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 A simple, efficient and green one-pot, four-component synthesis of highly substituted 
polyhydronaphthalenes in aqueous media is described. The method has such advantages as 
short reaction times, high yields, mild reaction conditions, operational simplicity and 
environmentally benign. 
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1. Introduction     

         Green Chemistry is the commonly accepted term to describe the movement towards more 
environmentally acceptable chemical processes and products.1-3 Given the desirable economic, safety 
and environmental properties of water, it is the ideal green solvent for organic reactions. On the other 
hand, there are many potential advantages in using water as a solvent for organic reactions, such as 
synthetic efficiency, simple operation, and potential for new synthetic methodologies.1 

        Multi-component reactions (MCRs) are convergent reactions, in which three or more starting 
materials react to form a product, where all or most of the atoms contribute to the newly formed product. 
The major advantages of MCRs include lower costs, shorter reaction times, high atom-economy, energy 
saving, and the avoidance of time consuming and expensive purification processes. It is established 
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that MCRs are often more environmentally friendly, and offer rapid access to large compound libraries 
with diverse functionalities.4-7 

        2,6-Dicyanoanilines are typical acceptor-donor-acceptor (A-D-A) systems comprising one 
electron-donor (NH2 group) and two electron-acceptors (cyano groups).8 These molecular systems have 
attracted much attention because of their optical properties.9 They are the basis for artificial 
photosynthesis,10 materials presenting semi-conducting or nonlinear optical properties11 and molecular 
electronic devices.12 2-Amino-1,3,3-tricyano-substituted polyhydronaphthalenes containing 2,6-
dicyanoamine moiety with one electron-donor and three electron-acceptors belong to typical acceptor-
donor-acceptor-acceptor (A-D-A-A) systems.13 

        2,6-Dicyanoanilines have been prepared from arylidenemalonodinitriles and 1-
arylethylidenemalonodinitriles in the presence of piperidine,14 ethanediamine,15 triethylamine,16 
NaOH,17 or under microwave irradiation.18 The reaction between propanedinitrile and α,β-unsaturated 
ketones could also give 2,6-dicyanoanilines. The reported yields of 2,6-dicyanoanilines were poor,19 

and all the above-mentioned reactions were performed in organic solvents. Also synthesis of the one-
donor poly-acceptors systems containing 2,6-dicyanoamine moiety have been reported in aqueous 
media in the presence of catalysts such as TEBAC (triethylbenzylammonium chloride),20  ZnTiO3 
nanopowder,13 and chitosan.21 The synthesis of the A-D-A-A type of compounds have also been 
reported via three-component reactions in ionic liquids.22 

 

2. Results and Discussion 
 

        As part of our efforts to develop new synthetic methods,7, 23-25 herein we wish to demonstrate a 
simple, versatile, and environmentally friendly one-pot three-component reaction for the combinatorial 
library synthesis of 2-amino-1,3-dicyano-substituted polyhydronaphthalenes in aqueous media in the 
presence of ammonium acetate as a safe, inexpensive and nontoxic catalyst (Scheme 1 and Table 1).  
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Scheme 1. One-pot, four-component synthesis of A-D-A-A systems in aqueous media
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        Initially, we carried out the MCR of malononitrile, aromatic aldehydes and cyclohexanone in the 
presence of ammonium acetate in water:ethanol (1:1) at 55-60 °C. After completion of the reaction 
(TLC monitoring), TLC indicated the mixture of products, so the reaction was conducted in two stages, 
first of all treatment of arylaldehyde and malononitrile (1:1 molar ratio) in water:ethanol for 30 min at 
55-60 °C gave the benzylidene malononitrile 1 which, without isolation, was directly treated with 
ammonium acetate, another mole of malononitrile and cyclohexanone. Stirring was maintained for an 
additional 2 hours. The precipitated solid was filtered and purified by recrystallization from EtOH to 
give the products 3a-i in good to excellent yields (Table 1). In the absence of ammonium acetate, the 
reaction did not yield the expected product.  
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Table 1. One-pot, four-component synthesis of polyhydronaphthalenes in aqueous mediaa 
Entry X Product Yield (%) Mp (˚C)b 
1 H 3a 90 250-251 (Lit.16 250) 
2 2-Me 3b 93 250-251 
3 2-OMe 3c 87 248-249 
4 3-Me 3d 87 194-195 
5 2-Br 3e 88 235-236 
6 4-Br 3f 92 236-238 (Lit.22 264-265) 
7 2-Cl 3g 86 244-245 (Lit.22 279-280) 
8 3-Cl 3h 89 239-240 (Lit.22 122-123) 
9 3-OH 3i 91 212-213 
a All reactions  were  carried out in ethanol-water using aldehyde  (1 mmol), cyclohexanone  (1 mmol), malononitrile (2 
mmol), ammonium acetate (1.3 mmol). bIsolated yields after recrystallization. 

 

       The formation of polyhydronaphthalene derivatives 3a-i can be rationalized by the following 
tandem reactions: 1) formation of benzylidine malononitrile 1 by Knoevenagal condensation of 
aromatic aldehyde and malononitrile; 2) formation of 2 by Knoevenagal condensation of 
cyclohexanone and malononitrile; and 3) Michael addition of 2 to 1, followed by cyclization and 
tautomerization (Scheme 2). Ammonium acetate acts as a catalyst in the Knovenagel condensation and 
Michael addition reactions. 
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Figure 1. Two different structures for 2-amino-1,3-dicyano-substituted polyhydronaphthalenes  Fig. 1. Two different structures for 2-amino-1,3-dicyano-substituted polyhydronaphthalenes 
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       Notably, two slightly different structures A 13,20,26 and B 16,21,22 have been reported for the 
compounds 3. Thus, we eventually solve the issue of those conflicting reports. By means of elemental 
and spectral as well as X-ray crystallographic analysis. We determined that structure of 2-amino-4-(2-
chlorophenyl)-4a,5,6,7-tetrahydro-4H-naphthalene-1,3,3-tricarbonitrile (3g) in fact corresponds to 
formulae B. 27,28 Figure 2 shows the structure and the atomic numbering scheme used for compound 
3g. 

 
        The X-ray results indicate that the bond lengths of C12-C14 (1.476 Å) and C14-C19 (1.517 Å) 
approximate a C-C single bond, whereas C11-C12 (1.347 Å) and C14-C15 (1.326 Å) correspond to C-
C double bond. Hence, with no further doubts performed crystallographic analysis confirmed the 
structure B. 

 

 
Figure 2. ORTEP diagram of 3g. 

 
3. Conclusions 

        In summary, we have developed an efficient and simple one-pot method for the synthesis of 
polyhydronaphthalenes via multicomponent reaction in 50% aqueous EtOH in the presence of 
ammonium acetate. The features of this procedure include mild reaction condition, high yields, short 
reaction time, simple purification and environmentally benign.  
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4. Experimental  
 

4.1. General 
 
      The 1H- and 13C-NMR spectra were taken on a  Bruker SP-250 AVANCE spectrometers. The IR 
spectra were recorded on a Bruker PS-15 spectrometer. The elemental analyses were performed on a 
Carlo-Erba 1104 CHN analyzer. The melting points were measured on an Electrothermal 9100 
apparatus in open capillaries without correction. All the commercial reagents were used without prior 
purification. 

 
4.2. Typical procedure for the synthesis of Polyhydronaphthalenes 3a-i.  
 
       A mixture of benzaldehyde (1 mmol, 0.1 ml), malononitrile (1 mmol, 66 mg) in 50% aqueous 
ethanol (3 ml) was stirred at 55-60 °C for 30 min. Next, ammonium acetate (1.3 mmol, 100 mg), 

Fig. 2. ORTEP diagram of 3g 
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malononitrile (1 mmol, 66 mg) and cyclohexanone (1 mmol, 0.1 mL) were added. The mixture was 
stirred until completion of the reaction as indicated by TLC (2 hours). After cooling, the precipitated 
white solid was filtered, washed with water and recrystallized from EtOH. Compound 2a was obtained 
as pale yellow crystals.  
 
4.2.1. 2-Amino-4a,5,6,7-tetrahydro-4-phenyl-4H-naphthalene-1,3,3-tricarbonitrile (3a). mp 250-251 
ºC (recrystallized from EtOH); yield: 0.270 g (90%). IR (KBr) 3447, 3359, 3001, 2963, 2920, 2858, 
2844, 2217, 1632, 1617, 1599, 1492, 1390, 1271, 1028, 754 cm-1; 1H NMR (250 MHz, DMSO-d6): δ 
0.65-0.85 (m, 1H, CH), 1.36-1.43 (m, 2H, CH2), 1.62 (m, 1H, CH), 1.90-2.20 (m, 2H, CH2), 2.87 (m, 
1H, CH), 3.50 (d, J = 10 Hz, 1H, CH), 5.70 (s, 1H, CH), 7.24-7.70 (m, 7H, NH2 and CH arom) ppm; 13C 
NMR (62.5 MHz, DMSO-d6): δ  21.39 (CH2), 25.23 (CH2), 27.43 (CH2), 34.28 (CH), 43.28 (CH), 
50.92 (C), 81.90 (C), 112.97 (CN), 116.61 (CN), 120.37 (CH), 127.37 (CH), 129.00 (CH), 132.76 (C), 
135.02 (C), 143.96 (C) ppm; Anal. Calcd. for C19H16N4: C, 75.98; H, 5.37; N, 18.61. Found: C, 75.89; 
H, 5.48; N, 18.99. 

4.2.2. 2-Amino-4a,5,6,7-tetrahydro-4-(2-methylphenyl)naphthalene-1,3,3(4H)-tricarbonitrile (3b). 
Yellow crystals; mp 250-251 ºC (recrystallized from EtOH); yield: 0.292 g (93 %). IR (KBr) 3446, 
3357, 3001, 2950, 2920, 2858, 2216, 1633, 1618, 1599, 1446, 1391, 1272, 732 cm-1;  1H NMR (250 
MHz, DMSO-d6): δ  0.79-0.88 (m, 1H, CH), 1.20-1.47 (m, 2H, CH2), 1.59 (m, 1H, CH), 1.90-2.20 (m, 
2H, CH2), 2.35 (s, 3H, CH3), 2.76 (m, 1H, CH), 3.64 (d, J = 12.5 Hz, 1H, CH), 5.71 (s, 1H, CH), 7.28-
7.57 (m, 6H, NH2 and CH arom) ppm; 13C NMR (62.5 MHz, DMSO-d6): δ  20.16 (CH3), 21.46 (CH2), 
25.28 (CH2), 27.07 (CH2), 35.42 (CH), 42.59 (CH), 45.94 (C), 82.00 (C), 112.72 (CN), 113.15 (CN), 
116.68 (CN), 120.66 (CH), 126.83 (CH), 127.56 (CH), 128.87 (C), 129.42 (CH), 131.53 (CH) 133.49 
(C), 138.69 (C), 144.32 (C) ppm; Anal. Calcd. for C20H18N4: C, 76.41; H, 5.77; N, 17.82. Found: C, 
76.80; H, 5.95; N, 17.96. 

4.2.3. 2-Amino-4a,5,6,7-tetrahydro-4-(3-methylphenyl)naphthalene-1,3,3(4H)-tricarbonitrile (3c). 
Yellow crystals; mp 194-195 ºC (recrystallized from EtOH); yield: 0.273 g (87 %). IR (KBr) 3456, 
3395, 3166, 2950, 2935, 2858, 2208, 1668, 1641, 1597, 1394, 1267, 1046, 873, 799, 743 cm-1;  1H 
NMR (250 MHz, DMSO-d6): δ  1.09 (m, 1H, CH), 1.60-1.77 (m, 2H, CH2), 1.86 (m, 1H, CH), 2.20-
2.35 (m, 2H, CH2), 2.55 (s, 3H, CH3), 2.96 (m, 1H, CH), 3.55 (d, J = 12.5 Hz, 1H, CH), 5.94 (s, 1H, 
CH), 7.28-7.57 (m, 6H, NH2 and CH arom) ppm; 13C NMR (62.5 MHz, DMSO-d6): δ  21.46 (CH2), 
24.26 (CH3), 25.28 (CH2), 27.17 (CH2), 35.42 (CH), 42.59 (CH), 45.94 (C), 82.60 (C), 113.15 (CN), 
116.68 (CN), 120.66 (CH), 126.13 (CH), 127.76 (CH), 128.50 (C), 130.12 (CH), 133.53 (CH) 135.42 
(C), 139.79 (C), 145.43(C); Anal. Calcd. for C20H18N4: C, 76.41; H, 5.77; N, 17.82. Found: C, 76.70; 
H, 5.95; N, 17.86. 

4.2.4. 2-Amino-4a,5,6,7-tetrahydro-4-(2-methoxyphenyl)naphthalene-1,3,3(4H)-tricarbonitrile (3d). 
Yellow crystals; mp 248-249 ºC (recrystallized from EtOH); yield: 0.287 g (87 %). IR (KBr) 3446, 
3358, 2944, 2217, 1633, 1618, 1599, 1493, 1464, 1391, 1252, 1122, 810, 754 cm-1;  1H NMR (250 
MHz, DMSO-d6): δ  0.66-0.75 (m, 1H, CH), 1.30-1.47 (m, 2H, CH2), 1.59 (m, 1H, CH), 2.00-2.20 (m, 
2H, CH2), 2.75 (m, 1H, CH), 3.79 (s, 3H, OCH3), 3.84 (d, J = 12.5 Hz, 1H, CH), 5.70 (s, 1H, CH), 
6.92-7.51 (m, 6H, NH2 and CH arom) ppm; 13C NMR (62.5 MHz, DMSO-d6): δ  21.36 (CH2), 25.26 
(CH2), 27.22 (CH2), 34.36 (CH), 42.48 (CH), 42.70 (CH), 56.22 (OCH3), 81.95 (C), 112.19 (CN), 
112.47 (CN), 113.08 (CN), 116.56 (CH), 121.03 (CH), 122.61 (CH), 128.50 (C), 129.34 (CH), 130.53 
(CH) 144.22 (C), 158.22 (C) ppm; Anal. Calcd. for C20H18N4O: C, 72.71; H, 5.49; N, 16.96. Found: C, 
72.38; H, 5.74; N, 16.99. 

4.2.5. 2-Amino-4a,5,6,7-tetrahydro-4-(2-bromophenyl)naphthalene-1,3,3(4H)-tricarbonitrile (3e). 
Yellow crystals; mp 235-236 ºC (recrystallized from EtOH); yield: 0.333 g (88 %). IR (KBr) 3426, 
3385, 3166, 2950, 2933, 2214, 1641, 1557, 1456, 1250, 1026, 751 cm-1;  1H NMR (250 MHz, DMSO-
d6):  δ  1.02 (m, 1H, CH), 1.50-1.77 (m, 2H, CH2), 1.86 (m, 1H, CH), 2.25-2.35 (m, 2H, CH2), 3.20 (m, 
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1H, CH), 4.10 (d, J = 12.5 Hz, 1H, CH), 5.99 (s, 1H, CH), 7.51-7.81 (m, 6H, NH2 and CH arom) ppm; 
Anal. Calcd. for C19H15BrN4: C, 60.17; H, 3.99; N, 14.77. Found: C, 60.50; H, 3.95; N, 14.96. 

4.2.6. 2-Amino-4a,5,6,7-tetrahydro-4-(4-bromophenyl)naphthalene-1,3,3(4H)-tricarbonitrile (3f). 
Yellow crystals; mp 236-238 ºC (recrystallized from EtOH); yield: 0.348 g (92 %). IR (KBr) 3422, 
3345, 3156, 2926, 2211, 1644, 1601, 1489, 1391, 1278, 1076, 1011, 834, 805, 751 cm-1;  1H NMR (250 
MHz, DMSO-d6):  δ  1.05 (m, 1H, CH), 1.60-1.79 (m, 2H, CH2), 1.93 (m, 1H, CH), 2.29-2.44 (m, 2H, 
CH2), 3.02 (m, 1H, CH), 3.85 (d, J = 12.5 Hz, 1H, CH), 5.96 (s, 1H, CH), 7.61-7.95 (m, 6H, NH2 and 
CH arom) ppm; Anal. Calcd. for C19H15BrN4: C, 60.17; H, 3.99; N, 14.77. Found: C, 60.44; H, 4.15; N, 
15.03. 

4.2.7. 2-Amino-4a,5,6,7-tetrahydro-4-(2-chlorophenyl)naphthalene-1,3,3(4H)-tricarbonitrile (3g). 
Yellow crystals; mp 244-245 ºC (recrystallized from EtOH); yield: 0.288 g (86 %). IR (KBr) 3446, 
3357, 3166, 2948, 2214, 1633, 1595, 1557, 1478, 1391, 1250, 1056, 776, 702 cm-1;  1H NMR (250 
MHz, DMSO-d6): δ = 1.05 (m, 1H, CH), 1.57-1.67 (m, 2H, CH2), 1.86 (m, 1H, CH), 2.26-2.36 (m, 2H, 
CH2), 3.06 (m, 1H, CH), 4.10 (d, J = 12.5 Hz, 1H, CH), 5.99 (s, 1H, CH), 7.52-7.86 (m, 6H, NH2 and 
CH arom) ppm; Anal. Calcd. for C19H15ClN4: C, 68.16; H, 4.52; N, 16.73. Found: C, 68.40; H, 4.95; N, 
17.03. 

4.2.8. 2-Amino-4a,5,6,7-tetrahydro-4-(3-chlorophenyl)naphthalene-1,3,3(4H)-tricarbonitrile (3h). 
Yellow crystals; mp 239-240 ºC (recrystallized from EtOH); yield: 0.298 g (89 %). IR (KBr) 3420, 
3342, 3235, 2925, 2210, 1649, 1603, 1573, 1478, 1393, 1279, 1092, 847, 797, 748, 705 cm-1; 1H NMR 
(250 MHz, DMSO-d6): δ = 1.05 (m, 1H, CH), 1.64 (m, 2H,  CH2), 1.86 (m, 1H, CH), 2.34-2.41 (m, 
2H, CH2), 2.99 (m, 1H, CH), 3.75 (d, J = 12.5 Hz, 1H, CH), 5.95 (s, 1H, CH), 7.52-7.86 (m, 6H, NH2 
and CH arom) ppm; Anal. Calcd. for C19H15ClN4: C, 68.16; H, 4.52; N, 16.73. Found: C, 68.35; H, 4.74; 
N, 16.96. 
 

4.2.9. 2-Amino-4a,5,6,7-tetrahydro-4-(3-hydroxyphenyl)naphthalene-1,3,3(4H)-tricarbonitrile (3i). 
White crystals, mp 212-213 ºC (recrystallized from EtOH); yield: 0.288 g (91 %). IR (KBr) 3449, 3412, 
3235, 2929, 2192, 1675, 1649, 1533, 1350, 811, 737, 690 cm-1; 1H NMR (250 MHz, DMSO-d6): δ = 
1.05-1.12 (m, 1H, CH), 1.54-1.70 (m, 2H, CH2), 1.89 (m, 1H, CH), 2.34-2.44 (m, 2H, CH2), 2.90 (m, 
1H, CH), 3.51 (d,  J = 12.5 Hz, 1H, CH), 5.93 (s, 1H, CH), 7.02-7.81 (m, 7H, NH2, OH and CH arom) 
ppm; 13C NMR (62.5 MHz, DMSO-d6): δ  21.32 (CH2), 25.27 (CH2), 27.20 (CH2), 34.36 (CH), 41.91 
(CH), 42.70 (C), 81.95 (C), 113.21 (CH), 112.76 (CN), 113.38 (CN), 116.30 (CH), 121.20 (CH), 122.64 
(CH), 127.20 (C), 128.94 (CH), 130.58 (C) 144.22 (C), 158.22 (C) ppm; Anal. Calcd. for C19H16N4O: 
C, 72.13; H, 5.10; N, 17.71. Found: C, 72.20; H, 5.15; N, 17.93. 
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