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 School bus routing problem is widely studied, however, social elements such as the interaction 
between children traveling on the same route have not been considered so far. In this way, this 
article has as its main objective to propose a methodology to solve the school bus routing 
problem, including affinity as a strategy to increase positive interrelationships between children, 
and with this, support in bullying situations during school trips. The methodology includes two 
stages, assigning children to vehicles considering affinities and defining vehicle routes. The main 
contribution is the consideration of affinity in the process of forming the groups of children that 
will be taken on the bus, evidencing a balance in the affinity of the groups. Additionally, from 
the methodological point of view, the integration of a modified group technology algorithm and 
a new assignment model are proposed that simplify the classic quadratic assignment problem. 
Consideration of affinity in school bus routing generates benefits from a social point of view. 
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1. Introduction 
 

The school bus routing has its own set of elements in addition to its complexity as an extension of the problem of vehicle 
routing that makes it especially unique; this includes the transport of children who socially interact inside the bus and at the 
bus stops. These interactions are recognized as important to the educational process of the child; however, they present 
some difficulties, for example, when some of the children are insensitive to the suffering of their classmates and bullying 
arises. Studies show that bullying goes beyond the limits of schools and extends to environments such as school buses 
(Galliger et al., 2009), yet these environments have received little attention so far (Goodboy et al., 2016). Bullying and  
school violence include psychological, physical and sexual violence, carried out mainly by classmates at school or college 
(UNESCO, 2018). Bullying has a significant impact on mental health, quality of life, and risk behaviors (UNESCO, 2019). 
In Colombia in 2012 (Jiménez, 2018), it was reported that 40 out of 100 students dropped out of school; apparently, the 
main cause was related to the abuse they received from their classmates. Faced with this problem, there are different studies 
that analyze the efforts of intervention and prevention of bullying in schools (Goodboy et al., 2016). However, although 
there is evidence for the negative consequences of school bullying, there is no consensus on the most effective strategies to 
combat this problem (Gutierrez & Ñopo, 2018). Specifically, in school bus bullying (Raskauskas, 2005), it was found that 
an average of two bullying incidents occurred per bus trip. Given the problems that arise in the school bus and at bus stops, 
it is necessary to consider strategies that contribute to the prevention of bullying in these environments since conflicts on 
buses affect not only the environment in general but also the driver’s concentration (Goldman & Peleg, 2010). In the 
development of bullying prevention strategies, the consideration of the behavior of students who witness these behaviors is 
key to reducing incidents since these students can intervene by defending or consoling those who are bullied (White, 2019). 
In (Craig & Pepler, 2007), it is mentioned that interventions to counteract bullying focus, among other aspects, on supporting 
positive interactions between children and that these should be extended to areas outside the classroom.  
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In the present research, in light of what was indicated in (Long et al., 2015), it is proposed to maximize the affinity between 
students traveling on the same route to strengthen and stimulate positive interactions and thereby reduce the risk of bullying 
in the school transportation environment. 
 
Initially, the school bus routing problem, the concepts of grouping children for school bus routing, and the consideration of 
the affinity of children in their bus assignment are presented within the frame of reference. Subsequently, the methodology, 
results, discussion, and conclusions are presented. 
 
2. Frame of reference 
 

2.1. The school bus routing problem 
 
The school bus routing problem (SBRP) seeks to transport a number of children i living in different points in a city to their 
school (Sarubbi et al., 2016) (Fig. 1). For this task, k vehicles pick up children from their homes or assigned stops and take 
them to school (Unsal et al., 2016). 
 

 
Fig. 1. General representation of the school bus routing problem 

 
There are different approaches to solving the vehicle routing problem. One of the commonly used approaches, given the 
complexity of these problems, is the hierarchical approach (Comert et al., 2018), in which the most complex problem is 
decomposed into less complex subproblems that can be solved by different techniques. There are two general strategies in 
this approach, assign first - route later (Miranda-Bront et al., 2017) and route first - assign later (Emilia & Emilia, 1983). 
The first is widely used by the authors (Duque Correa & Baldoquín de la Peña, 2018) and is used in this study because it is 
intended to explore affinity, which is defined in the first phase of assignment. Initially, children to be transported are 
assigned to each vehicle, and then the pickup route to school is defined. The two subproblems are presented in Fig. 2. 
 

 
Fig. 2. Subproblems of the school bus routing problem 

 
Generally, the assignments of children to buses are based on a shorter trip or lower cost; however, this research seeks to 
maximize the affinity between the children who ride the same bus. 
 
According to what is stated in (Ellegood et al., 2019), research in the subject of SBRP should focus on the development of 
models that incorporate social and cultural factors. In this sense, this article seeks to contribute to this field of work, 
including the affinity between children as a social dimension in the SBRP, which in turn contributes as reinforcement 
mechanisms for positive relationships, a key factor in bullying prevention. 
 
Additionally, note that affinity between people has been studied in the literature as a social strategy to improve performance 
and well-being in the process of forming work teams, especially in research related to room scheduling in hospitals 
(Meskens et al., 2013), in the definition of air routes where crew preferences or constraints are established (Kohl & Karisch, 
2004), and in defining crew rostering in service companies (Lin et al., 2012). However, thus far, no studies have considered 
the affinity between children in the SBRP, which is the main contribution of the present investigation. 
 
 

Subproblem 1

•Grouping children
•Assigning children to buses

Subproblema 2

•Definition of routes
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2.2. Grouping and affinity in the school bus routing 
 
As proposed in (Long et al., 2015), the grouping of children for school bus routing should consider social grouping, in 
which the individuals linked in the process share some attributes; in other words, there is affinity between the children. This 
aspect becomes relevant when assigning children to a bus or a transportation route for school since it ensures the 
reinforcement of positive relationships between children and aims for greater satisfaction in the trip (Fig. 3). 
 
Social grouping can arise from a combination of processes that includes homophily, that is, the tendency of people to choose 
individuals who have similar traits as friends. Secondary homophily, which refers to a different measurable shared trait, can 
also be used (Long et al., 2015). This article mainly considers homophily, where it is expected that children prefer to travel 
with their friends. 
 

 
Fig. 3. Proposed conceptual model of life satisfaction. (Waygood et al., 2019) 

 
Some studies that consider the affinity between people in forming teams, such as (Meskens et al., 2013), where affinity is 
used to form efficient surgical teams by establishing an affinity matrix between surgeons, anesthetists, and nurses who all 
indicated who they preferred to work with as well as any existing incompatibilities between them, have been identified. 
Likewise, in (Lin et al., 2012), linear programming of a mathematical model of objectives for the assignment of personnel 
in a customer service section, which includes a compatibility function between workers that is measured according to 
Saaty’s scale proposed in (Saaty, 1987), was developed. 
 
Additionally, the scheduling problem of personnel in transportation has been identified, known as the crew scheduling 
problem (Kumar et al., 2010). This generally includes the consideration of two subproblems: the first corresponds to the 
pairing of the crew and the second is related to the assignment of the crew (Kasirzadeh et al., 2017), where tasks are assigned 
to the crew members according to their preferences or at least guaranteeing an equitable distribution of the perceived 
prejudices, aiming for job satisfaction (Kumar et al., 2010). 
 
With regard to the vehicle routing problem, some authors have considered user preferences in shared transport systems. In 
(Aiko et al., 2018), a vehicle routing optimization model was developed that considers the preferences of the users who will 
share the transport; for this, the authors used mixed integer quadratic programming and pointed out that the personal 
preference of a user in relation to their other travel companions represents an important factor in shared travel systems. 
Additionally, (Thaithatkul et al., 2015) developed a coincidence model in shared travel systems, where personal preference 
is included as the user preference for passenger’s personalities. They established the problem of steadiness of user 
personality and modified it with the problem of correspondence between passengers. On the other hand, among the most 
common methods for forming clusters in the vehicle routing problem is the Clarke and Wright savings method, which seeks 
to minimize the distance traveled to satisfy demand (Clarke & Wright, 1964). There is also the sweep line algorithm, which 
generates clusters by rotating a ray with the origin at the depot, sweeping the customers within reach and incorporating 
them into the group until the vehicle capacity is reached (Gillett & Miller, 1974a)(Quintero Quintero, 2012). Another 
grouping technique is the propagation of the coefficient, in which the way in which customers join the cluster is defined by 
the association of depot attraction coefficients and customers already assigned (Giosa et al., 2017). Additionally, with the 
p-median method, the centers of the clusters can be chosen in a way that minimizes the sum of the Euclidean distances of 
the objects assigned to each center (Brusco, M.J., Köhn, 2008). Likewise, the k-means clustering algorithm separates n 
objects into k groups, minimizing the sum of the distances between the assigned objects and the center of their group 
(MacQueen & Others, 1967). 
 
3. Materials and methods 

 
The methodology has two phases (Fig. 4). In the first, the children are assigned to the vehicles. Once the groups of children 
who will travel in each vehicle are obtained, the second phase is developed, defining the route of each vehicle. Considering 
each of the groups formed in the phase above, a traveling salesman problem (TSP) model is used for each vehicle. Finally, 
the model is validated through a case study. 
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Fig. 4. Phases of the proposed methodology for the school bus routing considered 

 
3.1. Phase 1. Assignment of children to vehicles 

 
3.1.1. Definition of the affinity between children 
 
It is considered that child i has an affinity with classmate j, where i = 1, 2, 3... N and N is the total number of children. The 
affinity can be represented as the minimum (aij, aji) as proposed in (Lin et al., 2012). In this case, the scale proposed by 
Saaty is considered (Saaty, 1987), adjusted as in Table 1, where 1 represents low affinity and 9 represents extreme affinity. 
 
Table 1.  
Assessment scale for the degree of affinity that a child has with a classmate 

Intensity of affinity Definition 
1 Low affinity 
3 Moderate affinity 
5 Strong affinity 
7 Very strong affinity 
9 Extreme affinity 

 Adapted from (Lin et al., 2012) 
 
To determine the general affinity matrix, Aij denotes the quadratic matrix resulting from comparing affinity aij with aji. In 
the case in which these affinities are not symmetrical, the lowest affinity between the two is selected, as proposed in 
(Meskens et al., 2013). 
 
3.1.2. Assignment of children to school buses 
 
The affinity between two children must be calculated when the two children are in the same vehicle. In this sense, the 
traditional representation of this problem is posed as a quadratic assignment problem (QAP), in which the binary variable 
Yik is used to define whether child i is assigned to vehicle k, and the affinity between child i and child j would be determined 
in the model as Yik * Yjk * Aij, such that only when both binaries are worth one is the value of the affinity determined. 
 
QAP models are complex (Zhou et al., 2017), and the nonlinearity between their variables means that they can be used only 
to solve small instances common in floor distribution problems. However, in an affinity problem associated with the SBRP, 
as is the case in this research, the number of children in a school can be approximately 400, and between 30% and 40% use 
school transportation. This generates a significant number of children for the affinity problem, exceeding the response times 
of the QAP models. 
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In this sense, a mathematical model is proposed for the assignment that measures the affinity with a linear performance 
function, and a preassignment algorithm is added to reduce the complexity and computational time. Two stages are 
developed to address the assignment process, where a percentage of children with greater affinity are assigned using a group 
technology (GT) algorithm and the percentage of remaining children are assigned with the proposed linear mathematical 
optimization model, which simplifies the quadratic assignment process, representing the methodological contribution in this 
research. 
 
3.1.3. Assignment using the group technology algorithm 
 
An algorithm based on GT is proposed (Kalpakjian & Steven, 2008) for grouping children who have similar characteristics, 
that is, based on the affinity matrix of the children. Fig. 5 shows the proposed algorithm, which is based on the GT algorithm 
presented in (Sule, 2001). 
 
Initially, n is defined as the number of children; c as the vehicle capacity; g as the number of groups; α as the threshold of 
acceptance of a child in the group; Aij as the affinity matrix of children i,j; VAw as the affinity vector of the ranked pairs of 
children i,j, where w is the index of the pairs ranked from highest to lowest affinity; P as the percentage of children to be 
assigned with the GT algorithm, where the remaining percentage is 1-P, which is assigned with a mathematical model to 
obtain better performance measures; Q as the percentage of the vehicle capacity to be assigned by the algorithm; na as the 
list of children to be assigned with the algorithm; v as the number of vehicles; and ng as the number of children in the group. 
The affinity or relationship r of an unassigned child is calculated in Eq. (1): 
 𝑟 ൌ ∑ 𝐴,୧ୀଵ𝑛𝑔  , 𝑒 ൌ 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑐ℎ𝑖𝑙𝑑 

(1) 

 

 
Fig. 5. Algorithm based on group technology for the assignment of children to buses 
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3.1.4. Proposed optimization model for the assignment of children 
 
The mathematical model seeks to maximize affinity by assigning the remaining children, and the children already assigned 
enter as parameters and are imposed as constraints by a script. Next, the mathematical formulation of the model is presented. 
 
Sets 
i, j  =  children who need to be transported to school 
 
Parameters 
Aij  =  Matrix of the existing relationships between child i and child j 
Cap  =  Vehicle capacity 
 
Variables 
Xij  =  Binary variable that determines if child i is assigned to child j 
 
Objective function 𝑨: 𝟐𝑿𝒊𝒋𝑨𝒊𝒋𝒋,𝒋வ𝒊𝒊  (2) 

Constraints  𝑥 +  𝑥௦ ≤ 𝑐𝑎𝑝 − 1௦ఢூ,௦வ  ఌூ,வ ∀𝑗 𝜖 𝐼 (3) 

 𝑥 + 𝑥 ≤ 1 + 𝑥 ∀ 𝑖 𝜖 𝐼, 𝑗 𝜖 𝐼,𝑘 𝜖 𝐼, 𝑗 > 𝑖, 𝑗 > 𝑘, 𝑘 > 𝑖  (4) 𝑥 + 𝑥 ≤ 1 + 𝑥 ∀ 𝑖 𝜖 𝐼, 𝑗 𝜖 𝐼,𝑘 𝜖 𝐼, 𝑗 > 𝑖, 𝑗 > 𝑘, 𝑘 > 𝑖  (5) 𝑥 + 𝑥 ≤ 1 + 𝑥 ∀ 𝑖 𝜖 𝐼, 𝑗 𝜖 𝐼,𝑘 𝜖 𝐼, 𝑗 > 𝑖, 𝑗 > 𝑘, 𝑘 > 𝑖 (6) 𝑥 + 𝑥 ≤ 1 + 𝑥 ∀ 𝑖 𝜖 𝐼, 𝑗 𝜖 𝐼,𝑘 𝜖 𝐼, 𝑗 > 𝑖, 𝑗 > 𝑘, 𝑘 > 𝑖 (7) 
   𝑥 +  𝑥௦ ≥ 1௦ఢூ,௦ழ  ఌூ,வ ∀𝑖 𝜖 𝐼 (8) 

 
The objective function is presented in Eq. (2), in which the affinity of children is maximized. Constraint (3) guarantees that 
the number of children who were assigned to the same group does not exceed the capacity of the vehicle. Constraints (4), 
(5), (6), and (7) guarantee that there is an arc of transitive connection between the children. Constraint (8) allows all children 
to be assigned to at least one other child. 
 
3.2.  Phase 2. Vehicle routing 

 
To determine the best route for each bus k, the generalized mathematical model for the TSP solution for each group of 
children, which is proposed in (Miller et al., 1960), is used. In this model, for each vehicle, the distance between the routes 
from stop i to stop j is minimized, ensuring that all stops are visited without sub-tours. 
 
4. Results 

 
To validate the proposed methodology, a case study is conducted in the city of Cali, in which there are 170 children who 
must be transported to school, for which there are 12 vehicles (buses) with a 15-seat capacity each. 
 
4.1. Phase 1. Assignment of children to vehicles 

 
4.1.1. Definition of the affinity between children 

 
The children evaluate their affinity with each of their classmates on a scale of 1-9. For each pair of children, the two affinities 
are obtained, and from them, the lowest is taken. The scores are consolidated, and a symmetric 170 x 170 quadratic matrix 
of affinities is obtained. 
 
4.1.2. Assignment of children to school buses 

 
4.1.2.1. Assignment using the group technology algorithm 
 

Table 2 shows the assignments using the GT algorithm, which are obtained with 90% of the total children to be assigned 
and where the number of children assigned in a vehicle should not exceed 70% of vehicle capacity to ensure balanced 
vehicle assignments. 
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Table 2 
Assignment of children to vehicles by the group technology algorithm 

Vehicle Children Number of 
children assigned 

1 1 4 33 53 68 77 93 148 140 147 23 11 
2 2 29 50 58 113 127 129 158 159 110 122 11 
3 3 13 44 99 115 119 130 32 41 51 57 11 
4 5 7 38 49 70 79 88 96 104 42 109 11 
5 6 8 22 25 143 11 12 34 52 80 123 11 
6 9 15 28 39 120 142 21 64 73 98 145 11 
7 10 20 27 40 78 112 117 121 126 137 157 11 
8 14 24 46 62 65 81 84 86 105 111 136 11 
9 16 45 59 85 92 95 100 164 30 61 106 11 
10 17 66 94 102 133 155 48 55 161 75 83 11 
11 18 67 131 134 146 149 156 160 37 90 124 11 
12 19 31 36 87 118 135 139 26 125 169 47 11 

Total 132 
 
4.1.2.2. Proposed optimization model for the assignment of children 
 
After assigning some of the children, the remaining children are assigned with the mathematical model, where those that 
are already assigned are a parameter, imposing constraints with the groups already created, yielding the results shown in 
Table 3. 
 
Table 3  
Assignment of children to vehicles with the mathematical model 

Vehicle 1 2 3 4 5 6 7 8 9 10 11 12 

Children 

56 74 82 71 35 76 72 108 43 
  

54 
132 151 101 89 60 128 138 116 153 

  
63 

141 
 

107 114 91 144 150 162 163 
  

69 
170 

 
168 154 103 152 165 166 167 

  
97 

Number of children assigned 4 2 4 4 4 4 4 4 4 0 0 4 
Total children 38 

 
The mathematical model assigns the remaining 38 children, grouping the children according to the affinity and the remaining 
vehicle capacity. The results obtained are presented in Table 4. A total of 12 groups are generated since there are 12 vehicles, 
with a maximum occupancy of 15 children per bus and a minimum of 11 children per bus. The lowest affinity is 664, 
corresponding to a small group, and the highest is 1452, corresponding to a large group of 15 children. The total affinity of 
this assignment is 14770, and the average affinity of the groups is 6, demonstrating balanced affinities in the groups. 

 
Table 4 
Results of the final assignment of children 

 
Vehicle 1 2 3 4 5 6 7 8 9 10 11 12  

Total 
Vehicle 
Affinity 1428 1042 1342 1404 1408 1344 1452 1354 1272 664 694 1366 14770 

Number 
of 

children 
assigned 

15 13 15 15 15 15 15 15 15 11 11 15 170 

Average 
affinity 6 6 6 6 6 6 6 6 6 5 6 6 6 

 
Fig. 6 shows the spatial point distribution of the location of the children, and the arrows indicate the children who were 
assigned to each group and/or vehicles. 
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Fig. 6. Assignment of the children to groups 

 
4.2. Phase 2. Vehicle routing 
 

The resulting TSPs are modeled and resolved in a script implemented in Java using the ILOG CPLEX library, and the results 
obtained are presented in Table 5. The routes are shown in Fig. 7. There are 12 routes, including the school; in this case, 
this school is the point of departure and arrival for each of the vehicles. 
 
Table 5  
Distances traveled by each vehicle 

Vehicle 1 2 3 4 5 6 
 

Distance traveled (m) 38781.33 29394.28 28690.13 20731.71 19460.99 36998.11 
Vehicle 7 8 9 10 11 12 Total 

Distance traveled (m) 29704.33 21133.7 20733.82 19998.17 35152.07 22823.85 323603.5 
 
 
 

 
Fig. 7. Vehicle routing 
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Regarding the computational times obtained with the developed proposal (see Table 6), the clustering algorithm yields 
minimal time variability, while the exact model presents more variability, given that 10 of the 12 scenarios take less than 
133 s and two exceed 4500 s when the % of children to be assigned to each group is 70%. The average model routing time 
is higher when the % of children to be assigned using the GT algorithm is 95% and the % of children to be assigned to each 
group is 95%, equivalent to 221.92 s on average. 
 
Table 6  
Computational times  

Computational times in seconds 

% Children assigned by 
the GT algorithm 95% 90% 

% Of children to be 
assigned to each group 

95% 90% 85% 80% 75% 70% 95% 90% 85% 80% 75% 70% 

Clustering algorithm 0.09 0.09 0.11 0.10 0.10 0.10 0.10 0.10 0.09 0.11 0.11 0.11 
Exact model 4.50 5.02 89.31 104.53 81.81 4698.33 133.80 63.11 84.30 98.89 83.36 4635.88 

Average routing time 221.92 46.15 10.93 21.73 84.23 2.03 25.88 21.81 10.52 20.96 84.71 1.88 
 
 
5. Analysis of the results 
 
5.1. Variation in assignment percentages 

 
To assess the impact of the assignment percentage of the GT algorithm on the results of the mathematical model, different 
scenarios are created by modifying the percentages of assignment by the GT algorithm and the percentage of the vehicle 
capacity to be assigned by the algorithm. It was found that for 90% of the total children to be assigned by the GT algorithm 
(P) and the constraint that no more than 90% of the vehicle capacity to be assigned to each group (Q), the maximum number 
of children to be assigned by the GT algorithm is 153, while for 95% of the total children, it is 162, as shown in Table 7. 
For the case of P equal to 90%, it is evidenced that when Q goes from 90% to 70%, the maximum total number of children 
to be assigned by the group technology algorithm decreases, from 153 to 126 children, because constraint on Q becomes 
stronger than the constraint on P; something similar happens when P is equal to 95%. Since the real total number of children 
to be assigned depends on Q and not on P. It is for this reason that there are no variations in affinity when P corresponds to 
95% and 90%, for Q percentages of 80%, 75 % and 70%, the affinity being 14424, 14424 and 14770 respectively (See 
Table 8). 
 
Table 7  
Determination of the net number of children to be assigned by the GT algorithm 

% of the vehicle capacity to be assigned by 
the GT algorithm (Q) 

Total number of children 
to be assigned 

% of all children to be assigned by 
the GT algorithm (P) 

90% 90% 
153 153 

90%  162  153  153  
85%  153  153   153  
80%  144  144   144  
75%  135  135   135  
70%  126  126   126  

 
Table 8 
Affinity by percentage of assignment 

Affinity 
% children to be assigned by the GT algorithm (P) 

95% 90% 

%
 o

f c
hi

ld
re

n 
to

 
be

 a
ss

ig
ne

d 
to

 
ea

ch
 g

ro
up

 (Q
) 90% 14314 14688 

85% 14288 14384 
80% 14424 14424 
75% 14424 14424 
70% 14770 14770 

 
Table 7 identifies that in the scenarios where the strongest constraint is the total percentage of total children to be assigned 
to the group, the affinity increases as the percentage of child assignment decreases, which is explained by the fact that the 
mathematical model of assignment has more decision variables to optimize. However, this contrasts with the computational 
time required by the model (see Fig. 8). 
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Fig. 8. Affinity trend by assignment percentage 

 
5.2. Comparison of the results of the grouping considering affinity with multisweep grouping that considers the distance 

traveled 
 
With the purpose of identifying the trade-off in costs due to the improvement in affinity, the results obtained from the 
proposal of assigning children to vehicles considering affinity are compared below, presenting the assignment results in 
which only the distance traveled is considered using the multisweep algorithm based on the proposal made in (Gillett & 
Miller, 1974b). 
 
Table 9 shows the assignments of children to vehicles obtained through the application of the multisweep assignment 
algorithm. The largest group consists of 15 children, and the smallest group consists of five children. In addition, the highest 
group affinity corresponds to 1188 and the lowest to 124, with a total affinity of 12536 and an average of 5.01 for all groups. 
Fig. 9 shows the routes obtained for picking up all the children. 
 
Table 9  
Indicators of the assignment of children with the multisweep algorithm 

Vehicle Affinity Distance traveled 
(m) 

Number of children 
assigned Average affinity 

1 1136 9757.44 15 5.05 
2 1112 9669.60 15 4.94 
3 1258 25070.57 15 5.59 
4 1188 24404.55 15 5.28 
5 1004 16691.24 15 4.46 
6 1090 31776.32 15 4.84 
7 1214 31277.92 15 5.40 
8 1096 20518.66 15 4.87 
9 1138 17031.46 15 5.06 
10 1072 16034.65 15 4.76 
11 1104 14288.32 15 4.91 
12 124 5723.76 5 4.96 

Total 12536 222244.49 170 5.01 
 

 
Fig. 9. Routes per vehicle with the multisweep algorithm 

 
 
 

14200
14400
14600
14800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ff
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Percentage of children to be assigned to each group

95% children to be assigned by algorithm 90% children to be assigned by algorithm
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5.3. Comparison of the grouping results considering a routing - assignment strategy 
 
The results obtained are compared using a routing-assignment strategy to identify the trade-off between the costs of 
improving the affinity and minimizing the distance traveled. First, all nodes are routed through a TSP with the CPLEX 
solver, then the route is segregated considering the vehicle capacity constraints, and the affinity for each route is obtained. 
 
Table 10 shows that ten groups of 14 children are assigned to vehicles and that two groups of 15 children are assigned, 
where the highest affinity corresponds to 1060 and the lowest 858, allowing for a total of 11498, with an average affinity 
of 4.78. 
 
Table 10  
Indicators of the assignment of children for the routing - assignment strategy 

Vehicle Affinity Distance traveled (m) Number of 
children assigned Average affinity 

1 1054 12428.46 15 4.68 
2 988 13053.06 15 4.39 
3 946 15893.27 14 4.83 
4 980 20117.88 14 5.00 
5 984 34285.14 14 5.02 
6 862 34910.29 14 4.40 
7 912 14836.93 14 4.65 
8 1060 10373.82 14 5.41 
9 858 10745.67 14 4.38 
10 892 10922.30 14 4.55 
11 904 7899.21 14 4.61 
12 1058 9593.54 14 5.40 

Total 11498 195059.58 170 4.78 
 
Table 11 shows the results of the affinity and total distance traveled with the algorithms of the proposed routing considering 
the affinity, routing with multisweep, and the routing-assignment strategy. It is evident that the assignment of children 
considering affinity yields a longer distance traveled than the other two strategies, but this grouping generates the highest 
affinity. 
 
Table 11 
Grouping comparisons 

Routing Total affinity Total distance traveled (m) 
Considering affinity 14470 323602.50 
Multisweep 12536 222244.49 
Routing-assignment 11498 195959.58 

 
The route provided by the affinity algorithm yields a child affinity that is 15% higher than that of the multisweep algorithm 
but a 46% longer total distance. This suggests that these two objectives need to be balanced. Additionally, the algorithm 
that considers the affinity yields a child affinity that is 25.8% higher than that of the routing-assignment strategy but a 
65.13% longer total route distance. 
 
6. Conclusions 
 
Social aspects have been minimally studied in the SBRP; in this sense, this work proposes the affinity between students as 
a mechanism to strengthen the positive interactions of children, to encourage supportive behaviors in bullying situations, 
and to improve the well-being of the children along the route. In addition, in the frame of reference, bullying extends beyond 
school limits, including school transportation, so addressing the problem of affinity between children in the process of 
school bus routing constitutes a new variant to develop in this knowledge field. 
 
The proposed methodology integrates, on the one hand, the affinity in the SBRP and presents a series of steps the complexity 
of the problem to be addressed since heuristic elements are combined with optimization strategies, and decomposition into 
subproblems mitigates the complexity of the original problem. Additionally, the methodology proposes a group technology 
algorithm and a new mathematical model that linearizes the classical QAP model, both simplify the problem and allow to 
solve appropriate assignment instances according to the context affinity in the SBRP. 
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Finally, it is important to emphasize that considering affinity generates benefits from a social point of view, which should 
be borne in mind when evaluating the increase in transportation costs. For example, in the case study, a 15% increase in 
affinity is associated with a 46% increase in the total distance traveled, which suggests that in future research, multiple 
objectives that ensure a balance between the different metrics should be considered. 
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