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 Flow shop scheduling problems with rudimentary criteria of minimum makespan are the most 
important investigated problems in the field of scheduling. Generally during the process of 
generating an optimal sequence, multiple partial sequences claiming the optimal value of 
makespan are observed. In this paper a novel tie-breaking rule to select one of the best optimal 
sequences out of all possible partial sequences is developed which then applied to Nawaz-
Enscore-Ham (NEH) heuristic to solve the scheduling problems in permutation flowshop without 
increasing the computational complexity. The performance of proposed heuristic is tested with 
other existing tie-breaking heuristics of similar complexity over Taillard and VRF's instances. 
Computational results reveal that in terms of solution quality, the proposed heuristic outperforms 
over the other NEH based heuristics of the same complexity reported in literature. 
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1. Introduction 

Scheduling is a decision making process that plays a momentous role in production and manufacturing sectors. It is a process 
of taking decisions regarding when, where, how and how much  workload can be distributed among various resource 
requirements. With a large scale advancement in the manufacturing sector, the practical importance of scheduling has raised 
to a prodigious level. Scheduling involves different branches of machine job environments such as single machine system, 
two machine system, multi machine system and open machine system, etc. The main objective of these scheduling problems 
is to schedule the jobs in an available machine environment in such a way that certain scheduling criteria can be successfully 
optimized. These criteria may be defined as measures of performance and generally categorized as: efficiency related 
(includes makespan, flow time, mean flow time, waiting time, idle time, etc.), cost related (includes transportation cost, 
maintenance cost, hiring cost etc.) and due date related (includes lateness, tardiness, number of tardy jobs, etc.). Flow shop 
scheduling problems (FSSP) are the special class of scheduling problems to obtain the fix processing order of n jobs on a 
system of m machines, while each machine can perform a single operation on these jobs and all jobs have the same sequence 
of machines. Due to practical significance and real life existence, FSSP is the most studied scheduling problem. Flow shop 
scheduling problem with the criteria of minimum makespan has attracted the attention of various researchers and 
practitioners for being the tool to measure efficiency rate of both production and service sectors. Garey et al. (1976) proved 
strong NP- completeness of flow shop scheduling problems related to the system of n jobs and m machines, when m>2. 
Literature reveals that in the last five decades different heuristic and metaheuristic algorithms have been developed by 
various researchers to solve the large scale job machine flow shop scheduling problems with the criteria of minimum 
makespan.  Johnson (1954) was the first to investigate two and three stage flow shop scheduling problems with makespan 
criteria. Ignall and Schrage (1965) proposed a branch and bound method to obtain a sequence of jobs which, when processed 
on a system of m machines results in minimum makespan. Page (1961), Palmar (1965) proposed the simple index based 
heuristics to arrange the jobs in ascending or descending order of specified weights with the objective of minimum 
makespan. Campbell et al. (1970), Koulamas (1998) proposed constructive heuristics using Johnson's two machine 
approach for flow shop scheduling problems. Gupta (1971) proposed a functional heuristic algorithm to solve large size 
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flow shop scheduling problems. Bonney and Grundy (1976), Dannenbring (1977), King and Spachis (1980) successfully 
studied the performance of each constructive algorithm for minimum makespan criteria. Some of the pioneering studies on 
makespan are given by Stinson and Smith (1982), Nawaz et al. (1983), Taillard (1990), Hundal and Rajgopal (1987). 
Framinan et al. (2003) constructed 177 initial job ordering procedures and observed that the NEH heuristic outperforms 
over all other methods in flow shop scheduling problems with minimum makespan. Hejazi and Saghafian (2005) gave a 
complete literature review of flow shop scheduling problems with makespan criteria. Ruiz and Maroto (2005) validated that 
among all the constructive heuristics NEH heuristic is the best heuristic for Taillard's benchmarks (1990). 

The NEH algorithm can be processed under two phases: sorting and reinsertion. In the first phase, the jobs are sorted in 
descending order of total processing time and initial feasible schedule is obtained. In the second phase, jobs from the initial 
sequence are picked up one by one and are arranged corresponding to a minimum value of makespan, to obtain an optimal 
schedule. Kalczynski and Kamburowski (2007) studied the shortcoming of NEH heuristic that is the tie in job schedules 
with minimum makespan while arranging the jobs in the second phase. Chakraborty and Laha (2007) proposed the heuristic 
algorithm for minimizing makespan in permutation flow shop scheduling environment. Dong et al. (2007) proposed NEH-
D heuristic with a new initial priority rule and tie breaking strategy based on balanced utilization in the machine system. 
Kamburowski and Kalczynski (2008, 2009) marked NEH-KK1 and NEH-KK2 heuristics with tie breaking strategy TBKK1 
and TBKK2 of complexity O(mn3) based on Johnson's heuristic to schedule jobs in system of machines to minimize makespan 
by giving weightage to the processing time. Rad et al. (2009) proposed new insertion methods that outperform NEH on 
comparatively large numbers of instances when the comparison is carried over to Taillard Benchmarks (1990). Yin and Lin 
(2013) proposed constructive heuristic with the definition of tie breaking strategy that involves minimum system idle time 
priority rule, to solve makespan related flow shop scheduling problems. Vasiljevic and Danilovic (2015) studied different 
methods for handling ties in an NEH-heuristic FRB1-FRB5 of complexity  O(m2 n2) for permutation flow shop scheduling 
problems with makespan criteria. Liu et al. (2017) studied the effects of the first four moments of processing time on the 
initial job sequence and proposed novel tie breaking rule NEH-LPJ1 of complexity O(mn2) for NEH heuristic by minimizing 
front delay time and idle time before tie position. 

In this paper an effective tie breaking strategy TBSMM of complexity O(mn3) is proposed to select the best sequence out of 
possible partial sequences that correspond to minimum makespan. The efficiency of proposed tie breaking rule is compared 
with existing tie breaking strategies over Taillard and VRF's benchmarks for permutation flow shop scheduling problems. 

The rest of the paper is organized as follows: In section 2, the mathematical model for the considered problem with various 
notations is developed. The existing tie breaking rules developed on NEH heuristic to solve criteria of makespan are 
discussed in section 3 and the proposed tie breaking mechanism is elaborated in section 4. In section 5  the test cases and 
computational results are discussed to demonstrate the effectiveness of the proposed heuristic. Finally conclusions and 
future developments are presented in section 6. 

2. Problem definition 

Flow shop scheduling is the branch of scheduling  in which jobs undergo the available system of machines in a fixed order 
without any preemption and each of the jobs follow the same route of machines without any interruption. In this section, a 
mixed integer programming model is developed to obtain processing order of jobs corresponding to minimum makespan. 

The considered problem is based on the following assumptions: 

1.       All the jobs are available for processing at time zero. 
2.       No two jobs can be processed on the same machine simultaneously. 
3.       No two machines can process the same job at a time. 
4.       Processing of jobs is continuous, no machine breakdown is considered. 
5.       No job can be processed on the same machine twice. 
6.       Job preemption is not allowed. 
7.       Job processing time is predetermined. 
8.       No job passing over is allowed. 
9.       Set up time is taken as part of processing time not as an independent factor. 

The following notations are used in the progress of the paper: 

Table 1  
Notations 

Parameters Definition 
n number of jobs  
m number of machines  
i job thiindex for  
j machine  thjindex for  
i jp machine th jjob on  th iprocessing time of  
i jC machine th jjob on   thicompletion  of  
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iT job thitotal processing time of  
∏ initial sequence of jobs 
σ partial optimal sequence 

iσ σjob in optimal sequence  thi 
r an unscheduled job of initial sequence ∏ to be inserted at various positions of  partial optimal sequence σ 
σi jC machine thjjob of scheduled sequence on  thicompletion time of  
σ jC machine th jon  σcompletion time of optimal partial sequence  
jg time gap between completion time of sequence σ  on machines j  and   j-1 

l number of jobs in optimal partial sequence σ 
i ky takes value 1 if job i  is scheduled at location k  in partial optimal sequence, zero otherwise 
i j tz takes value 1 if job i  is processed on machine j at time t, zero otherwise 
maxC maximum total elapsed time 

 

Objective function ∑ 𝐶௜ ௠ × y௜௡୬௜ୀଵ=  maxC min (1) 

subject to  𝐶௠௔௫ − 𝐶௜ ௝  ≥ 0 (2) 𝐶௜ ௝ − 𝐶௜  (௝ିଵ) ≥ ෍𝑝௜ ௝ ௡
௞ୀଵ × 𝑦௜ ௞  ∀𝑖 = 1,2, … ,𝑛;   𝑗 = 1,2, … ,𝑚 

(3) 

𝐶௜ ௝ − 𝐶(௜ିଵ ) ௝ ≥ ෍𝑝௜ ௝ ௡
௞ୀଵ × 𝑦௝ ௞  ∀ 𝑖 = 1,2, … ,𝑛;   𝑗 = 1,2, … ,𝑚 

(4) 

෍𝑦௜ ௞ ௡
௞ୀଵ = 1   ∀ 𝑖 = 1,2, … ,𝑛 

(5) 

෍𝑦௜ ௞ ௡
௜ୀଵ = 1   ∀ 𝑘 = 1,2, … ,𝑛 

(6) 

෍𝑧௜ ௝ (𝑡)௠
௝ୀଵ = 1   ∀ 𝑖 = 1,2, … ,𝑛 

(7) 

𝒛𝒊 𝒋(𝒕) ≤ ෍𝑦௜ ௞ ௡
௞ୀଵ   ∀ 𝑖 = 1,2, … . ,𝑛, 𝑗 = 1,2, … . ,𝑚 

(8) 

𝐶௢ ௝ = 0 =  𝐶௜ ଴  ∀ 𝑗 = 1,2, … ,𝑚; 𝑖 = 1,2, … ,𝑛 (9) 𝑧௜ ௝(𝑡),𝑦௜ ௞ 𝜖 ሼ0,1ሽ  ∀ 𝑖, 𝑘 = 1,2,3, … ,𝑛; 𝑗 = 1,2,3, … ,𝑚 (10) 𝐶௜ ௝ ≥ 0  ∀𝑖 = 0,1,2, … . ,𝑛; 𝑗 = 0,1,2,3, … .𝑚 (11) 
 
Constraint (2) represents the relationship between maximum completion time (Cmax) and completion time of every job i on 
each of the machine j. Constraint (3) depicts that the job i can't be shifted to machine j  unless the operation is completed 
on machine ` j-1'. Constraint (4)  guarantees that if the job `i-1'  processed before job `i'  on a particular machine  `j'  then 
processing of job ̀ i'  can not be started before the processing of job ̀ i-1'  is completed. Eq. (5) assures that the job scheduling 
is permutation in nature .i.e. each job i is scheduled at a unique position `k'  in the final schedule. Eq. (6) depicts that one 
and only one job is scheduled at position k in the final sequence .i.e. no two jobs can be scheduled at the same position. 
Equation (7) clarifies that at a time t  the job `i'  can be processed on a single machine. Constraint (8) depicts the relation 
between decision variables of model. Dummy variables introduced in the model to handle the constraint (3) and constraint 
(4), for j=1 and i=1  respectively, presented in equation (9). Constraints (10) defines the domain of decision variables. Non-
negativity restriction on completion time of each job on each machine is presented as output variables of the scheduling 
model in constraint (11). 
 
3. Tie breaking mechanism 
 
The flow shop scheduling problem with criteria of makespan is NP-hard (Garey 1976). Therefore many heuristics have 
been developed to solve this problem over the last few decades. Among all the constructive heuristics addressed in literature 
Nawaz Enscore Ham (NEH) heuristic (Nawaz et al. (1983)) is the most popular and effective heuristic to solve the referent 
problem. This heuristic involves following steps: 
 

One main limitation of NEH heuristic comes into play when an unscheduled job r  of initial sequence ( ∏ ) is to be inserted 
at different positions of optimal partial sequence (σ) and the multiple partial sequences giving the same optimal value 
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of  makespan are observed .i.e. a situation of tie occurs. For illustration, consider the problem given in Table 2. Here, when 
job 3 is inserted at different positions in partial sequence 6-7, then resultant 2 partial sequences 6-3-7 and 6-7-3 have the 
same minimum makespan. In this situation  considering all the partial optimal sequences altogether for inserting the next 
job at all possible locations may lead to high computation complexity of the algorithm. Therefore, to select one of the best 
possible optimal partial sequences among all the obtained partial sequences an effective tie breaking technique is needed to 
be developed.  Moreover, due to high complexity of large size FSSP, it is not possible to have a single tie breaking rule to 
achieve desired optimality, yet by applying a well defined and appropriate tie breaking mechanisms with NEH algorithm, 
the better results can be expected. The existing tie breaking mechanisms in literature are discussed in following subsections: 

3.1 Tie breaking mechanism by Kalczynski and Kamburowski I 
 

TBKK1 is the tie breaking mechanism developed in heuristic denoted by NEHKK1. This heuristic is due to Kalczynski and 
Kamburowski (2007) in which priority rule to obtain initial feasible sequence is completely different from NEH priority 
rule. In this tie breaking rule the first index of inserted job r for which the minimum value of makespan achieved is 
considered if 𝑚𝑖𝑛൫𝑎ఙ , 𝑏௥)൯ ≥ 𝑚𝑖𝑛 (𝑎௥ ,𝑏ఙ), otherwise the last index for which the minimum value obtained is considered. 
The parameter 𝑎௥ ,𝑏௥  𝑏ఙ 𝑎𝑛𝑑 𝑎ఙ, are given by: 

𝑎௥ =  ෍𝑝௥ ௝ −  𝑝௥ ௠௠
௝ୀଵ  

(12) 

𝑏௥ = ෍𝑝௥ ௝ − 𝑝௥ ଵ௠
௝ୀଵ  

(13) 

𝑎ఙ = 𝐶௠௔௫(𝜎) −෍𝑝௜ ௠௜∈ఙ  (14) 

𝑏ఙ = 𝐶௠௔௫(𝜎) −෍𝑝௜ ଵ௜ఢఙ  (15) 

3.2 Tie breaking mechanism by Kalczynski and Kamburowski II 

The tie breaking rule denoted by TBKK2 is proposed by Kamburowski and Kalczynski (2008) in heuristic NEHKK2 to solve 
referent problems. In this case whenever the tie occurs the first index is chosen as the optimal position of the inserted job r  
if  𝑎ത௥ ≥  𝑏ത௥ , otherwise the last index is considered to be the optimal position. The parameters 𝑎ത௥ and 𝑏ത௥ of this tie breaking 
rule are represented as: 

4. Proposed tie breaking mechanism 

The tie breaking rule denoted by TBSMM is proposed in this paper which is related to minimum mean completion time. 
According to the proposed tie-breaking rule the optimal sequence is chosen with least mean completion time of the jobs on 
the given system of machines. Mathematically, the proposed tie breaking rule is defined as: 𝑇𝐵ௌெெ = 𝐶ఙ ଵ + 𝐶ఙ ଶ + 𝐶ఙ ଷ + … … … … … . +𝐶ఙ ௠𝑚  (18) 

where Cσ j defined as completion time of the job present at the last position of sequence σ on machine `j'. The main idea 
behind the new tie breaking rule is the time gap: 𝑔௝ = 𝐶ఙ ௝ − 𝐶ఙ ௝ିଵ, between completion times of partial optimal sequence 
σ on machines j  and j-1. When an unscheduled job r of initial sequence ∏ is appended at (k+1)th position of sequence σ of 
length k, the completion time of resultant partial sequence on machine j-1 is given by  𝐶ఙೖ ௝ିଵ . Sometimes with new 
completion time, there arises a situation when 𝐶ఙೖశభ ೕషభ >  𝐶ఙ ௝, which leads to the idle time on machine j. Since there is a 
direct relation between makespan and idle time, therefore if this situation is continued on all the machines, then the idle 
time of the machine m may lead to an increase in the makespan. However, if the new job in sequence σ with 𝐶ఙೖశభ ೕషభ <𝐶ఙ ௝ is appended then makespan will be comparatively less. For large values of gj the existing gap between the completion 

𝑎ത௥ = ෍ቈ(𝑚 − 1)(𝑚 − 2)2 + 𝑚 − 𝑗቉௠
௝ୀଵ  𝑝௥ ௝ (16) 

𝑏ത௥ = ෍ቈ(𝑚 − 1)(𝑚 − 2)2 + 𝑗 − 1቉௠
௝ୀଵ  𝑝௥ ௝ (17) 



M. Sharma et al. / Decision Science Letters 10 (2021) 
 

315

times will persist even after appending the job r to the optimal partial sequence σ, i.e. there will be small or even no idle 
time on machine j. Thus completion time of resultant sequence (obtained by appending the unscheduled job r), on each 
machine has great influence on makespan. Although this criteria is not related to inserting the job r in optimal partial 
sequence (σ) rather is related to appending the particular job to sequence, however is the basis for developing a new tie 
breaking strategy. 

4.1 Algorithm proposed 

Algorithm NEHSMM  is proposed, by combining the tie breaking strategy TBSMM with NEH heuristic to obtain the optimal 
sequence of jobs on an available system of machines with the objective of minimum makespan in the FSS environment. 
Further, a high level flow chart of proposed heuristic is presented in Fig. 1.  

 
 

Fig. 1. Flow chart of proposed heuristic 
The following steps are involved in overall computation by proposed heuristic: 

Step 1:  Calculate total processing time 𝑇௜ =  ∑ 𝑝௜ ௝ ∀ 𝑖 = 1,2, … . ,𝑛௠௝ୀଵ . 
Step 2:  Arrange all the jobs in descending order of Ti  and obtain the initial feasible sequence ∏ of jobs. 
Step 3:  Consider the first two jobs from sequence ∏ and arrange them corresponding to minimum makespan to obtain 
partial sequence σ. In case of tie use the proposed tie breaking strategy TBSMM,  if tie still exist then the position of the jobs 
corresponding to first obtained partial sequence σ with minimum makespan is considered. Set length of resultant sequence 
l=2. 
Step 4: Insert the next unscheduled job from initial feasible sequence ∏ in current optimal partial sequence σ and again 
arrange the jobs corresponding to minimum makespan (elapsed time), without violating the order of already scheduled jobs. 
When the choice is to be made among the multiple optimal partial sequences corresponding to minimum makespan, the 
proposed tie breaking strategy (4.1) is implemented to determine the best partial sequence. After insertion of new job 
increase the length l of sequence σ by 1. 
Step 5: Repeat Step 4 until 𝑙 ≥ 𝑛. 
4.2 Computation complexity 
 

In this paper the tie breaking mechanism is introduced by calculating the mean completion time of all the jobs after the 
insertion of job at all the possible positions which clearly does not alter the computation complexity of NEH heuristic and 
it remains O(mn3). 



  316

4.3 Numerical illustration  
 
In this section we have shown implementation of  proposed tie breaking rule with a simple numerical illustration as 
discussed below: 
 
Table 2 
Data of processing  time of 10 jobs on 5 machines 

 Machines 
Jobs 1M 2M 3M 4M 5M 

1J 79 67 10 48 52 
2J 40 40 57 21 54 
3J 48 93 49 11 79 
4J 16 23 19 2 38 
5J 38 90 57 73 3 
6J 76 13 99 98 55 
7J 73 85 40 20 85 
8J 34 6 27 53 21 
9J 38 6 35 28 44 

10J 32 11 11 34 27 
 
The first step of the algorithm mentioned in Section 4.1, is to arrange the jobs in descending order of total processing time 
Ti. Here, for each job total processing time is given by: T1 = 256,  T2 = 212, T3 = 280, T4 = 98, T5 = 261, T6 = 341, T7 = 303, 
T8 = 141, T9 = 151, T10 = 115. 
Therefore corresponding initial feasible solution is :  
 

J6-J7-J3-J5 -J1-J2-J9-J8-J10-J4. 
To obtain the final optimal schedule $\sigma$ follow the Step 2 to Step 5. Following step 2 first two jobs J6 and J7, are 
considered. arranging these jobs simultaneously two possible schedules (J6 , J7)  and (J7, J6) with corresponding makespan 
426 units and 450 units, respectively. So, the partial optimal schedule (J6 , J7)   is selected. Now consider the next job J3 
from the initial feasible job schedule and insert it in all the possible positions of partial optimal schedule σ. The obtained 
job schedules are (J3,J6,J7), (J6,J3,J7) and (J6,J7,J3). Here, schedules (J6,J3,J7) and (J6,J7,J3) are optimal partial schedules 
with minimum makespan 505 units. Following the proposed procedure when the tie occurs between the schedules (J6,J3,J7) 
and (J6,J7,J3), the value of TBSMM obtained, 341.6 units and 358.4 units, respectively. Therefore, the resultant schedule 
obtained by inserting job J3, into second position is considered as optimal partial schedule. Clearly computation of TBSMM 
does not lead to an increase in complexity of the original NEH heuristic as no extra loop is required to be implemented in 
original code. Following the various steps of proposed heuristic the final optimal job schedule is: (J4, J2, J10, J6, J3, J1, J7, 
J8, J9, J5) with makespan 713 units which is comparatively less than that by NEH i.e. 726 units. Implementation of  tie 
breaking mechanism in generating the final optimal job schedule is presented in Table 3. 
 
Table 3  
The best partial sequence constructed by the improved NEH based heuristic after inserting each job of π 

Iteration Inserting job  σ maxC Tie situation 
1 7J 7J-6J 426    No 
2 3J 7J-3J -6J 505    Yes 
3 5J 5J-7J-3J -6J 525    No 
4 1J 5J-7J-1J -3J -6J 592    Yes 
5 2J 5J-7J-1J-3J-6J-2J 632    Yes 
6 9J 5J-9J-7J-1J-3J-6J-2J 652    No 
7 8J 5J-9J-8J-7J-1J-3J-6J-2J 673    Yes 
8 10J 5J-9J-8J-7J-1J-3J-6J-10J-2J 697     No 
9 4J 5J-9J-8J-7J-1J-3J-6J-10J-2J-4J 713     No 

 
5. Computational experiments 
 

In this section, the computational experiments are carried out in MATLAB over Intel(R) core(TM) i5 CPU @ 2.20 GHZ 
computer with 8GB RAM. To confirm the effectiveness of proposed tie breaking rule and to test the performance of 
proposed heuristic, two sets of tests, including comparison tests of the tie-breaking rule and proposed heuristic on Taillard 
(Taillard, 1990) and VRF (Vallada et al., 2015) benchmarks are performed. These benchmarks consist of 600 problem 
instances with varying sizes of number of jobs and number of machines. The processing time is uniformly distributed [1,99] 
for each job i on each machine j. Further, for the comparison test of tie breaking rule two most important tie breaking 
mechanism TBKK1 (Kalczynski & Kamburowski, 2007) and TBKK2 (Kalczynski & Kamburowski, 2008) with same 
complexity O(n3m) have been considered, however many other improved heuristics with different complexities are available 
in the literature. To validate performance of proposed heuristic in solving the referred problem the results obtained for 
Taillard and VRF benchmarks of scheduling are compared against existing well known heuristics including NEH (Nawaz 
et al. (1984)), DE (Onwubolu & Davendra (2006)), NEHKK1 (Kalczynski & Kamburowski (2007)), NEHKK2 (Kalczynski 
& Kamburowski, 2008), MOD (Semanco & Modrak (2012)), CLWTS (Ying & Lin (2013)), GC (Gupta and Chauhan (2015)), 
NEHAB1 (Baskar (2016)). The different parameters used in complete evaluation are given as: 
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Table 3 
Parameters and Measurements 

Parameters Measurements 
Number of jobs 10, 20, 30, 40, 50, 60, 100, 200, 300, 400, 500, 600, 700, 800 

Number of machines 5, 10, 15, 20, 40, 60 
Processing duration Taillard's and VRF standard benchmarks 

 
In order to measure the solution quality, the  average relative percentage deviation (ARPD) is given by, 
 𝐴𝑅𝑃𝐷 = ෍𝐻𝑆௞ − 𝐵𝑆௞ 𝐵𝑆௞ൗ  10 × 100%ଵ଴

௞ୀଵ  
 

(19) 

  
istic for is makespan computed by particular heur  kHSis considered as a tool to measure performance, where 

is the best solution value for this particular instance provided by Taillard (1990)  k BSand  k problem instance 
and VRF (Vallada et. al. 2015). The detail of these tests is discussed in the following subsections. 

 

۵࿿١ Comparison test of tie-breaking rule 
 

The pursuance of proposed tie breaking rule is compared with tie breaking rules in reference, i.e. TBKK1 and TBKK2 by 
implementing them in an NEH heuristic whenever time 
 
Table 4  
ARPD values of different tie breaking rules on Taillard instances 

Problem NEH TBKK1 TBKK2 TBSMM 

20×5 3.31 2.65 2.73 2.40 
20×10 4.60 4.31 4.31 4.45 
20×20 3.73 3.41 3.41 3.77 
50×5 0.72 0.59 0.66 0.66 
50×10 5.07 4.83 4.87 4.69 
50×20 6.65        6.37       6.41       6.18 
100×5       0.53 0.42 0.41 0.41 
100×10 2.21 2.27 1.77 2.04 
100×20 5.34 5.31 5.28 5.69 
200 ×10 1.26 1.12 1.17 1.28 
200×20 4.41 4.24 4.17 3.92 
500×20 2.07 2.00 2.02 2.00 
Average 3.33 3.13 3.11 3.09 

 
Table 5  
ARPD values for different tie breaking rules on VRF benchmarks 

   Problem 
Small         Large 

        NEH 
Small         Large 

         TBKK1 
Small         Large 

       TBKK2 
Small         Large 

        TBSMM 
Small         Large 

10×5           100× 20 2.18              5.71 2.21               5.80 2.23            5.76 2.47              5.67 
10× 10        100× 40 1.63              5.67 1.74               5.52                     1.74             5.44 2.03              5.07 
10× 15        100× 60 1.53              4.95 1.54               4.92 1.44             4.86 1.31              4.77 
10× 20        200× 20 1.99              4.23 1.54               4.00 1.54             4.09 1.98              4.04 
20× 5          200× 40 1.51              4.71 1.19               4.55 2.09              4.51 1.31              4.53 
20× 10        200× 60 4.82              4.55 4.71               4.40 4.71               4.40 4.79              4.24 
20× 15       300× 20 4.33              2.99 4.09              2.80 4.09              2.79 4.04              2.88                      
20× 20       300× 40 4.12              4.08 3.69               3.89 3.64              3.87 3.89              3.79 
30× 5          300× 60 1.43              3.93 1.09               3.73 1.24              3.76 1.22              3.94 
30× 10        400× 20 5.26              2.58 5.87               2.33 5.18               2.40 5.44               2.24 
30× 15        400× 40 5.83              3.66 5.75               3.50 5.76               3.45 5.32               3.43 
30× 20        400× 60 5.48              3.56 5.43               3.31 5.43               3.33 5.30              3.44 
40× 5          500× 20 1.09              2.27 0.73              1.95 0.81               1.91 0.72              1.87 
40× 10        500× 40 4.97              3.21 5.07               3.05 5.02               3.01 4.38              3.03 
40× 15        500× 60 6.05              3.12 6.14               3.13 6.05               3.09 5.54              3.03 
40× 20        600× 20 5.14              1.57 5.68               1.43 5.61               1.56 5.25              1.26 
50× 5          600× 40 0.55              3.13 0.47               2.86 0.32                2.92 0.59               2.76 
50× 10        600× 60 4.58              2.93 4.43               2.82 4.22               2.87 4.62               2.86 
50× 15        700× 20 6.52              1.41 6.46              1.27 6.44               1.24 6.20              1.23 
50× 20        700× 40 5.96              2.77 5.98               2.76 5.99               2.65 6.20              2.48 
60× 5          700× 60 0.89              2.75 0.70               2.76 0.67                2.81 0.86              2.72 
60× 10        800× 20 3.96              1.23 3.89               1.19 3.96               1.19 4.03              1.11 
60× 15        800× 40 5.79              2.43 5.76               2.45 5.78               2.50 5.15              2.34 
60× 20        800× 60 6.45              2.70 6.25               2.69 6.42                2.67 6.49              2.66       
Average 3.83              3.34 

3.59 
3.72               3.21 
3.48 

3.76                3.21  
3.49                     

3.71               3.15 
3.43 

 

It has been found that the performance of the proposed tie breaking rule does not remain consistent on all the benchmarks 
due to random data but it remains favorable in the final evaluation. From Table 5, the average ARPD value for original 
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NEH heuristic is 3.33 for Taillard's benchmarks where as an implementing the tie breaking rules TBKK1 and TBKK2 the 
average ARPD values reduce to 3.13 and 3.11 respectively, whereas proposed tie breaking strategy outperforms these 
referred tie breaking rules with average ARPD 3.09 and minimum value of ARPD on 6/12 problem instances. From Table 
6, we observed that by applying a proposed heuristic on VRF-test beds, the significantly better results are obtained on 27/48 
problem instances with average ARPD value 3.43 (3.71 on small instances and 3.15 on large instances) which are 
comparatively lesser than another tie breaking rules taken in reference. 

5.2 Comparison test for heuristics 
 

For comparison the NEH (Nawaz et.al.(1984)), DE (Onwubolu and Davendra (2006)), NEHKK1 (Kalczynski and 
Kamburowski (2007)), NEHKK2 (Kalczynski and Kamburowski (2008)), MOD (Modrak (2012)), CLWTS (Ying and Lin 
(2013)), GC (Gupta and Chauhan (2015)), NEHAB1 (Baskar (2016)) and proposed heuristic NEHSMM are implemented 
first on Taillard test beds and result is reported in Table 7. NEHSMM heuristic dominates over other referred heuristics on 
6/12 problem instances with ARPD 3.09,  whereas it is 3.17 for NEHKK1,  3.14 for NEHKK2,  8.35 for GC, 10.49 for 
MOD, 3.18 for CLWTS, 3.14 for NEHAB1 and 9.25 for DE. 
 
Table 6 
ARPD values of different heuristics on Taillard's test bed 

Problem NEH NEHKK1 NEHKK2 GC MOD CLWTS NEHAB1 DE NEHSMM 
20×5 3.31 2.81 2.48 7.75 8.89 2.84 2.47 3.98 2.40 
20×10 4.60 4.43 4.17 10.62 13.76 4.54 4.50 5.86 4.45 
20×20 3.73 3.37 3.57 8.76 13.41 3.77 3.03 4.53 3.77 
50×5 0.72 0.67 0.44 4.09 6.27 0.61 0.64 4.28 0.66 
50×10 5.07 5.46 5.38 11.49 13.12 5.17 5.07 11.48 4.69 
50×20 6.65 6.25 6.22 12.62 15.41 6.32 6.25 14.73 6.18 
100×5 0.53 0.41 0.22 2.93 4.08 0.41 0.52 4.27 0.41 
100×10 2.21 2.08 2.28 7.69 9.29 2.07 1.99 10.42 2.04 
100×20 5.34 5.23 11.66 14.35 9.29 5.47 5.39 16.08 5.39 
200 ×10 1.26 1.32 1.32 5.35 6.92 1.61 1.39 8.34 1.28 
200×20 4.41 4.17 4.25 7.95 12.52 4.04 4.37 15.44 3.92 
500×20 2.07 1.95 2.08 6.64 7.86 1.96 2.09 11.58 2.00 
Average 3.33 3.17 3.14 8.35 10.49 3.23 3.14 9.25 3.09 

 
On VRF instances comparison is carried out only among the NEH, NEHKK1, NEHKK2 and proposed NEHSMM 
heuristics. The reason behind taking only these heuristics for evaluation is that only these heuristics compete with our 
proposed heuristic. As shown in Table 8, the proposed heuristic NEHSMM outperforms with ARPD 3.45 (it is 3.71 for 
small instances and 3.15 for large instances) with significant performance on 21/48 problem instances, whereas it is 14/48  
problems, 13/48 and 2/48 problems for NEHKK1, NEHKK2 and NEH heuristics respectively. 
 
Table 7 
ARPD values of different heuristics on VRF instances 

   Problem 
Small         Large 

        NEH 
Small         Large 

         TBKK1 

Small         Large 

       TBKK2 

Small         Large 

        TBSMM 

Small         Large 

10×5           100× 20 2.18              5.71 1.99               5.37 2.34              5.70                  2.42              5.67 
10× 10        100× 40 1.63              5.67 1.59              5.46 2.39              5.42 2.03              5.07 
10× 15        100× 60 1.53              4.95 1.48              4.72 1.86              4.86           1.31              4.77 
10× 20        200× 20 1.99              4.23 1.54              4.18  1.51              4.15 1.98              4.04 
20× 5          200× 40 1.51               4.71 1.59              4.49 2.43              4.76 1.31              4.53 
20× 10        200× 60 4.82              4.55 5.07              4.31 4.77              4.31 4.79              4.24 
20× 15       300× 20 4.33              2.99 4.23              2.90 4.10              2.82 4.04              2.88         
20× 20       300× 40 4.12              4.08 3.91              3.80           4.22              3.99 3.89              3.79 
30× 5          300× 60 1.43              3.93                  0.92               3.84 1.07              4.24 1.22              3.94 
30× 10        400× 20 5.26              2.58 5.09               2.39 5.22              2.27 5.44              2.24 
30× 15        400× 40  5.83              3.66            6.02               3.70 5.53              3.61 5.32              3.43 
30× 20        400× 60 5.41              3.56 5.44               3.42 5.61              3.49 5.30              3.44 
40× 5          500× 20 1.09               2.27 0.61               1.84 0.45              1.73 0.72              1.87 
40× 10        500× 40 4.97              3.21 4.78               3.09 5.01              3.02 4.38              3.01 
40× 15        500× 60 6.05              3.12 6.14               3.09 6.33              3.19 5.54             3.03 
40× 20        600× 20 5.14              1.57 5.35               1.50 5.37              1.52 5.25             1.56 
50× 5          600× 40 0.55              3.13 0.45               3.00 0.37              2.88 0.59             2.76 
50× 10        600× 60 4.58              2.93 4.30               2.88 3.48              2.94 4.62              2.86 
50× 15        700× 20 6.52              1.41 6.36               1.33 6.19              1.11 6.19              1.23 
50× 20        700× 40 5.96              2.77 6.38               2.68 6.10              2.45 6.20              2.48 
60× 5          700× 60 0.89              2.75 0.77               2.68 0.88               2.76 0.76              2.72 
60× 10        800× 20 3.96              1.23 4.06               1.13 4.02               0.95 4.03              1.11 
60× 15        800× 40 5.79              2.43 5.69               2.44 5.96               2.32 5.15              2.34   
60× 20        800× 60 6.45              2.70 6.08               2.58 6.68               2.56 6.49              2.66 
Average 3.83              3.34 

3.59 
3.74               3.20 
3.49 

3.80               3.20 
3.50 

3.71              3.15 
3.45 
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5.3 Test for significance 
 

To test whether the difference in makespan and ARPD values for the referred heuristic algorithms and proposed heuristic 
is significant on Taillard and VRF benchmarks, the paired sample t-test is carried out at 95%  level of significance and the 
results are shown in Table 10  and Table 11. The test is also carried over the combined data of both referred test beds in 
Table 9. As depicted in Table 9 for confidence level 𝛼 = 0.05, the value of p  less than 0.05 demonstrates that there is 
significant difference present between the proposed heuristic and referred heuristics. It is clear that the difference between 
pairs NEHSMM and NEH, NEHSMM and NEHKK1, NEHSMM and NEHKK2 is significant. Similarly, two sided 
paired sample t-test is carried over ARPD values of NEHSMM and for all other referred heuristics. This test is carried over 
both the VRF and Taillard's benchmarks and significance values are presented in the significance column of Table 10 and 
Table 11, respectively. 
 
Table 8 
Paired sample t-test for combined VRF and Taillard benchmarks 

Parameters     Pair   Mean mSE CI-lower CI-upper        t         P 
Makespan NEH-NEHSMM 

KK1-NEHSMM 
KK2-NEHSMM 

16.19 
4.938 
1.489 

2.534 
2.337 

2.49 

12.01 
0.346 

-3.409 

21.96 
9.530 
6.388 

6.703 
2.113 
0.597 

0.000 
0.035 
0.049 

ARPD NEH-NEHSMM 
KK1-NEHSMM 
KK2-NEHSMM 

0.166 
0.031 
0.559 

0.031 
0.035 
0.044 

0.106 
-0.038 
-0.034 

0.228 
0.102 
0.146 

5.468 
0.922 
1.247 

0.000 
0.036 
0.021 

 
Table 9 
Paired sample t-test result on Taillard's Benchmarks 

Parameters Pair Mean mSE CI-lower CI-upper t P 

Makespan NEH-NEHSMM 
KK1-NEHSMM 
KK2-NEHSMM 
GC-NEHSMM 

MOD-NEHSMM 
NEHSMM-WTSCL 

NEHAB1-NEHSMM 
DE-NEHSMM 

10.40 
1.125 
1.275 
337.5 
254.7 
9.967 
7.250 
447.2 

3.577 
3.316 
3.907 
31.01 

2099.9 
3.494 
3.804 
40.76 

3.324 
-5.442 
-6.461 
276.08 
1611.1 
-1.88 
-0.282 
366.5 

17.491 
7.692 
9.011 
398.9 
6705.2 

5.95 
14.78 
527.9 

2.91 
0.339 
0.326 
10.88 
11.08 
1.277 
1.906 
10.97 

0.004 
0.035 
0.047 
0.000 
0.000 
0.024 
0.049 
0.000 

ARPD NEH-NEHSMM 
KK1-NEHSMM 
KK2-NEHSMM 
GC-NEHSMM 

MOD-NEHSMM 
NEHSMM-WTSCL 

NEHAB1-NEHSMM 
DE-NEHSMM 

0.225 
0.051 
0.012 
5.253 
6.968 
0.082 
0.012 
6.149 

0.082 
0.091 
0.084 
0.497 
0.603 
0.184 
0.084 
1.091 

0.405 
-0.148 
-0.172 
4.158 
5.641 
0.013 
-0.172 
3.748 

0.456 
0.031 
0.196 
6.349 
8.295 
0.151 
0.196 
8.551 

2.761 
1.973 
0.148 
1.056 
11.56 
2.620 
0.148 
5.635 

0.019 
0.058 
0.050 
0.000 
0.024 
0.050 
0.000 
0.0000 

 
Table 10 
Paired sample t-test results on VRF benchmarks 

Parameters     Pair   Mean mSE CI-lower CI-upper        t         p 
Makespan NEH-NEHSMM 

KK1-NEHSMM 
KK2-NEHSMM 

22.95 
6.791 
3.292 

3.011 
2.799 
2.999 

17.035 
1.290 

-2.605 

28.86 
12.29 
9.186 

7.622 
2.462 
1.097 

0.000 
0.016 
0.027 

ARPD NEH-NEHSMM 
KK1-NEHSMM 
KK2-NEHSMM 

0.152 
0.027 
0.067 

0.033 
0.038 
0.052 

0.087 
-0.048 
-0.038 

0.214 
0.103 
0.172 

4.701 
0.725 
1.278 

0.000 
0.047 
0.208 

 

5.4 Computation efficiency 
 

In order to test computation efficiency of the proposed heuristic over the other heuristics taken in reference, average relative 
percentage deviation (ARPD), average CPU time (ACPU), average relative computation time (ARCT) is computed 
simultaneously. The ACPU and ARCT (Fernandez et al., 2017) are defined as follows:  𝐴𝐶𝑃𝑈 = ∑ 𝐶𝑃𝑈௧ ௛௧ 𝐼  

(20) 

𝐴𝑅𝐶𝑇 =  ∑ 𝐶𝑃𝑈௧ ௛ − 𝐴𝐶𝑇௧ 𝐴𝐶𝑇௧ൗ௧ 𝐼 + 1 
(21) 
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where, I is the total number of instances, CPUt h is computation time taken by heuristic h to solve the instance t, 𝐴𝐶𝑇 ௧ =∑ ஼௉௎೟ ೓೓ ு  , H=number of heuristics considered. 
ACPU and ARCT are two performance measures of computation efficiency of heuristic whereas ARPD is used to verify the 
solution quality of heuristic h. To get the unbiased results, each of the heuristic is run over the both Taillard and VRF 
benchmarks independently five times and then mean is taken as final CPU time. The results of each heuristic on Taillard's 
and VRF benchmarks are presented in Table 12. From Table 12, it is clear that the proposed heuristic NEHSMM is 
outperforming the other referred heuristics significantly, however is not efficient on a scale of computation. This shows as 
the more time is spent on sequencing the jobs better results can be obtained. 
 

Table 11 
Comparison on basis of ARPD, ACPU, ARCT 

Heuristic                         Taillard 
ARPD                 ACPU                  ARCT 

                 VRF    
ARPD         ACPU          ARCT  

NEH 3.325                   2.046                    0.945 3.592            19.345          0.784  
NEHKK1 3.171                   2.046                    1.016 3.502          19.395          1.052 
NEHKK2 3.142                  2.094                      1.039 3.502            19.365            1.035 
GC 8.352                   2.165                     1.210 -                         -                 - 
MOD 10.49                   2.861                     1.732 -                         -                 - 
NEHAB1 3.148                   2.974                     0.526 -                         -                 - 
NEHSMM 3.099                   2.092                    0.999 3.446            19.503         1.081            

 
Also computation effectiveness of each heuristic competitive to proposed heuristic is depicted in Fig. 2 to Fig. 
5. 

  
Fig. 2. ARPD vs ACPU on Taillard's benchmarks Fig. 3.  ARPD vs ARCT on Taillard's benchmarks 

  
Fig. 4.  ARPD vs ACPU on VRF benchmarks Fig. 5. ARPD vs ARCT on VRF benchmarks 

 

6. Conclusion  

In this work a novel tie-breaking rule for NEH heuristic without increasing its computational complexity is introduced. The 
computation tests are carried  over the Taillard's and VRF-hard's benchmarks for permutation flowshop scheduling. Test 
results show that the proposed heuristic NEHSMM outperforms the other referred constructive heuristics significantly. 
Computation efficiency results depict that, however the use of tie breaking strategies with the NEH heuristic may lead to 
increase in computation time yet the best results of makespan can be expected. In conclusion, a new heuristic NEHSMM is 
proposed for the permutation flowshop scheduling problems with minimum makespan criteria. The effectiveness of the 
proposed heuristic has also been validated on both Taillard and VRF test beds. The future work on this strategy is to define 
more effective strategies and tie breaking techniques for NEH technique so as to obtain the best results of makespan in flow 
shop scheduling environment. Moreover the technique developed here can also be used to solve the tie breaking strategy 
occurs is bicriteria flow shop scheduling problem with makespan as primary objective so as to get better results of this 
parameter. 
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