
* Corresponding author.
E-mail address: samsharma31@gmail.com (S. Sharma)

© 2021 by the authors; licensee Growing Science, Canada.
doi: 10.5267/j.dsl.2021.2.006

Decision Science Letters 10 (2021) 311–322

Contents lists available at GrowingScience

Decision Science Letters

homepage: www.GrowingScience.com/dsl

An improved NEH heuristic to minimize makespan for flow shop scheduling problems

Meenakshi Sharmaa, Manisha Sharmaa and Sameer Sharmab*

aPanjab University Chandigarh, India
bDAV College Jalandhar, India
C H R O N I C L E A B S T R A C T

Article history:
Received December 28, 2020
Received in revised format:
January 30, 2021
Accepted February 27 2021
Available online
February 27, 2021

 Flow shop scheduling problems with rudimentary criteria of minimum makespan are the most
important investigated problems in the field of scheduling. Generally during the process of
generating an optimal sequence, multiple partial sequences claiming the optimal value of
makespan are observed. In this paper a novel tie-breaking rule to select one of the best optimal
sequences out of all possible partial sequences is developed which then applied to Nawaz-
Enscore-Ham (NEH) heuristic to solve the scheduling problems in permutation flowshop without
increasing the computational complexity. The performance of proposed heuristic is tested with
other existing tie-breaking heuristics of similar complexity over Taillard and VRF's instances.
Computational results reveal that in terms of solution quality, the proposed heuristic outperforms
over the other NEH based heuristics of the same complexity reported in literature.

.by the authors; licensee Growing Science, Canada 1220©

Keywords:
Scheduling
Flow shop
Makespan
Heuristic
Processing time

1. Introduction

Scheduling is a decision making process that plays a momentous role in production and manufacturing sectors. It is a process
of taking decisions regarding when, where, how and how much workload can be distributed among various resource
requirements. With a large scale advancement in the manufacturing sector, the practical importance of scheduling has raised
to a prodigious level. Scheduling involves different branches of machine job environments such as single machine system,
two machine system, multi machine system and open machine system, etc. The main objective of these scheduling problems
is to schedule the jobs in an available machine environment in such a way that certain scheduling criteria can be successfully
optimized. These criteria may be defined as measures of performance and generally categorized as: efficiency related
(includes makespan, flow time, mean flow time, waiting time, idle time, etc.), cost related (includes transportation cost,
maintenance cost, hiring cost etc.) and due date related (includes lateness, tardiness, number of tardy jobs, etc.). Flow shop
scheduling problems (FSSP) are the special class of scheduling problems to obtain the fix processing order of n jobs on a
system of m machines, while each machine can perform a single operation on these jobs and all jobs have the same sequence
of machines. Due to practical significance and real life existence, FSSP is the most studied scheduling problem. Flow shop
scheduling problem with the criteria of minimum makespan has attracted the attention of various researchers and
practitioners for being the tool to measure efficiency rate of both production and service sectors. Garey et al. (1976) proved
strong NP- completeness of flow shop scheduling problems related to the system of n jobs and m machines, when m>2.
Literature reveals that in the last five decades different heuristic and metaheuristic algorithms have been developed by
various researchers to solve the large scale job machine flow shop scheduling problems with the criteria of minimum
makespan. Johnson (1954) was the first to investigate two and three stage flow shop scheduling problems with makespan
criteria. Ignall and Schrage (1965) proposed a branch and bound method to obtain a sequence of jobs which, when processed
on a system of m machines results in minimum makespan. Page (1961), Palmar (1965) proposed the simple index based
heuristics to arrange the jobs in ascending or descending order of specified weights with the objective of minimum
makespan. Campbell et al. (1970), Koulamas (1998) proposed constructive heuristics using Johnson's two machine
approach for flow shop scheduling problems. Gupta (1971) proposed a functional heuristic algorithm to solve large size

 312

flow shop scheduling problems. Bonney and Grundy (1976), Dannenbring (1977), King and Spachis (1980) successfully
studied the performance of each constructive algorithm for minimum makespan criteria. Some of the pioneering studies on
makespan are given by Stinson and Smith (1982), Nawaz et al. (1983), Taillard (1990), Hundal and Rajgopal (1987).
Framinan et al. (2003) constructed 177 initial job ordering procedures and observed that the NEH heuristic outperforms
over all other methods in flow shop scheduling problems with minimum makespan. Hejazi and Saghafian (2005) gave a
complete literature review of flow shop scheduling problems with makespan criteria. Ruiz and Maroto (2005) validated that
among all the constructive heuristics NEH heuristic is the best heuristic for Taillard's benchmarks (1990).

The NEH algorithm can be processed under two phases: sorting and reinsertion. In the first phase, the jobs are sorted in
descending order of total processing time and initial feasible schedule is obtained. In the second phase, jobs from the initial
sequence are picked up one by one and are arranged corresponding to a minimum value of makespan, to obtain an optimal
schedule. Kalczynski and Kamburowski (2007) studied the shortcoming of NEH heuristic that is the tie in job schedules
with minimum makespan while arranging the jobs in the second phase. Chakraborty and Laha (2007) proposed the heuristic
algorithm for minimizing makespan in permutation flow shop scheduling environment. Dong et al. (2007) proposed NEH-
D heuristic with a new initial priority rule and tie breaking strategy based on balanced utilization in the machine system.
Kamburowski and Kalczynski (2008, 2009) marked NEH-KK1 and NEH-KK2 heuristics with tie breaking strategy TBKK1
and TBKK2 of complexity O(mn3) based on Johnson's heuristic to schedule jobs in system of machines to minimize makespan
by giving weightage to the processing time. Rad et al. (2009) proposed new insertion methods that outperform NEH on
comparatively large numbers of instances when the comparison is carried over to Taillard Benchmarks (1990). Yin and Lin
(2013) proposed constructive heuristic with the definition of tie breaking strategy that involves minimum system idle time
priority rule, to solve makespan related flow shop scheduling problems. Vasiljevic and Danilovic (2015) studied different
methods for handling ties in an NEH-heuristic FRB1-FRB5 of complexity O(m2 n2) for permutation flow shop scheduling
problems with makespan criteria. Liu et al. (2017) studied the effects of the first four moments of processing time on the
initial job sequence and proposed novel tie breaking rule NEH-LPJ1 of complexity O(mn2) for NEH heuristic by minimizing
front delay time and idle time before tie position.

In this paper an effective tie breaking strategy TBSMM of complexity O(mn3) is proposed to select the best sequence out of
possible partial sequences that correspond to minimum makespan. The efficiency of proposed tie breaking rule is compared
with existing tie breaking strategies over Taillard and VRF's benchmarks for permutation flow shop scheduling problems.

The rest of the paper is organized as follows: In section 2, the mathematical model for the considered problem with various
notations is developed. The existing tie breaking rules developed on NEH heuristic to solve criteria of makespan are
discussed in section 3 and the proposed tie breaking mechanism is elaborated in section 4. In section 5 the test cases and
computational results are discussed to demonstrate the effectiveness of the proposed heuristic. Finally conclusions and
future developments are presented in section 6.

2. Problem definition

Flow shop scheduling is the branch of scheduling in which jobs undergo the available system of machines in a fixed order
without any preemption and each of the jobs follow the same route of machines without any interruption. In this section, a
mixed integer programming model is developed to obtain processing order of jobs corresponding to minimum makespan.

The considered problem is based on the following assumptions:

1. All the jobs are available for processing at time zero.
2. No two jobs can be processed on the same machine simultaneously.
3. No two machines can process the same job at a time.
4. Processing of jobs is continuous, no machine breakdown is considered.
5. No job can be processed on the same machine twice.
6. Job preemption is not allowed.
7. Job processing time is predetermined.
8. No job passing over is allowed.
9. Set up time is taken as part of processing time not as an independent factor.

The following notations are used in the progress of the paper:

Table 1
Notations

Parameters Definition
n number of jobs
m number of machines
i job thiindex for
j machine thjindex for
i jp machine th jjob on th iprocessing time of
i jC machine th jjob on thicompletion of

M. Sharma et al. / Decision Science Letters 10 (2021)

313

iT job thitotal processing time of
∏ initial sequence of jobs
σ partial optimal sequence

iσ σjob in optimal sequence thi
r an unscheduled job of initial sequence ∏ to be inserted at various positions of partial optimal sequence σ
σi jC machine thjjob of scheduled sequence on thicompletion time of
σ jC machine th jon σcompletion time of optimal partial sequence
jg time gap between completion time of sequence σ on machines j and j-1

l number of jobs in optimal partial sequence σ
i ky takes value 1 if job i is scheduled at location k in partial optimal sequence, zero otherwise
i j tz takes value 1 if job i is processed on machine j at time t, zero otherwise
maxC maximum total elapsed time

Objective function ∑ 𝐶௜ ௠ × y௜௡୬௜ୀଵ= maxC min (1)

subject to 𝐶௠௔௫ − 𝐶௜ ௝ ≥ 0 (2) 𝐶௜ ௝ − 𝐶௜ (௝ିଵ) ≥ ෍𝑝௜ ௝ ௡
௞ୀଵ × 𝑦௜ ௞ ∀𝑖 = 1,2, … ,𝑛; 𝑗 = 1,2, … ,𝑚

(3)

𝐶௜ ௝ − 𝐶(௜ିଵ) ௝ ≥ ෍𝑝௜ ௝ ௡
௞ୀଵ × 𝑦௝ ௞ ∀ 𝑖 = 1,2, … ,𝑛; 𝑗 = 1,2, … ,𝑚

(4)

෍𝑦௜ ௞ ௡
௞ୀଵ = 1 ∀ 𝑖 = 1,2, … ,𝑛

(5)

෍𝑦௜ ௞ ௡
௜ୀଵ = 1 ∀ 𝑘 = 1,2, … ,𝑛

(6)

෍𝑧௜ ௝ (𝑡)௠
௝ୀଵ = 1 ∀ 𝑖 = 1,2, … ,𝑛

(7)

𝒛𝒊 𝒋(𝒕) ≤ ෍𝑦௜ ௞ ௡
௞ୀଵ ∀ 𝑖 = 1,2, … . ,𝑛, 𝑗 = 1,2, … . ,𝑚

(8)

𝐶௢ ௝ = 0 = 𝐶௜ ଴ ∀ 𝑗 = 1,2, … ,𝑚; 𝑖 = 1,2, … ,𝑛 (9) 𝑧௜ ௝(𝑡),𝑦௜ ௞ 𝜖 ሼ0,1ሽ ∀ 𝑖, 𝑘 = 1,2,3, … ,𝑛; 𝑗 = 1,2,3, … ,𝑚 (10) 𝐶௜ ௝ ≥ 0 ∀𝑖 = 0,1,2, … . ,𝑛; 𝑗 = 0,1,2,3, … .𝑚 (11)

Constraint (2) represents the relationship between maximum completion time (Cmax) and completion time of every job i on
each of the machine j. Constraint (3) depicts that the job i can't be shifted to machine j unless the operation is completed
on machine ` j-1'. Constraint (4) guarantees that if the job `i-1' processed before job `i' on a particular machine `j' then
processing of job ̀ i' can not be started before the processing of job ̀ i-1' is completed. Eq. (5) assures that the job scheduling
is permutation in nature .i.e. each job i is scheduled at a unique position `k' in the final schedule. Eq. (6) depicts that one
and only one job is scheduled at position k in the final sequence .i.e. no two jobs can be scheduled at the same position.
Equation (7) clarifies that at a time t the job `i' can be processed on a single machine. Constraint (8) depicts the relation
between decision variables of model. Dummy variables introduced in the model to handle the constraint (3) and constraint
(4), for j=1 and i=1 respectively, presented in equation (9). Constraints (10) defines the domain of decision variables. Non-
negativity restriction on completion time of each job on each machine is presented as output variables of the scheduling
model in constraint (11).

3. Tie breaking mechanism

The flow shop scheduling problem with criteria of makespan is NP-hard (Garey 1976). Therefore many heuristics have
been developed to solve this problem over the last few decades. Among all the constructive heuristics addressed in literature
Nawaz Enscore Ham (NEH) heuristic (Nawaz et al. (1983)) is the most popular and effective heuristic to solve the referent
problem. This heuristic involves following steps:

One main limitation of NEH heuristic comes into play when an unscheduled job r of initial sequence (∏) is to be inserted
at different positions of optimal partial sequence (σ) and the multiple partial sequences giving the same optimal value

 314

of makespan are observed .i.e. a situation of tie occurs. For illustration, consider the problem given in Table 2. Here, when
job 3 is inserted at different positions in partial sequence 6-7, then resultant 2 partial sequences 6-3-7 and 6-7-3 have the
same minimum makespan. In this situation considering all the partial optimal sequences altogether for inserting the next
job at all possible locations may lead to high computation complexity of the algorithm. Therefore, to select one of the best
possible optimal partial sequences among all the obtained partial sequences an effective tie breaking technique is needed to
be developed. Moreover, due to high complexity of large size FSSP, it is not possible to have a single tie breaking rule to
achieve desired optimality, yet by applying a well defined and appropriate tie breaking mechanisms with NEH algorithm,
the better results can be expected. The existing tie breaking mechanisms in literature are discussed in following subsections:

3.1 Tie breaking mechanism by Kalczynski and Kamburowski I

TBKK1 is the tie breaking mechanism developed in heuristic denoted by NEHKK1. This heuristic is due to Kalczynski and
Kamburowski (2007) in which priority rule to obtain initial feasible sequence is completely different from NEH priority
rule. In this tie breaking rule the first index of inserted job r for which the minimum value of makespan achieved is
considered if 𝑚𝑖𝑛൫𝑎ఙ , 𝑏௥)൯ ≥ 𝑚𝑖𝑛 (𝑎௥ ,𝑏ఙ), otherwise the last index for which the minimum value obtained is considered.
The parameter 𝑎௥ ,𝑏௥ 𝑏ఙ 𝑎𝑛𝑑 𝑎ఙ, are given by:

𝑎௥ = ෍𝑝௥ ௝ − 𝑝௥ ௠௠
௝ୀଵ

(12)

𝑏௥ = ෍𝑝௥ ௝ − 𝑝௥ ଵ௠
௝ୀଵ

(13)

𝑎ఙ = 𝐶௠௔௫(𝜎) −෍𝑝௜ ௠௜∈ఙ (14)

𝑏ఙ = 𝐶௠௔௫(𝜎) −෍𝑝௜ ଵ௜ఢఙ (15)

3.2 Tie breaking mechanism by Kalczynski and Kamburowski II

The tie breaking rule denoted by TBKK2 is proposed by Kamburowski and Kalczynski (2008) in heuristic NEHKK2 to solve
referent problems. In this case whenever the tie occurs the first index is chosen as the optimal position of the inserted job r
if 𝑎ത௥ ≥ 𝑏ത௥ , otherwise the last index is considered to be the optimal position. The parameters 𝑎ത௥ and 𝑏ത௥ of this tie breaking
rule are represented as:

4. Proposed tie breaking mechanism

The tie breaking rule denoted by TBSMM is proposed in this paper which is related to minimum mean completion time.
According to the proposed tie-breaking rule the optimal sequence is chosen with least mean completion time of the jobs on
the given system of machines. Mathematically, the proposed tie breaking rule is defined as: 𝑇𝐵ௌெெ = 𝐶ఙ ଵ + 𝐶ఙ ଶ + 𝐶ఙ ଷ + … … … … … . +𝐶ఙ ௠𝑚 (18)

where Cσ j defined as completion time of the job present at the last position of sequence σ on machine `j'. The main idea
behind the new tie breaking rule is the time gap: 𝑔௝ = 𝐶ఙ ௝ − 𝐶ఙ ௝ିଵ, between completion times of partial optimal sequence
σ on machines j and j-1. When an unscheduled job r of initial sequence ∏ is appended at (k+1)th position of sequence σ of
length k, the completion time of resultant partial sequence on machine j-1 is given by 𝐶ఙೖ ௝ିଵ . Sometimes with new
completion time, there arises a situation when 𝐶ఙೖశభ ೕషభ > 𝐶ఙ ௝, which leads to the idle time on machine j. Since there is a
direct relation between makespan and idle time, therefore if this situation is continued on all the machines, then the idle
time of the machine m may lead to an increase in the makespan. However, if the new job in sequence σ with 𝐶ఙೖశభ ೕషభ <𝐶ఙ ௝ is appended then makespan will be comparatively less. For large values of gj the existing gap between the completion

𝑎ത௥ = ෍ቈ(𝑚 − 1)(𝑚 − 2)2 + 𝑚 − 𝑗቉௠
௝ୀଵ 𝑝௥ ௝ (16)

𝑏ത௥ = ෍ቈ(𝑚 − 1)(𝑚 − 2)2 + 𝑗 − 1቉௠
௝ୀଵ 𝑝௥ ௝ (17)

M. Sharma et al. / Decision Science Letters 10 (2021)

315

times will persist even after appending the job r to the optimal partial sequence σ, i.e. there will be small or even no idle
time on machine j. Thus completion time of resultant sequence (obtained by appending the unscheduled job r), on each
machine has great influence on makespan. Although this criteria is not related to inserting the job r in optimal partial
sequence (σ) rather is related to appending the particular job to sequence, however is the basis for developing a new tie
breaking strategy.

4.1 Algorithm proposed

Algorithm NEHSMM is proposed, by combining the tie breaking strategy TBSMM with NEH heuristic to obtain the optimal
sequence of jobs on an available system of machines with the objective of minimum makespan in the FSS environment.
Further, a high level flow chart of proposed heuristic is presented in Fig. 1.

Fig. 1. Flow chart of proposed heuristic
The following steps are involved in overall computation by proposed heuristic:

Step 1: Calculate total processing time 𝑇௜ = ∑ 𝑝௜ ௝ ∀ 𝑖 = 1,2, … . ,𝑛௠௝ୀଵ .
Step 2: Arrange all the jobs in descending order of Ti and obtain the initial feasible sequence ∏ of jobs.
Step 3: Consider the first two jobs from sequence ∏ and arrange them corresponding to minimum makespan to obtain
partial sequence σ. In case of tie use the proposed tie breaking strategy TBSMM, if tie still exist then the position of the jobs
corresponding to first obtained partial sequence σ with minimum makespan is considered. Set length of resultant sequence
l=2.
Step 4: Insert the next unscheduled job from initial feasible sequence ∏ in current optimal partial sequence σ and again
arrange the jobs corresponding to minimum makespan (elapsed time), without violating the order of already scheduled jobs.
When the choice is to be made among the multiple optimal partial sequences corresponding to minimum makespan, the
proposed tie breaking strategy (4.1) is implemented to determine the best partial sequence. After insertion of new job
increase the length l of sequence σ by 1.
Step 5: Repeat Step 4 until 𝑙 ≥ 𝑛.
4.2 Computation complexity

In this paper the tie breaking mechanism is introduced by calculating the mean completion time of all the jobs after the
insertion of job at all the possible positions which clearly does not alter the computation complexity of NEH heuristic and
it remains O(mn3).

 316

4.3 Numerical illustration

In this section we have shown implementation of proposed tie breaking rule with a simple numerical illustration as
discussed below:

Table 2
Data of processing time of 10 jobs on 5 machines

 Machines
Jobs 1M 2M 3M 4M 5M

1J 79 67 10 48 52
2J 40 40 57 21 54
3J 48 93 49 11 79
4J 16 23 19 2 38
5J 38 90 57 73 3
6J 76 13 99 98 55
7J 73 85 40 20 85
8J 34 6 27 53 21
9J 38 6 35 28 44

10J 32 11 11 34 27

The first step of the algorithm mentioned in Section 4.1, is to arrange the jobs in descending order of total processing time
Ti. Here, for each job total processing time is given by: T1 = 256, T2 = 212, T3 = 280, T4 = 98, T5 = 261, T6 = 341, T7 = 303,
T8 = 141, T9 = 151, T10 = 115.
Therefore corresponding initial feasible solution is :

J6-J7-J3-J5 -J1-J2-J9-J8-J10-J4.
To obtain the final optimal schedule σ follow the Step 2 to Step 5. Following step 2 first two jobs J6 and J7, are
considered. arranging these jobs simultaneously two possible schedules (J6 , J7) and (J7, J6) with corresponding makespan
426 units and 450 units, respectively. So, the partial optimal schedule (J6 , J7) is selected. Now consider the next job J3
from the initial feasible job schedule and insert it in all the possible positions of partial optimal schedule σ. The obtained
job schedules are (J3,J6,J7), (J6,J3,J7) and (J6,J7,J3). Here, schedules (J6,J3,J7) and (J6,J7,J3) are optimal partial schedules
with minimum makespan 505 units. Following the proposed procedure when the tie occurs between the schedules (J6,J3,J7)
and (J6,J7,J3), the value of TBSMM obtained, 341.6 units and 358.4 units, respectively. Therefore, the resultant schedule
obtained by inserting job J3, into second position is considered as optimal partial schedule. Clearly computation of TBSMM
does not lead to an increase in complexity of the original NEH heuristic as no extra loop is required to be implemented in
original code. Following the various steps of proposed heuristic the final optimal job schedule is: (J4, J2, J10, J6, J3, J1, J7,
J8, J9, J5) with makespan 713 units which is comparatively less than that by NEH i.e. 726 units. Implementation of tie
breaking mechanism in generating the final optimal job schedule is presented in Table 3.

Table 3
The best partial sequence constructed by the improved NEH based heuristic after inserting each job of π

Iteration Inserting job σ maxC Tie situation
1 7J 7J-6J 426 No
2 3J 7J-3J -6J 505 Yes
3 5J 5J-7J-3J -6J 525 No
4 1J 5J-7J-1J -3J -6J 592 Yes
5 2J 5J-7J-1J-3J-6J-2J 632 Yes
6 9J 5J-9J-7J-1J-3J-6J-2J 652 No
7 8J 5J-9J-8J-7J-1J-3J-6J-2J 673 Yes
8 10J 5J-9J-8J-7J-1J-3J-6J-10J-2J 697 No
9 4J 5J-9J-8J-7J-1J-3J-6J-10J-2J-4J 713 No

5. Computational experiments

In this section, the computational experiments are carried out in MATLAB over Intel(R) core(TM) i5 CPU @ 2.20 GHZ
computer with 8GB RAM. To confirm the effectiveness of proposed tie breaking rule and to test the performance of
proposed heuristic, two sets of tests, including comparison tests of the tie-breaking rule and proposed heuristic on Taillard
(Taillard, 1990) and VRF (Vallada et al., 2015) benchmarks are performed. These benchmarks consist of 600 problem
instances with varying sizes of number of jobs and number of machines. The processing time is uniformly distributed [1,99]
for each job i on each machine j. Further, for the comparison test of tie breaking rule two most important tie breaking
mechanism TBKK1 (Kalczynski & Kamburowski, 2007) and TBKK2 (Kalczynski & Kamburowski, 2008) with same
complexity O(n3m) have been considered, however many other improved heuristics with different complexities are available
in the literature. To validate performance of proposed heuristic in solving the referred problem the results obtained for
Taillard and VRF benchmarks of scheduling are compared against existing well known heuristics including NEH (Nawaz
et al. (1984)), DE (Onwubolu & Davendra (2006)), NEHKK1 (Kalczynski & Kamburowski (2007)), NEHKK2 (Kalczynski
& Kamburowski, 2008), MOD (Semanco & Modrak (2012)), CLWTS (Ying & Lin (2013)), GC (Gupta and Chauhan (2015)),
NEHAB1 (Baskar (2016)). The different parameters used in complete evaluation are given as:

M. Sharma et al. / Decision Science Letters 10 (2021)

317

Table 3
Parameters and Measurements

Parameters Measurements
Number of jobs 10, 20, 30, 40, 50, 60, 100, 200, 300, 400, 500, 600, 700, 800

Number of machines 5, 10, 15, 20, 40, 60
Processing duration Taillard's and VRF standard benchmarks

In order to measure the solution quality, the average relative percentage deviation (ARPD) is given by,
 𝐴𝑅𝑃𝐷 = ෍𝐻𝑆௞ − 𝐵𝑆௞ 𝐵𝑆௞ൗ 10 × 100%ଵ଴

௞ୀଵ

(19)

istic for is makespan computed by particular heur kHSis considered as a tool to measure performance, where

is the best solution value for this particular instance provided by Taillard (1990) k BSand k problem instance
and VRF (Vallada et. al. 2015). The detail of these tests is discussed in the following subsections.

۵࿿١ Comparison test of tie-breaking rule

The pursuance of proposed tie breaking rule is compared with tie breaking rules in reference, i.e. TBKK1 and TBKK2 by
implementing them in an NEH heuristic whenever time

Table 4
ARPD values of different tie breaking rules on Taillard instances

Problem NEH TBKK1 TBKK2 TBSMM

20×5 3.31 2.65 2.73 2.40
20×10 4.60 4.31 4.31 4.45
20×20 3.73 3.41 3.41 3.77
50×5 0.72 0.59 0.66 0.66
50×10 5.07 4.83 4.87 4.69
50×20 6.65 6.37 6.41 6.18
100×5 0.53 0.42 0.41 0.41
100×10 2.21 2.27 1.77 2.04
100×20 5.34 5.31 5.28 5.69
200 ×10 1.26 1.12 1.17 1.28
200×20 4.41 4.24 4.17 3.92
500×20 2.07 2.00 2.02 2.00
Average 3.33 3.13 3.11 3.09

Table 5
ARPD values for different tie breaking rules on VRF benchmarks

 Problem
Small Large

 NEH
Small Large

 TBKK1
Small Large

 TBKK2
Small Large

 TBSMM
Small Large

10×5 100× 20 2.18 5.71 2.21 5.80 2.23 5.76 2.47 5.67
10× 10 100× 40 1.63 5.67 1.74 5.52 1.74 5.44 2.03 5.07
10× 15 100× 60 1.53 4.95 1.54 4.92 1.44 4.86 1.31 4.77
10× 20 200× 20 1.99 4.23 1.54 4.00 1.54 4.09 1.98 4.04
20× 5 200× 40 1.51 4.71 1.19 4.55 2.09 4.51 1.31 4.53
20× 10 200× 60 4.82 4.55 4.71 4.40 4.71 4.40 4.79 4.24
20× 15 300× 20 4.33 2.99 4.09 2.80 4.09 2.79 4.04 2.88
20× 20 300× 40 4.12 4.08 3.69 3.89 3.64 3.87 3.89 3.79
30× 5 300× 60 1.43 3.93 1.09 3.73 1.24 3.76 1.22 3.94
30× 10 400× 20 5.26 2.58 5.87 2.33 5.18 2.40 5.44 2.24
30× 15 400× 40 5.83 3.66 5.75 3.50 5.76 3.45 5.32 3.43
30× 20 400× 60 5.48 3.56 5.43 3.31 5.43 3.33 5.30 3.44
40× 5 500× 20 1.09 2.27 0.73 1.95 0.81 1.91 0.72 1.87
40× 10 500× 40 4.97 3.21 5.07 3.05 5.02 3.01 4.38 3.03
40× 15 500× 60 6.05 3.12 6.14 3.13 6.05 3.09 5.54 3.03
40× 20 600× 20 5.14 1.57 5.68 1.43 5.61 1.56 5.25 1.26
50× 5 600× 40 0.55 3.13 0.47 2.86 0.32 2.92 0.59 2.76
50× 10 600× 60 4.58 2.93 4.43 2.82 4.22 2.87 4.62 2.86
50× 15 700× 20 6.52 1.41 6.46 1.27 6.44 1.24 6.20 1.23
50× 20 700× 40 5.96 2.77 5.98 2.76 5.99 2.65 6.20 2.48
60× 5 700× 60 0.89 2.75 0.70 2.76 0.67 2.81 0.86 2.72
60× 10 800× 20 3.96 1.23 3.89 1.19 3.96 1.19 4.03 1.11
60× 15 800× 40 5.79 2.43 5.76 2.45 5.78 2.50 5.15 2.34
60× 20 800× 60 6.45 2.70 6.25 2.69 6.42 2.67 6.49 2.66
Average 3.83 3.34

3.59
3.72 3.21
3.48

3.76 3.21
3.49

3.71 3.15
3.43

It has been found that the performance of the proposed tie breaking rule does not remain consistent on all the benchmarks
due to random data but it remains favorable in the final evaluation. From Table 5, the average ARPD value for original

 318

NEH heuristic is 3.33 for Taillard's benchmarks where as an implementing the tie breaking rules TBKK1 and TBKK2 the
average ARPD values reduce to 3.13 and 3.11 respectively, whereas proposed tie breaking strategy outperforms these
referred tie breaking rules with average ARPD 3.09 and minimum value of ARPD on 6/12 problem instances. From Table
6, we observed that by applying a proposed heuristic on VRF-test beds, the significantly better results are obtained on 27/48
problem instances with average ARPD value 3.43 (3.71 on small instances and 3.15 on large instances) which are
comparatively lesser than another tie breaking rules taken in reference.

5.2 Comparison test for heuristics

For comparison the NEH (Nawaz et.al.(1984)), DE (Onwubolu and Davendra (2006)), NEHKK1 (Kalczynski and
Kamburowski (2007)), NEHKK2 (Kalczynski and Kamburowski (2008)), MOD (Modrak (2012)), CLWTS (Ying and Lin
(2013)), GC (Gupta and Chauhan (2015)), NEHAB1 (Baskar (2016)) and proposed heuristic NEHSMM are implemented
first on Taillard test beds and result is reported in Table 7. NEHSMM heuristic dominates over other referred heuristics on
6/12 problem instances with ARPD 3.09, whereas it is 3.17 for NEHKK1, 3.14 for NEHKK2, 8.35 for GC, 10.49 for
MOD, 3.18 for CLWTS, 3.14 for NEHAB1 and 9.25 for DE.

Table 6
ARPD values of different heuristics on Taillard's test bed

Problem NEH NEHKK1 NEHKK2 GC MOD CLWTS NEHAB1 DE NEHSMM
20×5 3.31 2.81 2.48 7.75 8.89 2.84 2.47 3.98 2.40
20×10 4.60 4.43 4.17 10.62 13.76 4.54 4.50 5.86 4.45
20×20 3.73 3.37 3.57 8.76 13.41 3.77 3.03 4.53 3.77
50×5 0.72 0.67 0.44 4.09 6.27 0.61 0.64 4.28 0.66
50×10 5.07 5.46 5.38 11.49 13.12 5.17 5.07 11.48 4.69
50×20 6.65 6.25 6.22 12.62 15.41 6.32 6.25 14.73 6.18
100×5 0.53 0.41 0.22 2.93 4.08 0.41 0.52 4.27 0.41
100×10 2.21 2.08 2.28 7.69 9.29 2.07 1.99 10.42 2.04
100×20 5.34 5.23 11.66 14.35 9.29 5.47 5.39 16.08 5.39
200 ×10 1.26 1.32 1.32 5.35 6.92 1.61 1.39 8.34 1.28
200×20 4.41 4.17 4.25 7.95 12.52 4.04 4.37 15.44 3.92
500×20 2.07 1.95 2.08 6.64 7.86 1.96 2.09 11.58 2.00
Average 3.33 3.17 3.14 8.35 10.49 3.23 3.14 9.25 3.09

On VRF instances comparison is carried out only among the NEH, NEHKK1, NEHKK2 and proposed NEHSMM
heuristics. The reason behind taking only these heuristics for evaluation is that only these heuristics compete with our
proposed heuristic. As shown in Table 8, the proposed heuristic NEHSMM outperforms with ARPD 3.45 (it is 3.71 for
small instances and 3.15 for large instances) with significant performance on 21/48 problem instances, whereas it is 14/48
problems, 13/48 and 2/48 problems for NEHKK1, NEHKK2 and NEH heuristics respectively.

Table 7
ARPD values of different heuristics on VRF instances

 Problem
Small Large

 NEH
Small Large

 TBKK1

Small Large

 TBKK2

Small Large

 TBSMM

Small Large

10×5 100× 20 2.18 5.71 1.99 5.37 2.34 5.70 2.42 5.67
10× 10 100× 40 1.63 5.67 1.59 5.46 2.39 5.42 2.03 5.07
10× 15 100× 60 1.53 4.95 1.48 4.72 1.86 4.86 1.31 4.77
10× 20 200× 20 1.99 4.23 1.54 4.18 1.51 4.15 1.98 4.04
20× 5 200× 40 1.51 4.71 1.59 4.49 2.43 4.76 1.31 4.53
20× 10 200× 60 4.82 4.55 5.07 4.31 4.77 4.31 4.79 4.24
20× 15 300× 20 4.33 2.99 4.23 2.90 4.10 2.82 4.04 2.88
20× 20 300× 40 4.12 4.08 3.91 3.80 4.22 3.99 3.89 3.79
30× 5 300× 60 1.43 3.93 0.92 3.84 1.07 4.24 1.22 3.94
30× 10 400× 20 5.26 2.58 5.09 2.39 5.22 2.27 5.44 2.24
30× 15 400× 40 5.83 3.66 6.02 3.70 5.53 3.61 5.32 3.43
30× 20 400× 60 5.41 3.56 5.44 3.42 5.61 3.49 5.30 3.44
40× 5 500× 20 1.09 2.27 0.61 1.84 0.45 1.73 0.72 1.87
40× 10 500× 40 4.97 3.21 4.78 3.09 5.01 3.02 4.38 3.01
40× 15 500× 60 6.05 3.12 6.14 3.09 6.33 3.19 5.54 3.03
40× 20 600× 20 5.14 1.57 5.35 1.50 5.37 1.52 5.25 1.56
50× 5 600× 40 0.55 3.13 0.45 3.00 0.37 2.88 0.59 2.76
50× 10 600× 60 4.58 2.93 4.30 2.88 3.48 2.94 4.62 2.86
50× 15 700× 20 6.52 1.41 6.36 1.33 6.19 1.11 6.19 1.23
50× 20 700× 40 5.96 2.77 6.38 2.68 6.10 2.45 6.20 2.48
60× 5 700× 60 0.89 2.75 0.77 2.68 0.88 2.76 0.76 2.72
60× 10 800× 20 3.96 1.23 4.06 1.13 4.02 0.95 4.03 1.11
60× 15 800× 40 5.79 2.43 5.69 2.44 5.96 2.32 5.15 2.34
60× 20 800× 60 6.45 2.70 6.08 2.58 6.68 2.56 6.49 2.66
Average 3.83 3.34

3.59
3.74 3.20
3.49

3.80 3.20
3.50

3.71 3.15
3.45

M. Sharma et al. / Decision Science Letters 10 (2021)

319

5.3 Test for significance

To test whether the difference in makespan and ARPD values for the referred heuristic algorithms and proposed heuristic
is significant on Taillard and VRF benchmarks, the paired sample t-test is carried out at 95% level of significance and the
results are shown in Table 10 and Table 11. The test is also carried over the combined data of both referred test beds in
Table 9. As depicted in Table 9 for confidence level 𝛼 = 0.05, the value of p less than 0.05 demonstrates that there is
significant difference present between the proposed heuristic and referred heuristics. It is clear that the difference between
pairs NEHSMM and NEH, NEHSMM and NEHKK1, NEHSMM and NEHKK2 is significant. Similarly, two sided
paired sample t-test is carried over ARPD values of NEHSMM and for all other referred heuristics. This test is carried over
both the VRF and Taillard's benchmarks and significance values are presented in the significance column of Table 10 and
Table 11, respectively.

Table 8
Paired sample t-test for combined VRF and Taillard benchmarks

Parameters Pair Mean mSE CI-lower CI-upper t P
Makespan NEH-NEHSMM

KK1-NEHSMM
KK2-NEHSMM

16.19
4.938
1.489

2.534
2.337

2.49

12.01
0.346

-3.409

21.96
9.530
6.388

6.703
2.113
0.597

0.000
0.035
0.049

ARPD NEH-NEHSMM
KK1-NEHSMM
KK2-NEHSMM

0.166
0.031
0.559

0.031
0.035
0.044

0.106
-0.038
-0.034

0.228
0.102
0.146

5.468
0.922
1.247

0.000
0.036
0.021

Table 9
Paired sample t-test result on Taillard's Benchmarks

Parameters Pair Mean mSE CI-lower CI-upper t P

Makespan NEH-NEHSMM
KK1-NEHSMM
KK2-NEHSMM
GC-NEHSMM

MOD-NEHSMM
NEHSMM-WTSCL

NEHAB1-NEHSMM
DE-NEHSMM

10.40
1.125
1.275
337.5
254.7
9.967
7.250
447.2

3.577
3.316
3.907
31.01

2099.9
3.494
3.804
40.76

3.324
-5.442
-6.461
276.08
1611.1
-1.88
-0.282
366.5

17.491
7.692
9.011
398.9
6705.2

5.95
14.78
527.9

2.91
0.339
0.326
10.88
11.08
1.277
1.906
10.97

0.004
0.035
0.047
0.000
0.000
0.024
0.049
0.000

ARPD NEH-NEHSMM
KK1-NEHSMM
KK2-NEHSMM
GC-NEHSMM

MOD-NEHSMM
NEHSMM-WTSCL

NEHAB1-NEHSMM
DE-NEHSMM

0.225
0.051
0.012
5.253
6.968
0.082
0.012
6.149

0.082
0.091
0.084
0.497
0.603
0.184
0.084
1.091

0.405
-0.148
-0.172
4.158
5.641
0.013
-0.172
3.748

0.456
0.031
0.196
6.349
8.295
0.151
0.196
8.551

2.761
1.973
0.148
1.056
11.56
2.620
0.148
5.635

0.019
0.058
0.050
0.000
0.024
0.050
0.000
0.0000

Table 10
Paired sample t-test results on VRF benchmarks

Parameters Pair Mean mSE CI-lower CI-upper t p
Makespan NEH-NEHSMM

KK1-NEHSMM
KK2-NEHSMM

22.95
6.791
3.292

3.011
2.799
2.999

17.035
1.290

-2.605

28.86
12.29
9.186

7.622
2.462
1.097

0.000
0.016
0.027

ARPD NEH-NEHSMM
KK1-NEHSMM
KK2-NEHSMM

0.152
0.027
0.067

0.033
0.038
0.052

0.087
-0.048
-0.038

0.214
0.103
0.172

4.701
0.725
1.278

0.000
0.047
0.208

5.4 Computation efficiency

In order to test computation efficiency of the proposed heuristic over the other heuristics taken in reference, average relative
percentage deviation (ARPD), average CPU time (ACPU), average relative computation time (ARCT) is computed
simultaneously. The ACPU and ARCT (Fernandez et al., 2017) are defined as follows: 𝐴𝐶𝑃𝑈 = ∑ 𝐶𝑃𝑈௧ ௛௧ 𝐼

(20)

𝐴𝑅𝐶𝑇 = ∑ 𝐶𝑃𝑈௧ ௛ − 𝐴𝐶𝑇௧ 𝐴𝐶𝑇௧ൗ௧ 𝐼 + 1
(21)

 320

where, I is the total number of instances, CPUt h is computation time taken by heuristic h to solve the instance t, 𝐴𝐶𝑇 ௧ =∑ ஼௉௎೟ ೓೓ ு , H=number of heuristics considered.
ACPU and ARCT are two performance measures of computation efficiency of heuristic whereas ARPD is used to verify the
solution quality of heuristic h. To get the unbiased results, each of the heuristic is run over the both Taillard and VRF
benchmarks independently five times and then mean is taken as final CPU time. The results of each heuristic on Taillard's
and VRF benchmarks are presented in Table 12. From Table 12, it is clear that the proposed heuristic NEHSMM is
outperforming the other referred heuristics significantly, however is not efficient on a scale of computation. This shows as
the more time is spent on sequencing the jobs better results can be obtained.

Table 11
Comparison on basis of ARPD, ACPU, ARCT

Heuristic Taillard
ARPD ACPU ARCT

 VRF
ARPD ACPU ARCT

NEH 3.325 2.046 0.945 3.592 19.345 0.784
NEHKK1 3.171 2.046 1.016 3.502 19.395 1.052
NEHKK2 3.142 2.094 1.039 3.502 19.365 1.035
GC 8.352 2.165 1.210 - - -
MOD 10.49 2.861 1.732 - - -
NEHAB1 3.148 2.974 0.526 - - -
NEHSMM 3.099 2.092 0.999 3.446 19.503 1.081

Also computation effectiveness of each heuristic competitive to proposed heuristic is depicted in Fig. 2 to Fig.
5.

Fig. 2. ARPD vs ACPU on Taillard's benchmarks Fig. 3. ARPD vs ARCT on Taillard's benchmarks

Fig. 4. ARPD vs ACPU on VRF benchmarks Fig. 5. ARPD vs ARCT on VRF benchmarks

6. Conclusion

In this work a novel tie-breaking rule for NEH heuristic without increasing its computational complexity is introduced. The
computation tests are carried over the Taillard's and VRF-hard's benchmarks for permutation flowshop scheduling. Test
results show that the proposed heuristic NEHSMM outperforms the other referred constructive heuristics significantly.
Computation efficiency results depict that, however the use of tie breaking strategies with the NEH heuristic may lead to
increase in computation time yet the best results of makespan can be expected. In conclusion, a new heuristic NEHSMM is
proposed for the permutation flowshop scheduling problems with minimum makespan criteria. The effectiveness of the
proposed heuristic has also been validated on both Taillard and VRF test beds. The future work on this strategy is to define
more effective strategies and tie breaking techniques for NEH technique so as to obtain the best results of makespan in flow
shop scheduling environment. Moreover the technique developed here can also be used to solve the tie breaking strategy
occurs is bicriteria flow shop scheduling problem with makespan as primary objective so as to get better results of this
parameter.

M. Sharma et al. / Decision Science Letters 10 (2021)

321

Acknowledgement

One of authors acknowledges the financial support provided by council of scientific and industrial research, New
Delhi, India, in the form of SRF through grant number 09/135(0766)/2017-EMR-I.

References

Baskar, A. (2016). Revisiting the NEH algorithm-the power of job insertion technique for optimizing the makespan in
permutation flow shop scheduling. International Journal of Industrial Engineering Computations, 7(2), 353-366.

Bonney, M. C., & Gundry, S. W. (1976). Solutions to the constrained flowshop sequencing problem. Journal of the
Operational Research Society, 27(4), 869-883.

Campbell, H. G., Dudek, R. A., & Smith, M. L. (1970). A heuristic algorithm for the n job, m machine sequencing
problem. Management science, 16(10), B-630.

Chakraborty, U. K., & Laha, D. (2007). An improved heuristic for permutation flowshop scheduling. International Journal
of Information and communication technology, 1(1), 89-97.

Dannenbring, D. G. (1977). An evaluation of flow shop sequencing heuristics. Management Science, 23(11), 1174-1182.
Dong, X., Huang, H., & Chen, P. (2008). An improved NEH-based heuristic for the permutation flowshop

problem. Computers & Operations Research, 35(12), 3962-3968.
Fernandez-Viagas, V., Ruiz, R., & Framinan, J. M. (2017). A new vision of approximate methods for the permutation

flowshop to minimise makespan: State-of-the-art and computational evaluation. European Journal of Operational
Research, 257(3), 707-721.

Framinan, J. M., Leisten, R., & Rajendran, C. (2003). Different initial sequences for the heuristic of Nawaz, Enscore and
Ham to minimize makespan, idletime or flowtime in the static permutation flowshop sequencing problem. International
Journal of Production Research, 41(1), 121-148.

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics of
Operations Research, 1(2), 117-129.

Gupta, J. N. (1971). A functional heuristic algorithm for the flowshop scheduling problem. Journal of the Operational
Research Society, 22(1), 39-47.

Gupta, A., & Chauhan, S. (2015). A heuristic algorithm for scheduling in a flow shop environment to minimize
makespan. International Journal of Industrial Engineering Computations, 6(2), 173-184.

Hundal, T. S., & Rajgopal, J. (1988). An extension of Palmer's heuristic for the flow shop scheduling problem. International
Journal of Production Research, 26(6), 1119-1124.

Ignall, E., & Schrage, L. (1965). Application of the branch and bound technique to some flow-shop scheduling
problems. Operations research, 13(3), 400-412.

Johnson, S. M. (1954). Optimal two‐and three‐stage production schedules with setup times included. Naval research
logistics quarterly, 1(1), 61-68.

Kalczynski, P. J., & Kamburowski, J. (2009). An empirical analysis of the optimality rate of flow shop heuristics. European
Journal of Operational Research, 198(1), 93-101.

Kalczynski, P. J., & Kamburowski, J. (2008). An improved NEH heuristic to minimize makespan in permutation flow
shops. Computers & Operations Research, 35(9), 3001-3008.

King, J. R., & Spachis, A. S. (1980). Heuristics for flow-shop scheduling. International Journal of Production
Research, 18(3), 345-357.

Koulamas, C. (1998). A new constructive heuristic for the flowshop scheduling problem. European Journal of Operational
Research, 105(1), 66-71.

Liu, W., Jin, Y., & Price, M. (2017). A new improved NEH heuristic for permutation flowshop scheduling
problems. International Journal of Production Economics, 193, 21-30.

Nawaz, M., Enscore Jr, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing
problem. Omega, 11(1), 91-95.

Onwubolu, G., & Davendra, D. (2006). Scheduling flow shops using differential evolution algorithm. European Journal of
Operational Research, 171(2), 674-692.

Page, E. S. (1961). An approach to the scheduling of jobs on machines. Journal of the Royal Statistical Society: Series B
(Methodological), 23(2), 484-492.

 Palmer, D. S. (1965). Sequencing jobs through a multi-stage process in the minimum total time—a quick method of
obtaining a near optimum. Journal of the Operational Research Society, 16(1), 101-107.

Rad, S. F., Ruiz, R., & Boroojerdian, N. (2009). New high performing heuristics for minimizing makespan in permutation
flowshops. Omega, 37(2), 331-345.

Reza Hejazi*, S., & Saghafian, S. (2005). Flowshop-scheduling problems with makespan criterion: a review. International
Journal of Production Research, 43(14), 2895-2929.

Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics. European
Journal of Operational Research, 165(2), 479-494.

Semanco, P., & Modrak, V. (2012). A comparison of constructive heuristics with the objective of minimizing makespan
in the flow-shop scheduling problem. Acta Polytechnica Hungarica, 9(5), 177-190.

 322

STINSON, J. P., & SMITH, A. W. (1982). A heuristic programming procedure for sequencing the static flowshop. The
International Journal Of Production Research, 20(6), 753-764.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research, 64(2), 278-
285.

Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing problem. European Journal of
Operational research, 47(1), 65-74.

Vallada, E., Ruiz, R., & Framinan, J. M. (2015). New hard benchmark for flowshop scheduling problems minimising
makespan. European Journal of Operational Research, 240(3), 666-677.

Vasiljevic, D., & Danilovic, M. (2015). Handling ties in heuristics for the permutation flow shop scheduling
problem. Journal of Manufacturing Systems, 35, 1-9.

Ying, K. C., & Lin, S. W. (2013). A high-performing constructive heuristic for minimizing makespan in permutation
flowshops. Journal of Industrial and Production Engineering, 30(6), 355-362.

© 2021 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY)
license (http://creativecommons.org/licenses/by/4.0/).

