Truck of index 𝒌;  𝒌 = 𝟏, … ,𝒎 𝑫𝒌          Departure point of truck 𝒌 𝑫𝒌𝒎𝒊𝒏        Earliest departure time of truck 𝒌 𝑨𝒌          Arrival point of truck 𝒌 𝑨𝒌𝒎𝒂𝒙        Latest arrival time of truck 𝒌 𝒏           Number of orders 𝑶𝒊          Order of index 𝒊;  𝒊 = 𝟏, … ,𝒏 𝒑𝒊          Revenue associated with order 𝒊 (𝑳𝒊,𝑼𝒊)      Couple of points of loading and unloading of the order 𝒊 ൣ𝑳𝒊𝒎𝒊𝒏, 𝑳𝒊𝒎𝒂𝒙 ൧     Loading time window of the order 𝒊 ൣ𝑼𝒊𝒎𝒊𝒏, 𝑼𝒊𝒎𝒂𝒙 ൧    Unloading time window of the order 𝒊 𝒅𝒊          Distance between loading and unloading point of order 𝒊 𝒄𝒊          Loaded traveling cost to serve the order 𝑶𝒊 𝐜𝒂          Wait cost per unit time before an order’s loading or unloading   𝐜𝐢𝐣         Cost of empty travel between delivery location of order 𝐎𝐢 and pickup location of order 𝐎𝐣                                                    𝒄𝟎,𝒊𝒌          Cost of travel from start depot 𝑫𝒌 to loading location 𝑳𝒊 of order 𝑶𝒊 𝒄𝒊,𝒏ା𝟏𝒌        Cost of travel from delivery location of order 𝒊 to arriving depot 𝑨𝒌  𝒕𝒊          Traveling time between loading and unloading points of order 𝒊  𝒕𝒊𝒋         Traveling time from the delivery location of the order 𝑶𝒊 to the pickup location of the order 𝑶𝒋 𝒕𝟎,𝒊𝒌          Traveling time from the start depot 𝑫𝒌 to pickup location 𝑳𝒊 of the order 𝒊 𝒕𝒊,𝒏ା𝟏𝒌        Traveling time from the delivery location of order 𝒊 to arriving location 𝑨𝒌 
 𝑴         A big number 
  
Decision variables 𝒙𝒊𝒋𝒌           Boolean variable 𝒙𝒊𝒋𝒌 = 𝟏  if truck 𝒌 travels from the unloading point of order 𝑶𝒊 to loading                              

            point of 𝑶𝒋 order 𝒙𝟎𝒊𝒌          Boolean variable 𝒙𝟎𝒊𝒌 = 𝟏  If truck 𝒌 serves order 𝑶𝒊 as its first order 𝒙𝒊,𝒏ା𝟏𝒌        Boolean variable 𝒙𝒊,𝒏ା𝟏𝒌 = 𝟏  If truck 𝒌 serves order 𝑶𝒊 as its final order 𝒙𝟎,𝒏ା𝟏𝒌        Boolean variable 𝒙𝟎,𝒏ା𝟏𝒌 = 𝟏  If no orders assigned to truck 𝒌 𝒕𝒊,𝑳𝒌          Start time to load order 𝒊 on the truck 𝒌 𝒕𝒊,𝑼𝒌         Start time to unload order 𝒊 of truck 𝒌  𝒂𝒊,𝑳𝒌         Waiting time before loading order 𝒊 on truck 𝒌 𝒕𝟎,𝑳𝒌         Departure time of truck 𝒌 from 𝑫𝒌  𝒕𝒏ା𝟏,𝑼𝒌      Arriving time of truck k at 𝑨𝒌 
 
The MILP model of the SFTMDVRPTW problem is given as follows: 
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The objective function (1) maximizes the total profit, which is equal to total revenue from the selected orders (first term) 
minus the overall transportation cost of the routes. The transportation costs are composed of the cost of moving loaded 
trucks (second term), empty cost (third, fourth and fifth terms), and cost of waiting (sixth term). Constraints (2)-(5) ensure 
the feasibility of the time schedule; each truck route has to meet the time windows at all loading and unloading locations. 
Constraints (6) impose that the time of unloading has to be more than the summation of the loading time and the service 

time of the order. This also implies that the waiting time , ,
k k
i U i L it t t− −  of truck 𝒌 before unloading the order 𝒊 is a positive 

integer. Constraints (7) and (8) require that loading of the order 𝑶𝒊  on truck 𝒌 may not start before moving the truck to the 
start depot 𝑫𝒌. Constraints (9) and (10) stipulate that if 𝒙𝒊𝒋𝒌 = 𝟏, then ,, , ,

k k k
i jj L i U j Lt t t a= + + . This means that the loading 

of the order 𝒋 can’t start unless the order 𝒊 is serviced and the displacement has happened. Constraints (11) and (12) require 
that the vehicle can transport the demand if it is likely to reach the arriving depot before the latest time. Notice that the 
decision variables 𝒕𝒊,𝑳𝒌  and 𝒕𝒊,𝑼𝒌  increase along the route. Therefore, constraints (6) - (12) can also eliminate sub-tours among 
order points, are similar to the Miller–Tucker–Zemlin’s constraints (Desrochers and Laporte 1991) prohibit trucks from 
returning to order 𝑶𝒊 if already served on the same tour. Constraints (13) and (14) necessitate that each time a vehicle enters 
the pickup or the delivery location, only one exit to any other location (pickup, delivery or arriving locations) can be 
performed. Constraints (15)-(17) specify the routing constraints. Each vehicle could depart from one starting depot 
(constraint 15). Once a truck loads a merchandise, it must reach the unloading location in the next step (constraint 16). Each 
vehicle has to go to the arriving depot (constraint 17). Constraints (18) and (19) entail that no vehicle can return to its start 
depot, and the arriving depot is the last point of each truck route. Constraints (20) eliminate cycles at the orders. Constraints 
(21) states that either 𝑶𝒊  precedes 𝑶𝒋  or vice versa or orders i and j are not into the same tour. Constraints (22)-(25) declare 
the decision variables. 
 
5. Experimental tests 
 
This section introduces and discusses the computational findings of our mathematical model on newly generated test 
instances. First, we describe the new problem instances used to test our MILP model. Afterwards, we illustrate the 
computational findings in the example designed in section 2 and on the generated instances.  
 
5.1. Instances generation 
 
Since the SFTMDVRPTW is a new problem, there are no benchmark instances available to the authors’ knowledge. It is 
challenging to have access to authentic data related to the transportation sector. Therefore, we have generated some instances 
based on Solomon’s VRPTW benchmark datasets2 . The latter is divided into three instance categories: 𝑹 , 𝑪 , 𝑹𝑪 . Each 
instance comprises 100 points, in which the coordinates of each point are distributed over a [𝟎,𝟏𝟎𝟎]𝟐 square. Each category 
is defined according to how the points are located within the square (𝑹  for remote, 𝑪  for cluster and 𝑹𝑪  for a mix of 
remotely and clustered). To generate small and medium instances in analogy to real-life data, we have considered the first 
25 and 50 points of the classes 𝑪, 𝑹, and 𝑹𝑪. First, we generate the coordinates of all points. Thereafter, to generate a set 
of orders, we randomly decide whether a point is considered a loading or unloading point. To generate the departure and 
arrival points of trucks, we divide the [𝟎,𝟏𝟎𝟎]𝟐 square into four quarters. We randomly located the departure point in a 
quarter and the arrival point in another one so that the distance between them is greater than 60. The traveling distance and 
the traveling cost (loaded or empty) are calculated using the Euclidean distance. The unit cost of waiting is set to 𝒄𝒂 =𝟎.𝟒𝟐. The duration 𝒕𝒊 required for servicing the order 𝑶𝒊 is equal to the distance between the departure and the arrival 
locations of the order 𝒊 plus loading and unloading time of order 𝑶𝒊. The profit 𝒑𝒊 of each order  𝑶𝒊 is set to 𝒑𝒊 = 𝟔 × 𝒅𝒊. 
The width of each time window, denoted by 𝑾𝑻𝑾, ranges from 2 to 4h. The loading time window ൣ 𝑳𝒊𝒎𝒊𝒏, 𝑳𝒊𝒎𝒂𝒙൧ of each 
order 𝑶𝒊 is set as: 
  𝑳𝒊𝒎𝒊𝒏 = 𝐦𝐢𝐧𝒌ୀ𝟏,…,𝒎{𝒅(𝑫𝒌,𝑳𝒊)} + ቔቀ𝑨𝒌𝒎𝒂𝒙 − 𝐦𝐢𝐧𝒌ୀ𝟏,… ,𝒎{𝒅(𝑫𝒌,𝑳𝒊)} − 𝒕𝒊 − 𝐦𝐚𝐱𝒌ୀ𝟏,… ,𝒎{𝒅(𝑼𝒊,𝑨𝒌)}ቁ × 𝑼(𝟎,𝟏)ቕ          and  𝑳𝒊𝒎𝒂𝒙 = 𝑳𝒊𝒎𝒊𝒏 + 𝑾𝑻𝑾. The unloading time window ൣ𝑼𝒊𝒎𝒊𝒏, 𝑼𝒊𝒎𝒂𝒙൧ is set as 𝑼𝒊𝒎𝒊𝒏 = 𝑳𝒊𝒎𝒊𝒏 + 𝒕𝒊  and   𝑼𝒊𝒎𝒂𝒙 = 𝑼𝒊𝒎𝒊𝒏 +𝑾𝑻𝑾.  
 
Table 2 shows the main characteristics for each generated instance; it specifies the number of first points considered from 
the original instances of Solomon, number of orders, number of trucks, service time (loading/unloading time), earliest 
departure and latest arrival times permitted for each truck, and the 𝑾𝑻𝑾. 
 
 
 
 
 

 
2 website: http://web.cba.neu.edu/~msolomon/problems.htm 



K. EL Bouyahyiouy and A. Bellabdaoui / Decision Science Letters 10 (2021) 
 

479

Table 2 
Main characteristics of the generated instances 

Instance # of points # of orders # of trucks Service time 
(in minutes) 

𝑫𝒌𝒎𝒊𝒏 
(in minutes) 

𝑨𝒌𝒎𝒂𝒙 
(in minutes) 

WTW 
(in minutes) 𝑺𝑭𝑻𝑳𝟏/𝑪𝟐𝟓/𝟏𝟔/𝟐 25 16 2 40 0 720 240 𝑺𝑭𝑻𝑳𝟏/𝑪𝟓𝟎/𝟐𝟒/𝟑 50 24 3 40 0 720 240 𝑺𝑭𝑻𝑳𝟐/𝑪𝟐𝟓/𝟏𝟔/𝟐 25 16 2 40 0 720 240 𝑺𝑭𝑻𝑳𝟐/𝑪𝟓𝟎/𝟐𝟒/𝟑 50 24 3 40 0 720 240 𝑺𝑭𝑻𝑳𝟑/𝑪𝟐𝟓/𝟏𝟔/𝟐 25 16 2 40 0 720 240 𝑺𝑭𝑻𝑳𝟑/𝑪𝟓𝟎/𝟐𝟒/𝟑 50 24 3 40 0 720 240 𝑺𝑭𝑻𝑳𝟒/𝑪𝟐𝟓/𝟏𝟔/𝟐 25 16 2 30 0 600 180 𝑺𝑭𝑻𝑳𝟒/𝑪𝟓𝟎/𝟐𝟒/𝟑 50 24 3 30 0 600 180 𝑺𝑭𝑻𝑳𝟓/𝑪𝟐𝟓/𝟏𝟔/𝟐 25 16 2 30 0 600 180 𝑺𝑭𝑻𝑳𝟓/𝑪𝟓𝟎/𝟐𝟒/𝟑 50 24 3 30 0 600 180 𝑺𝑭𝑻𝑳𝟏/𝑹𝟐𝟓/𝟐𝟎/𝟐 25 20 2 10 0 480 120 𝑺𝑭𝑻𝑳𝟏/𝑹𝟓𝟎/𝟑𝟎/𝟑 50 30 3 10 0 480 120 𝑺𝑭𝑻𝑳𝟐/𝑹𝟐𝟓/𝟐𝟎/𝟐 25 20 2 10 0 480 120 𝑺𝑭𝑻𝑳𝟐/𝑹𝟓𝟎/𝟑𝟎/𝟑 50 30 3 10 0 480 120 𝑺𝑭𝑻𝑳𝟑/𝑹𝟐𝟓/𝟐𝟎/𝟐 25 20 2 20 0 720 180 𝑺𝑭𝑻𝑳𝟑/𝑹𝟓𝟎/𝟑𝟎/𝟑 50 30 3 20 0 720 180 𝑺𝑭𝑻𝑳𝟒/𝑹𝟐𝟓/𝟐𝟎/𝟐 25 20 2 20 0 720 180 𝑺𝑭𝑻𝑳𝟒/𝑹𝟓𝟎/𝟑𝟎/𝟑 50 30 3 20 0 720 180 𝑺𝑭𝑻𝑳𝟓/𝑹𝟐𝟓/𝟐𝟎/𝟐 25 20 2 20 0 720 180 𝑺𝑭𝑻𝑳𝟓/𝑹𝟓𝟎/𝟑𝟎/𝟑 50 30 3 20 0 720 180 𝑺𝑭𝑻𝑳𝟏/𝑹𝑪𝟐𝟓/𝟐𝟎/𝟐 25 20 2 10 0 480 120 𝑺𝑭𝑻𝑳𝟏/𝑹𝑪𝟓𝟎/𝟑𝟎/𝟑 50 30 3 10 0 480 120 𝑺𝑭𝑻𝑳𝟐/𝑹𝑪𝟐𝟓/𝟐𝟎/𝟐 25 20 2 10 0 480 120 𝑺𝑭𝑻𝑳𝟐/𝑹𝑪𝟓𝟎/𝟑𝟎/𝟑 50 30 3 10 0 480 120 𝑺𝑭𝑻𝑳𝟑/𝑹𝑪𝟐𝟓/𝟐𝟎/𝟐 25 20 2 20 0 720 180 𝑺𝑭𝑻𝑳𝟑/𝑹𝑪𝟓𝟎/𝟑𝟎/𝟑 50 30 3 20 0 720 180 𝑺𝑭𝑻𝑳𝟒/𝑹𝑪𝟐𝟓/𝟐𝟎/𝟐 25 20 2 20 0 720 180 𝑺𝑭𝑻𝑳𝟒/𝑹𝑪𝟓𝟎/𝟑𝟎/𝟑 50 30 3 20 0 720 180 𝑺𝑭𝑻𝑳𝟓/𝑹𝑪𝟐𝟓/𝟐𝟎/𝟐 25 20 2 20 0 720 180 𝑺𝑭𝑻𝑳𝟓/𝑹𝑪𝟓𝟎/𝟑𝟎/𝟑 50 30 3 20 0 720 180 

 
We set the format of each instance as follows: 𝑺𝑭𝑻𝑳𝒙/𝑺𝒐𝒖𝒓𝒄𝒆/𝒏/𝒎. Consider the instance 𝑺𝑭𝑻𝑳𝟏/𝑪𝟐𝟓/𝟏𝟔/𝟐 as an 
example. There are 16 orders and 2 trucks. The code 𝑪𝟐𝟓 means this instance is constructed by using only the 𝟐𝟓 first 
points of the original Solomon’s instance category 𝑪 , and the code 𝑺𝑭𝑻𝑳𝟏  is the instance’s number. Ten instances are 
generated within each type of instance category, while the number of orders ranges from 16 to 30 and the number of trucks 
ranges from two to three. These newly generated test instances can be downloaded via link3. 

5.2. Computational results  
 
The MILP model of Section 4 was implemented in the OPL and solved using IBM ILOG CPLEX 12.5. For each instance, 
we run the CPLEX with its default parameter settings until finding an optimal solution, or until exhausting the memory. All 
experiments were performed on a PC with Intel(R) Core(TM) i5 Processor (2.4 GHz) and 4 GB RAM operating the 
Windows 10 Professional with 64 bits. 
  
5.2.1. Result on the illustrative example 
 
The illustrative example presented in Fig. 1 is used to validate the proposed MILP. There are 22 points where the coordinates 
of each point are given in Table 3. The first 18 points are randomly taken from Solomon’s instance 𝑹𝟏𝟎𝟏 and randomly 
paired off to form nine orders. Loading points 𝑳𝒊 are represented by circles and unloading points 𝑼𝒊 by squares. The last 
four points represent the points of departure and arrival of the two trucks. Data of the two trucks, loading and unloading 
points and loading and unloading time windows of the nine orders are given in Table 4.  
 
Table 3 
Coordinates of points 

Point 1 2 3 4 5 6 7 8 9 10 11 
Coordinates (𝟒𝟏,𝟒𝟗) (𝟏𝟎,𝟒𝟑) (𝟓𝟓,𝟔𝟎) (𝟑𝟎,𝟓) (𝟏𝟎,𝟐𝟎) (𝟏𝟓,𝟔𝟎)  (𝟒𝟓,𝟔𝟓) (𝟒𝟏,𝟑𝟕 (𝟒𝟎,𝟔𝟎) (𝟑𝟓,𝟔𝟗) (𝟔𝟑,𝟔𝟓) 

Point 12 13 14 15 16 17 18 19 20 21 22 
Coordinates (𝟐𝟎,𝟐𝟎) (𝟔𝟎,𝟏𝟐) (𝟒𝟐,𝟕) (𝟔𝟕,𝟓) (𝟑𝟕,𝟒𝟕) (𝟓𝟑,𝟒𝟑) (𝟔𝟏,𝟓𝟐) (𝟓𝟏,𝟓𝟖) (𝟐𝟎,𝟒𝟎) (𝟓𝟎,𝟐𝟑) (𝟏𝟎,𝟔𝟎) 

 
3 (https://drive.google.com/file/d/1SR5Jk3G4hwwlpe-SCeZwetKmF0558PnJ/view?usp=sharing) 

 



  480

Table 4 
Pickup and delivery points, time windows of the orders (WTW=60 minutes), departure and arrival points, earliest departure 
and latest arrival times of the two trucks 

Order 𝑶𝒊 1 2 3 4 5 6 7 8 9 Truck 1 Truck 2 𝑳𝒊 7 2 14 3 5 9 13 17 16 - - 𝑼𝒊 11 10 8 15 4 12 1 18 6 - - 𝑳𝒎𝒊𝒏𝒊  60 50 250 115 180 100 215 150 340 - - 𝑳𝒎𝒂𝒙𝒊  120 110 310 175 240 160 275 210 400 - - 𝑼𝒎𝒊𝒏𝒊  98 106 300 191 225 165 277 182 386 - - 𝑼𝒎𝒂𝒙𝒊  158 166 360 251 285 225 337 242 446 - - 𝑫𝒌 - - - - - - - - - 19 20 𝑨𝒌 - - - - - - - - - 22 21 𝑫𝒌𝒎𝒊𝒏 - - - - - - - - - 0 0 𝑨𝒌𝒎𝒂𝒙 - - - - - - - - - 480 480 

The results obtained with the solver CPLEX on the illustrative example are shown in Fig. 2 and in Table 5. The truck 1 
served the transportation demands 1,4, 7 and 9 respectively. Truck 2 has transported the orders 2, 6, 5 and 3; the order 8 is 
unselected. The realized profit is raised to 1359.96 and the total computation time is 1.62 seconds. 

 

 
Fig. 2. Result on the illustrative example of SFTMDVRPTWP  

Table 5 
Result on the illustrative example 

5.2.2. Results and discussion for the generated instances 
 
Table 6 summarizes the results performed on the 30 generated instances. Column one presents the instances’ name. The 
second, third and fourth ones indicate respectively the binary number, continuous variables and constraints for each instance. 
The fifth and sixth columns are the upper bounds (𝑼𝑩𝑴𝑰𝑳𝑷 ) and the best integer solutions (𝑳𝑩𝑴𝑰𝑳𝑷 ) obtained by CPLEX, 
respectively. The seventh column represents the gap between 𝑼𝑩𝑴𝑰𝑳𝑷  and 𝑳𝑩𝑴𝑰𝑳𝑷 provided by CPLEX. The eighth column 
is the CPU-times of CPLEX. The ninth column is the number of nodes explored in the search tree. The tenth column shows 

 
Route 

 
Time of 

departure 

 
Time of 
arrival 

Time duration   
Cost 

 
Revenue 

 

 
Profit 

per route 
Travel Waiting 

Loaded Empty Loaded Empty Waiting 𝒗𝟏: 𝑫𝟏-𝑶𝟏-𝑶𝟒-𝑶𝟕-𝑶𝟗-𝑨𝟏 111 407 238 46 12 158 46 5.04 948 738.96 𝒗𝟐: 𝑫𝟐-𝑶𝟐-𝑶𝟔-𝑶𝟓-𝑶𝟑-𝑨𝟐 42 317 216 59 0 136 59 0 816 621 
Total - - 454 105 12 294 105 5.04 1764 1359.96 
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the number of orders not selected in the optimal solutions found by CPLEX. As observed in Table 6, the gap between 𝑼𝑩𝑴𝑰𝑳𝑷  and 𝑳𝑩𝑴𝑰𝑳𝑷  for all instances, except 𝑺𝑭𝑻𝑳𝟏/𝑹𝟓𝟎/𝟑𝟎/𝟑 instance, equals zero. This means that the MILP model 
found optimal solutions. For the 𝑺𝑭𝑻𝑳𝟏/𝑹𝟓𝟎/𝟑𝟎/𝟑 instance, the gap equals 5.58 percent. The average running time of 
CPLEX for all instances is about 330 seconds. Most of the instances (23 out of 30) can be solved in less than 3 minutes. 
Fig. 3 illustrates a comparison between CPU time and the number of unselected orders in the optimal solution from CPLEX 
for test instances. For the 𝑭𝑻𝑳 instances of class 𝑪, when 𝑾𝑻𝑾 = 𝟐𝟒𝟎 and 𝑨𝒌𝒎𝒂𝒙 = 𝟕𝟐𝟎, for 𝒏 = 𝟏𝟔 and 𝒎 = 𝟐, CPU 
times to solve the instances 𝑺𝑭𝑻𝑳𝟏 − 𝟑/𝑪𝟐𝟓/𝟏𝟔/𝟐 are nearly the same, which doesn’t exceed 6 seconds. Also, the exact 
number of unselected orders, which is 2, is recorded as found by the optimal solution. The same can be said when  
 
Table 6 
Computational results for 30 generated instances 

* indicate optimal solution 
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Fig. 3. Computation time vs. Number of unselected orders in the optimal solution from CPLEX for test instances 𝒏 = 𝟐𝟒 and 𝒎 = 𝟑 (𝑺𝑭𝑻𝑳𝟏 − 𝟑/𝑪𝟓𝟎/𝟐𝟒/𝟑) with a slight difference in CPU time that doesn’t exceed 67 seconds, and 
the number of unselected orders is the same, that is 3. When 𝑾𝑻𝑾 = 𝟏𝟖𝟎  and 𝑨𝒌𝒎𝒂𝒙 = 𝟔𝟎𝟎, for 𝒏 = 𝟏𝟔 and 𝒎 = 𝟐, 
following the same pattern, the CPU times for the instances 𝑺𝑭𝑻𝑳𝟒 − 𝟓/𝑪𝟐𝟓/𝟏𝟔/𝟐 are approximately the same and the 
number of unselected orders in the optimal solution is the same. For 𝒏 = 𝟐𝟒 and 𝒎 = 𝟑 (𝑺𝑭𝑻𝑳𝟒 − 𝟓/𝑪𝟓𝟎/𝟐𝟒/𝟑), the 
CPU grows from 4.72 seconds, when the number of unselected orders is 1, to 717.92 seconds when the number of unselected 
orders is 5. This is explained by the fact that when the route duration of trucks is decreased, the number of unserved orders 
increases and subsequently, the CPU time increases. 
 
For the 𝑭𝑻𝑳 instances of class 𝑹, when 𝑾𝑻𝑾 = 𝟏𝟐𝟎 and 𝑨𝒌𝒎𝒂𝒙 = 𝟒𝟖𝟎, for 𝒏 = 𝟐𝟎 and 𝒎 = 𝟐; we have two different 
instances, the model solves the instance 𝑺𝑭𝑻𝑳𝟐/𝑹𝟐𝟓/𝟐𝟎/𝟐 in a fast CPU time that is 2.05 seconds, in which all orders are 
selected. As to the instance 𝑺𝑭𝑻𝑳𝟏/𝑹𝟐𝟓/𝟐𝟎/𝟐, there are two unselected orders and the CPU rises to 54 seconds. For 𝒏 =𝟑𝟎 and 𝒎 = 𝟑, the  𝑺𝑭𝑻𝑳𝟏/𝑹𝟓𝟎/𝟑𝟎/𝟑 instance isn’t solved optimally in which the number of unselected orders in the 𝑳𝑩𝑴𝑰𝑳𝑷 is 4 and the CPU is nearly 275 minutes. In contrast, the instance 𝑺𝑭𝑻𝑳𝟐/𝑹𝟓𝟎/𝟑𝟎/𝟑 is solved optimally by CPLEX 
in lot less CPU time and all orders are selected; it’s a matter of bound. That is, in the first iterations, CPLEX finds the best 
bound. Maybe other parameters impact the quality of the solution and the CPU time. When 𝑾𝑻𝑾 = 𝟏𝟖𝟎 and 𝑨𝒌𝒎𝒂𝒙 =𝟕𝟐𝟎, for 𝒏 = 𝟐𝟎 and 𝒎 = 𝟐 (𝑺𝑭𝑻𝑳𝟑 − 𝟓/𝑹𝟐𝟓/𝟐𝟎/𝟐). The CPU time and the number of unselected orders are the same 
in all instances, where the first doesn’t exceed 4 seconds and the latter is 1. For 𝒏 = 𝟑𝟎 and 𝒎 = 𝟑, even though the number 
of unselected orders is 1 for 𝑺𝑭𝑻𝑳𝟑/𝑹𝟓𝟎/𝟑𝟎/𝟑 and 𝑺𝑭𝑻𝑳𝟒/𝑹𝟓𝟎/𝟑𝟎/𝟑, CPU time explodes to some extent, perhaps the 
FTL instances of class R are the most difficult, especially that the CPU time of the instance 𝑺𝑭𝑻𝑳𝟓/𝑹𝟓𝟎/𝟑𝟎/𝟑 is nearly 
162 minutes. 
 
For the 𝑭𝑻𝑳  instances of the class 𝑹𝑪 , when 𝑾𝑻𝑾 = 𝟏𝟐𝟎  and 𝑨𝒌𝒎𝒂𝒙 = 𝟒𝟖𝟎 , for 𝒏 = 𝟐𝟎  and 𝒎 = 𝟐  (𝑺𝑭𝑻𝑳𝟏 −
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483𝟐/𝑹𝑪𝟐𝟓/𝟐𝟎/𝟐), the CPU time in the instances is close and doesn’t surpass 2 seconds, and the number of unselected orders 
is between 0 and 1. The CPU in this case is the same in the two classes 𝑪 and 𝑹 with the slightest difference depending on 
the number of unselected orders. For 𝒏 = 𝟑𝟎 and 𝒎 = 𝟑 (𝑺𝑭𝑻𝑳𝟏 − 𝟐/𝑹𝑪𝟓𝟎/𝟑𝟎/𝟑), we have two instances, the CPU 
and the number of unselected orders are doubled from 66.97 seconds to 110.9 seconds and from 2 to 4, respectively. Class 𝑹 is more challenging to solve than class 𝑹𝑪; when the number of unselected orders is 4, the class 𝑹 isn’t solved optimally, 
and the class 𝑹𝑪 is solved optimally with a small CPU time (110.9 seconds). When 𝑾𝑻𝑾 = 𝟏𝟖𝟎 and 𝑨𝒌𝒎𝒂𝒙 = 𝟕𝟐𝟎, and 
when 𝒏 = 𝟐𝟎 and 𝒎 = 𝟐 (𝑺𝑭𝑻𝑳𝟑 − 𝟓/𝑹𝑪𝟐𝟓/𝟐𝟎/𝟐), the CPU time of the instances ranges from 3 seconds to 12 seconds, 
depending on the number of unselected orders. The CPU time increases as the number of unselected orders increases. When 𝒏 = 𝟑𝟎 and 𝒎 = 𝟑 (𝑺𝑭𝑻𝑳𝟑 − 𝟓/𝑹𝑪𝟓𝟎/𝟑𝟎/𝟑 ), it is noted that though the instances have the exact same numbers of 
unselected orders, there is a big difference between them concerning the CPU time, which is due to the complexity of RC. 
We observe that in case of 4 unselected orders, the CPU time in the class 𝑹𝑪 doesn’t surpass 2289 seconds, whereas in the 
class 𝑹, the CPU is nearly 2h42 mins. Therefore, the class 𝑹 is more difficult to solve than the class 𝑹𝑪. 
 
As expected, From Table 6 and Fig. 3, we notice that the CPU time goes up substantially with the increase of the number 
of orders, 𝑾𝑻𝑾, and especially the number of unselected orders in the optimal solution found by CPLEX. In all instances, 
when le the number of unselected orders increases, the trucks can’t select some orders, so the CPU time certainly will 
increase. The selective aspect may be due to the following factors: the instance size, the geographic coordinates of the 
orders’ pickup and delivery points, the geographical location of depots (see Fig. 4, Fig. 5 and Fig. 6), the loading and 
unloading TWs of demands and the time intervals ൣ𝑫𝒌𝒎𝒊𝒏, 𝑨𝒌𝒎𝒂𝒙 ൧ during which the trucks are available. The results also 
confirm that 𝑺𝑭𝑻𝑳 instances of the class 𝑹 are the hardest to solve while class 𝑪 instances are the easiest. In general, our 
proposed MILP model performs very well in terms of both solution quality and CPU time. 
 

 
Fig. 4. Result for instance 𝑺𝑭𝑻𝑳𝟓/𝑪𝟓𝟎/𝟐𝟒/𝟑 Fig. 5. Result for instance 𝑺𝑭𝑻𝑳𝟓/𝑹𝟓𝟎/𝟑𝟎/𝟑 

 
Fig. 6. Result for instance 𝑺𝑭𝑻𝑳𝟓/𝑹𝑪𝟓𝟎/𝟑𝟎/𝟑 

 
6. Conclusion  
 
In this study, we have focused on an important vehicle routing planning, particularly an order selection and routing problem 
with full truckload, multiple depots and time windows (SFTMDVRPTW) in the context of an empty return scenario. We 
have proposed a mathematical formulation of the problem as a MILP model. The objective function is to maximize the total 
profit, which equals the total revenue from the selected orders minus the overall cost (cost of moving loaded trucks, cost of 
moving empty trucks, and cost of waiting). CPLEX 12.5 has been used to solve newly generated instances of up to 30 orders 
and 3 trucks. The results presented in this study are encouraging and demonstrate that the proposed MILP model provides 
plausible solutions; save for one instance, all other instances have been solved to optimality within an acceptable computing 
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time. We remark that the proposed model is strongly impacted by the selective aspect as well as the time window width of 
orders and depots. Avenues for future study are numerous. Firstly, it might be useful to study the sensitivity of the results 
when using a heterogeneous fleet of trucks or changing the model’s input data to investigate the effect of these changes in 
the solution quality and CPU time. We also aim to improve this work by taking into account the provisions of the Labour 
Code, including driving times and rest periods. Our future research projects will study various facets of the SFTMDVRPTW, 
namely multi-objective SFTMDVRPTW. Secondly, since the problem is NP-hard, CPLEX is not able to solve relatively 
large instances. Therefore, we will develop an efficient meta-heuristic algorithm to solve the largest instances, focusing on 
the hybridization of genetic algorithm, ant colony optimization and tabu search.  
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