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 Protein IDO1 (indoleamine 2,3-dioxygenase) occupies a critical position in the regulation of the 
immune system and is involved in cancer progression and the development of immune diseases. 
Being a therapeutic target for such critical diseases, we aimed to investigate the IDO1 inhibition 
activity of thirty-nine triazole derivatives using a quantitative structure-activity relationship. The 
dataset was under principal component analysis, multiple linear regression, and multiple non-
linear regression from which two models were generated. The best 2D-QSAR model was 
generated using linear regression, demonstrating a determination coefficient of R2=0.680, a good 
acceptable internal cross-validated coefficient of R2cv=0.700, an error of MSE=0.074, and a good 
predictive potential of R2test=0.809. The QSAR model was further investigated using the 
applicability domain, which showed that all molecules were within the applicability domain, 
hence the absence of an outlier. Overall, the obtained results provide a reliable and highly 
predictive model for the design and prediction of new IDO1 inhibitors thereby influencing cancer 
progression and autoimmune disease development. 
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1. Introduction  
 

       Cancer and immune diseases pose significant medical challenges due to their complexity and impact on human health. 
The discovery of new drugs to treat these conditions is a lengthy and costly process. However, identifying specific 
therapeutic targets can provide new treatment perspectives. In this context, the protein IDO1 (indoleamine 2,3-dioxygenase) 
plays a crucial role.1,2 IDO1 occupies a critical position in the regulation of the immune system and is involved in cancer 
progression as well as the development of immune diseases.1,3 Therefore, it represents a promising target for drug 
development. Nevertheless, the search for molecules capable of selectively inhibiting the activity of IDO1 faces 
considerable challenges due to the complexity of the molecular interactions involved. 

Computational approaches, like QSAR, have emerged as promising techniques to help and direct drug designs.4 This 
approach is based on statistical models that establish quantitative relationships between the chemical structure of molecules 
and their biological activity. By combining experimental data with relevant chemical descriptors, QSAR models can predict 
the inhibitory activity of molecules against IDO1, thus facilitating a faster and more accurate selection of promising 
compounds for drug development.4,5 
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The QSAR approach offers the advantage of being faster and more cost-effective than traditional drug discovery methods. 
It enables the optimization of the design of new molecules with improved inhibitory properties, thereby reducing the time 
and resources required for the drug development process. Therefore, the application of the QSAR approach in drug research 
targeting IDO1 provides a promising opportunity to accelerate the development of more effective treatments against cancer 
and immune diseases. 

In this regard, the objective of this work is to develop robust and reliable QSAR models, representing the steps of a 2D-
QSAR study, to predict and explain the inhibitory activity of the enzyme IDO1 for a series of triazole derivative molecules. 

2. Results and Discussion 
 
2.1. Principle Component Analysis (PCA) Results 
 

PCA analysis enables the generation of a correlation matrix (Table 1) where each correlation coefficient corresponds to the 
variables in the same row and column. Every value higher than |0.5| is considered high, meaning the correspondent 
descriptors give the same information, either positively or negatively depending on the sign of the coefficient. The molecular 
weight (MW) descriptor was found to be positively correlated with four other descriptors, namely molar volume (MV), 
molar refractivity (MR), parachor (Pc), and polarizability (ae), meaning they all provided the same information about the 
variation of the activity in the studied series. In order to avoid any redundancy in the model, we only retained molecular 
weight (MW) from that group for further analysis. Similarly, the refractivity index (n) and surface tension (γ ) are highly 
correlated. Therefore, we conserved only one descriptor, the refractivity index, for further investigation. As a result, the 
refractivity index, molecular weight, density, and logP were the descriptors chosen for a regression investigation. 

Table 1. Correlation matrix. 
Variables pIC50 MW MR MV Pc N γ D αe logP 

pIC50 1          
MW 0.635 1         
MR 0.710 0.905 1        
MV 0.706 0.786 0.95 1       
Pc 0.718 0.856 0.987 0.986 1      
N 0.017 0.409 0.201 -0.114 0.047 1     
γ 0.047 0.424 0.23 -0.078 0.088 0.971 1    
D 0.108 0.609 0.248 -0.006 0.124 0.814 0.795 1   
αe 0.71 0.905 1 0.950 0.987 0.201 0.229 0.248 1  

logP 0.367 0.502 0.488 0.431 0.457 0.219 0.174 0.270 0.488 1 
 
 2.2. Multiple Linear Regression MLR 

The linear relationship between the inhibition activity and the chosen variables was explored using XLSTAT2023 software. 
After several attempts, a model was generated revealing a linear regression between the molecular weight, density, and the 
coefficient of partition logP. The equation is as follows:  

pIC50= 5.218+6.205 MW-1.556 d-0.107 LogP 

The regression equation between the inhibition activity of IDO1 and the 2D studied descriptors includes variables with 
positive coefficients and others with negative ones. The molecular weight has a positive coefficient related to it, which 
means an increase in the molecular weight will positively influence the inhibition activity of IDO1, while a decrease will 
induce a negative influence. As for the coefficient of partition logP and the density, they both have negative coefficients 
meaning a reverse correlation with the activity thus, an increase in any/both of those descriptors will lead to a decrease in 
the inhibition activity and inversely.  

Furthermore, the VIF values (Variance Inflation Factor) for the three descriptors fall within the range of 1 to 5, indicating 
a weak correlation among these descriptors.6,7 

Table 2. The MLR model parameters and the thresholds between brackets. 

R² 0.68 (> 0.6) 
R 0.764 (> 0.5) 

R² adj 0.58 (> 0.5) 
R² cv 0.70 (> 0.5) 
MCE 0.074 (low value) 

RMCE 0.272 (low value) 
F 12.647  

R²test 0.809 (> 0.6) 
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      The model explained 68.0% of the variation of the activity, with a 0.70 cross-validation coefficient, an 80.9% predictive 
ability, a low mean square error of 0.074, and an F value of 12.647. These results follow the acceptance thresholds reported 
by previous studies.8–10  Fig. 1 is a graphical representation of the plot of the pIC50= f(pred(pIC50)). The distribution of the 
experimental activity values and predicted values is relatively uniform. Overall, these results confirm the statistical 
significance of the suggested model.  

Fig. 1. Graphical presentation of the observed activity vs the predicted activity using the MLR model. 

2.3. Non-Linear Multiple Regression NLMR 
 

The non-linear relationship between the activity and the descriptors was also investigated, using the same software as before 
XLSTAT2023 and a pre-programmed function within. The equation of the resulting model is as follows: 

pIC50= – 1.412 + 1.141 MW + 5.888 d – 0.163 logP – 4.461 (MW)2 – 2.514 (d)2 – 4.377 (logP)2 

This model explained 59.8% of the variation, with an R coefficient of correlation of 0.773 and an error of 0.081. It had a 
cross-validated coefficient of 0.58 and a predictive ability of 0.789. The model had a lower cross-validated coefficient (R² 
cv =0.58) than the linear model (R² cv =0.7).   

Table 3. The NLMR models parameters, and thresholds between brackets. 
R² 0.598 (> 0.6) 
R 0.773 (> 0.5) 

R² cv 0.58 (> 0.5) 
SCE 1.934 
MCE 0.081 (low value) 

RMCE 0.284 (low value) 
R²test 0.789 (> 0.6) 

 

     The calculated coefficients adhere to all established criteria, confirming that the developed MNLR model can be 
successfully applied to predict the studied activity. Additionally, according to Table 4 and Fig. 2, a good correlation between 
the values predicted by the NLMR model and the experimental values has been observed. The nonlinear multiple regression 
(NLMR) model yielded good results with lower correlation coefficients (R²), and cross-validated coefficient. However, 
these results aren’t statistically improved than the MLR model. This was confirmed by comparing the predicted activity of 
the studied dataset using both models (Table 4).  

     In this study, we used Multiple Linear Regression (MLR) and Multiple non-linear regression (MNLR) to develop a 
model describing the relationship between the structure and the inhibition activity of triazoles. 

    The results obtained using MLR outperformed those using MNLR, demonstrating that MLR regression is suitable for 
modeling the inhibition activity of the IDO1 protein. MLR allows for more precise prediction of inhibitory activity as it 
captures linear combinations of the descriptors.11  

     Analyzing the statistical results of the two models (from Tables 2 and 3), MLR and MNLR, we observe that the MLR 
model exhibits higher reliability and predictive capability compared to the MNLR model. Calculation errors are lower, and 
the determination coefficients for the training and prediction sets are higher with the MLR model. Therefore, we conclude 
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that the linear approach is more suitable for analyzing the quantitative structure-activity relationship of the inhibitory activity 
of the IDO1 protein with triazole derivatives. 

Fig. 2.  Graphical presentation of the observed activity vs the predicted activity using the NLMR model. 
 
Table 4. Observed and predicted pIC50 values using MLR and MNLR regressions 

  MLR MNLR 
Molecule pIC50 pred (pIC50) Residue pred (pIC50) Residue 

Training set 
1 6.167 5.926 0.242 5.867 0.301 
3 6.495 6.137 0.358 6.174 0.32 
6 5.384 5.504 -0.12 5.44 -0.056 
7 5.088 5.294 -0.206 5.266 -0.178 
8 5.227 5.401 -0.174 5.444 -0.217 
9 5.587 5.294 0.293 5.266 0.32 
10 5.129 5.401 -0.272 5.444 -0.315 
11 5.401 5.257 0.144 5.337 0.064 
12 5.149 5.193 -0.045 5.081 0.068 
13 6.229 6.316 -0.087 6.258 -0.029 
14 5.55 6.154 -0.604 6.149 -0.599 
16 6.013 6.187 -0.174 6.219 -0.206 
17 6.036 5.952 0.084 5.959 0.077 
19 5.583 5.808 -0.224 5.762 -0.178 
20 5.928 6.137 -0.209 6.107 -0.179 
21 6.143 5.904 0.239 5.893 0.249 
23 5.538 5.699 -0.161 5.708 -0.17 
24 5.879 5.821 0.058 5.848 0.031 
25 5.312 5.699 -0.387 5.708 -0.396 
26 6.114 5.658 0.455 5.683 0.43 
27 5.55 5.699 -0.149 5.708 -0.158 
29 5.851 5.821 0.03 5.848 0.003 
30 5.554 5.787 -0.233 5.797 -0.242 
31 6 5.787 0.213 5.797 0.203 
33 6.102 5.895 0.208 5.908 0.194 
34 6.229 5.895 0.334 5.908 0.321 
35 5.821 6.129 -0.308 6.13 -0.309 
36 6.432 5.989 0.443 6.041 0.391 
37 6.119 6.02 0.099 6.085 0.034 
38 6.167 6.151 0.016 6.037 0.131 
39 6.092 5.958 0.134 5.996 0.096 

Test set 
2 6.398 6.293 0.105 6.325 0.073 
5 5.207 5.321 -0.114 5.232 -0.025 
4 5.461 5.48 -0.019 5.396 0.065 
15 5.907 6.067 -0.161 6.077 -0.17 
18 5.506 6.015 -0.509 5.931 -0.426 
22 5.372 5.673 -0.302 5.707 -0.336 
28 5.602 5.895 -0.293 5.827 -0.225 
32 5.335 5.875 -0.54 5.94 -0.605 
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     To determine the outliers and boundaries of our chosen model, (i.e. MLR model), the Williams plot was constructed 
using matlabR2021a software, where leverage values are calculated and compared to the critical leverage. Lower leverage 
values than the critical value is considered acceptable, while the contrast indicates an extrapolation of the model and is 
presented as an outlier. In this study, the training set consists of 31 molecules, and the model is developed using three 
descriptors resulting in a critical leverage value of h*=0.38. The figure below represents William's plot, all the molecules 
are within the boundaries of the critical leverage value and the standardized residual, signifying the reliability of the MLR 
model for the prediction of novel compounds with enhanced activities.  

Fig. 3. Applicability domain of the MLR model. 

3. Conclusions  
 

      Our work has been dedicated to modeling the quantitative structure-activity relationship of triazole inhibitors, aiming 
to construct reliable, robust, and accurate QSAR models capable of effectively predicting this activity. For this purpose, we 
conducted our study using a library of thirty-nine molecules derived from triazoles. 

     Our investigation successfully identified a substantial correlation between biological activity and three specific 
descriptors (MW, d, and logP). These findings hold promise for gaining insights into the intricate relationship between 
chemical structure and biological activity. Employing both Multiple Linear Regression (MLR) and Nonlinear Regression 
(MNLR), we developed two significant models to predict the inhibition activity of the IDO1 protein. 

     The first model assumes a linear relationship between the molecular descriptors (independent variables) and biological 
activity (dependent variable). On the other hand, the second model incorporates more complex patterns by introducing non-
linearity in the relationship between molecular descriptors and activity. Despite the complexity introduced by MNLR, the 
MLR model demonstrated superior performance in capturing the variation of activity in the data, indicating a linear trend 
in the studied triazoles’ activity. 

    All statistical parameters and validation criteria for the MLR model fall within acceptable thresholds. The model exhibited 
a high coefficient of determination, a strong cross-validated coefficient, a low mean square error, and demonstrated high 
predictive power. William's plot visualization confirmed that all molecules lie within the applicability domain, with no 
outliers detected. In summary, our MLR model proved to be well-fitted, robust, and highly predictive. Its successful 
performance makes it a valuable tool for predicting the activities of newly designed molecules in future studies. 

4. Experimental 
 
4.1. Materials and Methods 
 
4.1.1. Data collection 
 

     In a QSAR study, the quality and size of the database are essential to obtain reliable predictions. Therefore, in this study, 
we collected 39 triazole derivatives from the literature.12–15 We investigated the biological activity IC50, after a 
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transformation to pIC50, 16 as the dependent variable for the development of a QSAR model. Table 5 groups the studied 
molecules with their activities.  

 
Table 5. Dataset molecules along with their pIC50 values. 

Compound Structure pIC50 

1 

N
N

N

N

N

O

O

O

O

NH

 

6.167 

3 

 

6.495 

6 

 

5.384 

7 

 

5.088 
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8 

 

5.227 

9 

 

5.587 

10 

 

5.129 

11 

 

5.401 

12 

 

5.149 

13 

 

6.229 
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14 

 

5.550 

16 

 

6.013 

17 

 

6.036 

19 

 

5.583 

20 

 

5.928 
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21 

 

6.143 

23 

 

5.538 

24 

 

5.879 

25 

 

5.312 

26 

 

6.114 
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27 

 

5.550 

29 

 

5.851 

30 

 

5.554 

31 

 

 

6 

33 

 

6.102 
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34 

 

6.229 

35 

 

5.821 

36 

 

6.432 

37 

 

6.119 

38 

 

6.167 



 462

39 

 

6.092 

2 

 

6.398 

5 

 

5.207 

4 

 

5.461 

15 

 

5.907 
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18 

HN

N

N
O

O

O
O

N

N

N

O

H3C

 

5.506 

22 

 

5.372 

28 

 

5.602 

32 

 

5.335 

 
4.1.2. Descriptors calculation 
 

       The chemical structure of the molecules was transformed into various descriptors. For this purpose, Chemsketch 
software ( http://www.acdlabs.com/) was used to calculate molecular weight (MW), molar refractivity (MR) in cm3, molar 
volume (MV) in cm3, diffraction index (n), density (d) in g/cm3, parachor (Pr) in cm3, γ surface tension in dynes/cm, and ae 
polarizability in cm3. Additionally, Chemdraw software (http://www.perkinelmer.co.uk/category/chemdraw) was employed 
to determine the Octanol/Water partition coefficient (ClogP) values (Table 6). 
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Table 6. Calculated descriptors. 
Molecule pIC50 MW MR MV Pc N  ℽ D αe  logP 

1 6.167 526.58 147.8 414.6 1094.6 1.631 48.5 1.26 58.62 5.56 
3 6.495 605.48 155.42 427.1 1138.1 1.647 50.3 1.41 61.61 5.98 
6 5.384 415.51 123.05 332.4 876.8 1.662 48.3 1.24 48.78 3.37 
7 5.088 527.21 125.87 324.5 890.5 1.703 56.7 1.62 49.9 6.26 
8 5.227 478.34 124.13 333.6 897.2 1.666 52.3 1.43 49.21 5.2 
9 5.587 527.21 125.87 324.5 890.5 1.703 56.7 1.62 49.9 6.26 
10 5.129 478.34 124.13 333.6 897.2 1.666 52.3 1.43 49.21 5.2 
11 5.401 415.28 105.19 293.2 777.8 1.636 49.5 1.41 41.7 3.19 
12 5.149 367.4 101.89 290.9 765.6 1.617 47.9 1.26 40.39 3.19 
13 6.229 684.37 162.98 439.6 1181.7 1.663 52.1 1.55 64.61 6.84 
14 5.55 556.61 153.68 436.2 1144.9 1.622 47.4 1.27 60.92 5.03 
16 6.013 623.47 155.29 430 1138.3 1.641 49.1 1.44 61.56 6.12 
17 6.036 591.45 150.81 411.1 1099.5 1.654 51.1 1.43 59.78 6.6 
19 5.583 512.55 143.26 398.6 1056 1.637 49.2 1.28 56.79 5.56 
20 5.928 572.61 154.88 441.8 1156.5 1.618 46.9 1.29 61.4 5.82 
21 6.143 542.58 148.53 411 1092.7 1.642 49.9 1.32 58.88 5.82 
23 5.538 544.98 145.68 381.1 1045.1 1.69 56.5 1.42 57.75 6.42 
24 5.879 540.56 146.89 393.4 1066.5 1.669 53.9 1.37 58.23 5.75 
25 5.312 544.98 145.68 381.1 1045.1 1.69 56.5 1.42 57.75 6.42 
26 6.114 510.54 141.08 371.8 1016.2 1.683 55.7 1.37 55.92 5.53 
27 5.55 544.98 145.68 381.1 1045.1 1.69 56.5 1.42 57.75 6.42 
29 5.851 540.56 146.89 393.4 1066.5 1.669 53.9 1.37 58.23 5.75 
30 5.554 589.43 148.63 384.3 1059.8 1.7 57.7 1.53 58.92 6.57 
31 6 589.43 148.63 384.3 1059.8 1.7 57.7 1.53 58.92 6.57 
33 6.102 538.59 150.11 403 1085.9 1.667 52.6 1.33 59.51 5.53 
34 6.229 538.59 150.11 403 1085.9 1.667 52.6 1.33 59.51 5.53 
35 5.821 650.46 158.34 405.5 1117.6 1.709 57.7 1.6 62.77 5.9 
36 6.432 603.46 153.24 400 1098.4 1.691 56.6 1.5 60.75 5.94 
37 6.119 554.59 151.5 409.5 1105.1 1.661 53 1.35 60.06 5 
38 6.167 682.36 160.8 412.9 1141.9 1.706 58.5 1.65 63.74 6.81 
39 6.092 556.58 150.17 406.7 1093.6 1.66 52.2 1.36 59.53 5.55 
2 6.398 652.48 160.52 432.2 1157.3 1.665 51.4 1.5 63.63 5.94 
5 5.207 417.43 116.45 323.9 853.8 1.638 48.2 1.28 46.16 4.6 
4 5.461 429.47 122.39 342.7 903.9 1.632 48.3 1.25 48.52 4.25 
15 5.907 579.02 152.34 426.7 1123.6 1.632 48 1.35 60.39 5.97 
18 5.506 556.61 153.68 436.2 1144.9 1.622 47.4 1.27 60.92 6.32 
22 5.372 528.53 140.95 374.7 1016.4 1.675 54.1 1.41 55.87 5.85 
28 5.602 636.44 153.73 389.4 1079 1.719 58.9 1.63 60.94 6.83 
32 5.335 542.56 145.56 390.7 1055 1.667 53.1 1.38 57.7 5.22 

Highlighted compounds are test-set compounds 

4.2. Statistical Methods 
 
4.2.1. Principle Component Analysis 
 

     The principal component analysis (PCA) method is essential to reduce the number of descriptors before applying any 
regression analysis to eliminate any redundancy. In our study, we performed PCA to detect correlations among the selected 
descriptors. The results obtained through PCA were fundamental for further analysis. 

4.2.2. Multiple Linear Regression 
 

     Multiple linear regression is a method used to determine the relationship between a dependent variable Y (activity) and 
multiple independent descriptors (X1, X2, X3,...Xn) by obtaining a significant correlation. When dealing with a set of 
diverse descriptors, if the correlation coefficient is statistically significant (|R| > 0.5), it indicates a strong correlation 
between the descriptors.17 

4.2.3. Multiple Nonlinear Regression 
 

      Nonlinear multiple regression is a powerful method for evaluating the complex relationship between structure and 
activity, taking into account the nonlinear interactions among molecular descriptors. Unlike multiple linear regression, 
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which assumes a linear relationship between descriptors and activity, nonlinear multiple regression allows the capturing of 
more complex and nonlinear relationships. This is particularly important when descriptors vary significantly, and their 
relationship with activity cannot be simply modeled by a linear function.  

4.3 Validation techniques and outliers detection 
 
4.3.1. QSAR Validation  
 

      The validation of a QSAR model is the most critical step in QSAR approaches, for it determines the utility and validity 
of the generated model. Since the dataset is split into two parts, a training set, and a test set, there are two validation steps 
to be executed. An internal validation and an external validation. The first is reserved for the training set, while the second 
is for the test set.18,19 

      Models can internally be validated using multiple methods, among them we can cite leave-one-out cross-validation 
LOO 20,21, leave-many-out cross-validation LMO 20, and Y-randomization.22 In our study, we have chosen to work with 
leave-one-out cross-validation LOO. This latter consists of deleting one molecule of the training set from the data, and then 
developing the model, which is therefore used to predict the activity of the deleted molecule. This operation is repeated 
until all the molecules of the training set are deleted from the data once. The average of the coefficient of determination is 
calculated at the end. A value higher than 0.5 is considered acceptable.23 

      The external validation is dedicated to assessing the predictive ability of the generated model. The model is used to 
predict the activity of an external set of molecules. Then the correlation between the observed (experimental activity) and 
the predicted activity is determined, a value higher than 0.6 is considered acceptable.24 

4.3.2. Outliers Detection 
 

      The available experimental data used in QSAR studies is limited to a specific group of molecules, making each derived 
model exclusive to that particular group. In other words, the model is valid only for molecules that are similar to the data 
used for its development. To identify the application boundaries of each model and determine the reliability of predicted 
biological activity, an applicability domain is established.25 

      In this study, the applicability domain was defined using the well-known William's plot 25, which uses Hotelling's test 
and associated leverage statistics. The plot consists of an X-axis representing leverage values and a Y-axis representing 
standardized residuals. It also includes two reference axes: a vertical axis corresponding to the warning leverage (h*), 
typically set at h* = 3(p+1)/n, where p is the number of descriptors in the model and n is the number of molecules in the 
training set. The horizontal axis represents three standard deviation units (±3σ). The leverage of a molecule is calculated as 
follows:  ℎ = 𝑥் (𝑋்𝑋)ିଵ𝑥, where xi is the descriptor row of the query compound, and X is the descriptor matrix of the 
remaining compounds used to develop the model.26 It is important to note that any leverage value exceeding the warning 
leverage is considered an extrapolation of the model, indicating that the corresponding compound is an outlier. 
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