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 The study aimed to explore the anticancer efficacy of indazole pharmacophore by analyzing a 
series of 109 derivatives of indazole as Tyrosine Threonine Kinase (TTK) inhibitors through 
quantitative activity relationship analysis using 2D and 3D QSAR techniques. The best 2D-
QSAR model was generated by the MLR method, showing a high correlation coefficient (r2) of 
0.9512, and good internal (q2), and external (pred_r2) cross-validation regression coefficients of 
0.8998, and 0.8661, respectively. The residual values were modest, indicating good agreement 
between the observed and predicted pIC50 values, which suggested that the chosen model was 
predictably accurate. The 3D QSAR model, built using the SWF kNN approach, displayed a high 
internal cross-validation regression coefficient (q2) of 0.9132. Essential structural 
features/considerations in developing indazole as prospective anticancer medicines have been 
suggested. The study provides a reliable and predictive model for the prediction of anticancer 
activity of indazole derivatives. The identified essential structural features/considerations may 
be useful for the development of prospective anticancer medicines. 
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1. Introduction  
 

 
      In modern organic chemistry, the importance of computational methods cannot be overstated. These methods allow 
researchers to predict and understand the properties of organic molecules, such as energy levels, reactivity, and 
spectroscopic characteristics1. Quantum-chemical calculations play a vital role in studying reaction mechanisms by 
identifying transition states, determining reaction energetics, and exploring different reaction pathways. These calculations 
enable chemists to uncover the driving forces behind chemical transformations, optimize reaction conditions, and design 
efficient synthetic strategies2. Furthermore, computational methods have expanded their reach into the biological realm, 
facilitating the investigation of the interactions between chemical compounds and biomolecules. By integrating organic 
chemistry principles with biology, researchers can explore the potential applications of compounds in drug discovery, 
bioorganic chemistry, and chemical biology, thereby bridging the gap between chemistry and the life sciences3. 
 
     QSAR/QSPR4 is a computational method widely utilized for establishing models that capture the relationships between 
molecular descriptors and physicochemical or physiological characteristics of chemical compounds. These models, derived 
from numerical representations of the molecular structure, play a vital role in drug identification and optimization5. By 
enabling early in silico evaluation of crucial parameters related to compound performance, specificity, and toxicity, 
QSAR/QSPR models significantly enhance drug discovery programs. The utilization of these models not only improves the 
effectiveness of drug development but also saves valuable time and resources, making the process more efficient and cost-
effective6. 
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     In the realm of cancer research and treatment, computational methods have emerged as essential tools for understanding 
the complex nature of the disease and guiding the development of effective therapies. Through the integration of 
computational methods and statistical analyses, we offer insights into the structure-activity relationship and identify key 
molecular traits and structural features necessary for potent TTK inhibition. These findings can guide the design and 
synthesis of novel indazole-based TTK inhibitors with improved efficacy, potentially leading to the development of more 
effective treatments for cancer. Carcinoma was currently the biggest disease-related reason of death in several areas of the 
globe, and it is predicted to remain so in the upcoming decades7. In cancer treatment, various chemicals are used to shrink 
tumours. Chemotherapy has the advantage of being able to treat malignancies that have spread throughout the body, surgical 
and radiation treatments, on the other hand, are confined to treating localized tumours8. Chemotherapy has piqued the 
interest of many academicians, and most of the recent studies have been dealing with the development and production of 
numerous anticancer drugs9. 
 
      Numerous cell growth and checkpoint kinases in the human body have been identified as potential targets for cancer 
therapy. One such pathway is the spindle assembly checkpoint (SAC), which is a conserved pathway in eukaryotes10. Its 
role is to halt the cell cycle during mitosis until all chromosomes establish stable bipolar attachments to the mitotic spindle. 
When the SAC malfunctions, it allows mitotic exit even when kinetochores are unattached, leading to chromosome 
missegregation. Previous studies have shown that inactivating the SAC results in lethal genomic instability in cancer cells. 
Threonine tyrosine kinase (TTK), also known as Mps1, is a critical component of the SAC and acts as a surveillance 
mechanism to ensure accurate mitosis and genome stability11. TTK is often overexpressed in highly proliferative cancers 
such as lung cancer, including the most aggressive and deadly forms. Inhibition of TTK leads to premature exit from mitosis, 
causing chromosome missegregation, aneuploidy, and ultimately cell death of cancerous cell. Decreased TTK activity 
significantly reduces cell viability. Comprehensive analyses combined with gene expression profiles of human cancers have 
identified TTK as a promising target for anticancer therapy12,13. Reversine its analogue MPI-0479605, NMS-P715, MPS1-
IN-1, AZ 314628, SP60012514, the Genentech and Cancer Research UK inhibitors (CCT251455) are the small molecules 
of TTK inhibitors (Fig. 1). The ubiquitous appearance of a crucial N-phenyl pyrimidin-2-amine motif, indicated in Fig. 1 
is the most remarkable aspect of all of these inhibitors, a variation on this subject can be seen in the Shionogi-1 inhibitor. 
The strategy was based on hits from a concentrated examination conducted, that led to the discovery of acetamido and 
carboxamide substituted 3-(1H-indazol-3-yl)-benzenesulfonamides (Shionogi-2, Fig. 2) 15, 16. The indazole moiety (1,2-
benzodiazole) is a versatile molecule with a variety of biological characteristics, particularly anticancer action. The 5-
substituted acetamido and carboxamide derivatives of 3-(1H-indazol-3-yl) benzenesulfonamides (Fig. 2), respectively, were 
strong TTK inhibitors with a limited capacity to slow the development of cancer cells. In the context of cancer research, 
inhibition of TTK has gained significant attention due to its crucial role in mitosis and its association with aneuploidy and 
chromosomal abnormalities. The development of TTK inhibitors holds promise for the design of novel therapies.  
 
     There is a plethora of literature accessible on the various biological actions of naturally and semi-synthetic indazole 
analogues, however, articles describing the fundamental regulatory aspects influencing anticancer activity are scarce. To 
address this gap, a quantitative structure-activity relationship (QSAR) investigation was conducted on 109 indazole 
derivatives as Tyrosine Threonine Kinase (TTK) inhibitors. By analyzing their 2D and 3D QSAR structural requirements, 
this study aimed to identify essential features for developing novel chemotypes and enhancing TTK inhibitor efficacy. The 
generated predictive models encompassed steric and electrostatic impacts, providing valuable insights for prospective 
anticancer drug design. This research has tried to contribute to the understanding of the anticancer efficacy of indazole 
pharmacophores and offers crucial considerations for developing potent TTK inhibitors with improved therapeutic potential. 
 
Novelty of work and their contribution 
 
     By investigating a specific class of compounds, this study provides valuable insights into the structure-activity 
relationship of indazole-based TTK inhibitors. The study employed comprehensive 2D and 3D QSAR analyses to elucidate 
the molecular traits and structural features crucial for the compounds' anticancer activity against TTK. Through statistical 
modeling and analysis, physicochemical and alignment-independent descriptors play a significant role in regulating the 
alterations in activity. This quantitative understanding of the structural requirements provides a solid foundation for 
designing and optimizing indazole derivatives with enhanced therapeutic potential. Furthermore, the research contributes 
to the field by developing reliable predictive models.  
 
     Among the three 2D-QSAR methods tested, multiple linear regression (MLR) analysis demonstrated superior predictive 
power and reliability. The MLR equation derived from the study can serve as a valuable tool for medicinal chemists in the 
rational design of novel indazole derivatives with improved biological activity. This advancement in predicting structure-
activity relationships facilitates the targeted synthesis and optimization of potential TTK inhibitors. The 2D QSAR analyses 
was further supported by 3D QSAR modeling using the kNN-MFA method. By considering the spatial arrangement of 
substituents, we identified the shape, particularly the steric descriptors, as the governing factor for the compounds' 
anticancer activity. This insight expands our understanding of the structural requirements for effective TTK inhibition and 
offers valuable guidance for future synthetic efforts. Overall, our work contributes to the development of the topic by 
providing a comprehensive analysis of the anticancer activities of indazole derivatives targeting TTK.  
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Fig. 1. The reported TTK Inhibitors 

 

 

Fig. 2. Reported indazole derivatives from the literature 
 
2. Results and discussion 
 
     By applying the novel two-dimensional and three-dimensional QSAR methods to existing sets of compounds, as stated 
above, the relevance and usefulness of the novel 2D and 3D QSAR methods have been established. The data was divided 
by a specific splitting procedure i.e., random division method into the training, test, and validation sets. QSAR models were 
constructed using training sets, and their validation was carried out using test sets. The "actual" predictive power of QSAR 
models was determined using external validation sets 17. 
 
     The set of training and set of tests were chosen by following uni-column statistics, i.e., the test set's maximum is smaller 
than the training set's maximum, and the test set's minimum is bigger than the training set's minimum, which is required for 
further QSAR analysis. This indicated that the test is interpolative, meaning that it is generated from the training set's min-
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max range. The training and test sets' mean and standard deviation revealed the change in mean and point density distribution 
between the two sets. The uni-column statistics was reported in Table. 1. The electrostatic and steric descriptors, as well as 
their range, were included in the QSAR models which were created using kNN-MFA to reflect their importance for 
interaction in the molecular field. 3D QSAR investigations have been represented in models A, B, and C. The series of 
indazole derivatives yielded numerous QSAR equations. For this discussion, certain statistically meaningful two-
dimensional and three-dimensional QSAR models were generated. 
 
Table. 1. For QSAR models, uni-column statistics table used for the set of training and test sets 

Data set Average Maximum Minimum Standard deviation Total 
2D Training 
Test  

7.404 8.959 4.292 1.239 562.667 
7.417 8.918 4.775 1.296 155.749 

3D Training 
Test 

7.356 8.966 4.191 1.173 558.805 
7.494 8.921 4.745 1.414 157.371 

 
2.1. 2D QSAR  
 
     Using statistical techniques, the 2D-QSAR methodology could help in tying biological activity to their molecular 
characteristics. Indazole derivatives have shown promise as anti-cancer drugs in the literature. Using various variable 
selection strategies, various statistically meaningful 2D-QSAR models (PLS, MLR, PCR) were created, resulting in three 
best models. The prediction performance of the strategy was proposed by the distinct models SWF-MLR, SWF-PLS and 
SWF-PCR. The training data was predicted by the Model-1 by SWF-MLR, Model-2 by SWF-PLS and Model-3 by SWF-
PCR methods with r2 of 0.9512, 0.9296, and 0.8764 and q2 of 0.8998, 0.8862, and 0.8156 respectively as shown in in Table. 
2.  
 
Table 2. Statistical metrics for assessing the prediction power of various 2D-QSAR models 

Parameters  SW-MLR SW-PLS SW-PCR 
N 76 76 76 
Degree_of_freedom (DF) 68  70 74 
 r2  0.9512 0.9296 0.8764 
q2  0.8998 0.8862 0.8156 
 F_test 141.3789 68.1808 47.8417 
 r2 se 0.4346 0.4694 0.4812 
q2 se 0.4162 0.4467 0.46375 
Pred r2 0.8661 0.8310 0.7486 
Pred r2se 0.2834 0.3082 0.3506 
ExternalValidation r2 0.8486 0.8224 0.7965 
 ExternalValidation_r2se 0.2422 0.3201 0.4066 
ZScore R2  16.0227 17.7559 48.7278 
ZScore Q2  10.6728 17.9341 57.7114 
best ran R2  0.5616 0.4669 0.4443 
 best ran Q2  0.1649 0.1421 0.1188 

 
MODEL – 1 (MLR Analysis) 
 
The final QSAR equation created during a 2D QSAR investigation utilizing Multiple Linear Regression (MLR) using the 
forward-backward stepwise variable selection procedure was as follows, 
 
pIC50 = 0.3743 (chi4) -0.6916 (T_N_N_7) + 0.2061 (T_2_N_3) - 0.9956 (T_N_N_4) – 0.9505 (T_N_N_2) + 0.1343 
(T_2_O_5) – 0.0328 (T_2_C_3) + 2.6257 
 
Degrees of Freedom = 68, N training= 76, N test= 21, r2= 0.9512, q2= 0.8998, pred r2= 0.8661, F test =141.3789  
 
Table 3 summarises the descriptors chosen to describe the indazole derivatives for anticancer activity of Model-1 and Table 
4 presents the correlation matrix between the descriptors and the biological activity. The anticancer activity of QSAR 
Model-1 against TTK inhibitor, with determination coefficient (r2) of 0.9512 representing 95.12% variability in observed 
activity data. This model's internal prediction power was 89 percent when cross-validated (q2 = 0.8998), indicating that it 
has a strong internal predictive ability. Another statistical parameter used for the predictivity test set compounds was pred_r2 
= 0.8661, which indicated that the model has good external predictive potential. The r2_ se has a low value, suggesting that 
it is well-fit. The F-test value of 141.3789 indicated that the total scientific significance level of the model is 99.99 percent, 
implying that the model's failure probability is 1 in 10,000. The contribution chart of Model-1 by SW-MLR is represented 
in Fig. 3(a). The fitness plot of the expected vs. measured data of Model-1 is represented in Fig. 3(b), Fig. 3(c) and Fig. 
3(d) showed the radar plot visuals that were created to examine the model's quality by comparing experimental and predicted 
activities in training and test sets and it can be stated that the model is of the highest quality. It can be observed that the 
model generated by the multiple regression method was governed by the physicochemical as well as alignment-independent 
(AI) parameters. The physicochemical parameter i.e., retention index (fourth order) chi4, calculated directly from gradient 
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retention times, has been positively contributing towards the activity. Further, the alignment independent descriptor, 
T_N_N_7 counts the number of nitrogen atoms isolated from any other nitrogen atom by seven bonds (N-C-C-C-C-C-C-
N) contributed negatively to the activity i.e., the presence of amide group at C5 position was not found to be favourable for 
the activity. The descriptor T_2_N_3 (C-C-C-N) indicated that the activity has been increased if the number of double-
bonded atoms (i.e., any double-bonded atom, T 2) were separated by three bond distances from nitrogen atoms in a molecule. 
So, it can be stated that the existence of the NH group, directly attached to the C5 position of indazole was favourable for 
the activity. T_N_N_4 descriptor denotes the number of nitrogen atoms separated by four bonds from any other nitrogen 
atom (N-C-C-C-N), harms biological activity which is evident from the value obtained in the equation. The energy of the 
molecules correlated by the T_N _N _2 i.e., (N-C-N) descriptor was not found to be favorable for the activity. The presence 
of descriptor T_2_O_5, means a number of the double-bonded atoms (i.e., any double-bonded atom, T 2) separated from 
the oxygen atom by 5 bonds (C-C-C-C-C-O), has raised the activity. Thus, the existence of the -OCH3 group at the C5 
position of indazole derivatives was advantageous for activity, while the T_2_C_3 descriptor (count of several double-
bonded atoms separated from carbon atom by three bonds) were found to have a negative effect associated with the activity. 
 

 

 
Fig. 3(a). Contribution chart of Model-1 By SW-MLR Fig. 3(b). Fitness plot of the expected vs. measured data of 

Model-1           
 
 

  
Fig. 3(c). Radar Plot of the expected vs. measured data of 
training set (Model-1) 

Fig. 3(d). Radar Plot of the expected vs. measured data 
of test set (Model-1) 

              
MODEL – 2 (PLS Analysis) 
 
     In this study, the biological activity was connected with seven chosen descriptors using the PLS approach. The following 
is the best-retrieved PLS model: 
pIC50 = 0.3404 (chi4) -0.6908 (T_N_N_7) + 0.2323 (T_2_N_3) – 1.0243 (T_2_N_4) + 0.1606 (T_2_O_5) – 0.9488 
(T_N_N_2) – 0.0287 (T_2_T_3) + 2.7849 
Degrees of Freedom = 70, N training= 76, N test= 21, r2= 0.9296, q2= 0.8862, pred r2= 0.8310, F test = 68.1808. 
     
     With low standard error estimation, Model-2 explained 92 percent of the variance in activity. It also has 88 percent 
internal (q2) and 83 percent external pred_r2 predictive ability respectively. The chi4, T_2 _N _3, and T _2 _O _5 all 
contributed positively to the QSAR model. The descriptors T_N_N_7, T_2_N_4, T_N_N_2, and T_2_T_3 contributed 
negatively to the activity. The contribution chart of Model-2 by SW-PLS was shown in Fig. 3(e). The Fitness plot of the 
expected vs. measured data of Model-2 is represented in Fig. 3(f), Fig. 3(g) and Fig. 3(h) was shown the radar plots of the 
observed vs. predicted data of pIC50.  
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Fig. 3(e). Contribution chart of Model-2 By SW-PLS Fig. 3(f). Fitness plot of the expected vs. measured data of 

Model-2 

  
Fig. 3(g). Radar Plot of the expected vs. measured data of 

training set (Model-2) 
Fig. 3(h). Radar Plot of the expected vs. measured data of 
the test set (Model-2) 

     
                
MODEL – 3 (PCR Analysis) 
pIC50 = 0.4408 (chi4) + 2.7102 
Degrees of Freedom = 70, N training= 76, N test= 21, r2= 0.8764, q2= 0.8156, pred r2= 0.7486, F test = 47.8417. 
 
     The SW-PCR approach produced a coefficient of determination of 0.8764, an internal predictive power of 81 percent, 
and an outward predictivity of 74 percent for the same data set. The equation was governed by chi4, the retention index 
(fourth order) according to this model. The contribution chart of Model-3 by SW-PLS was shown in Fig. 3(i). The fitness 
plot of the expected vs. measured data of Model-3 is represented in Fig. 3(j). The plots of the observed vs. predicted data 
of pIC50 were shown in Fig. 3(k) and Fig. 3(l). From the above-developed models, it can be stated that the contributing 
descriptors were found to be almost similar while developing equations for Model 1, Model 2, and Model 3. The values of 
statistical parameters (r2, q2, and pred r2 as well as the intercept to best-fit line) suggested a linear relationship between the 
dependent and the independent variables, thus stating that the out of three models reported, Model 1 was the best model 
developed with the predictive ability of 84% (0.8486) respectively. Table. 2 showed the statistical results, while Table. 5 
showed the actual and predicted activities of the best Model-1 and also demonstrated the above models which were all 
verified by estimating the biological activities of the test molecules. The 2D-QSAR investigations were conducted on 
several indazole compounds that have anticancer action towards TTK and the analysis provided insight into the importance 
of many physicochemical factors as well as alignment independent descriptors and their connections to the possible 
anticancer activity: chi4, T_2_N_3, and T_2_O_5 contributed positively towards activity. 
 

  
Fig. 3(i). Contribution chart of Model-3 By SW-PCR Fig. 3(j). Fitness plot of the expected vs. measured data of 

Model-3 
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Fig. 3(k). Radar Plot of the expected vs. measured data of 
training set (Model-3) 

Fig. 3. (l). Radar Plot of the expected vs. measured data of 
the test set (Model -3) 

 
 2.2. 3D QSAR  
 
     The 3D QSAR modelling studies have been recognized as an important concept in designing more potent inhibitors, 
which relates their 3D structural attributes with bioactivity. In comparison to the classical 2D QSAR study, 3D-QSARs 
offer more promising techniques to deal with steric factors due to the utility of three-dimension descriptors. The main 
limitations of classical 2D-QSAR method are (a) visualization of the results due to lack of proper three-dimensional 
graphical outputs, (b) inadequate information regarding drug–receptor interactions. Thus, three-dimensional QSAR (3D-
QSAR) has been introduced to overcome such drawbacks18. To predict and optimize the structural requirements of the 
indazole pharmacophore as potential TTK inhibitors, a number of 3D-QSAR models have been created. In order to perform 
a 3D-QSAR analysis a probe atom was used to calculate the steric and electrostatic fields at each grid point of the created 
lattice. These models were generated using kNN-SWF, kNN-SA, kNN-GA variable selection methods. Any QSAR model's 
choice of compounds for the training set and test is a crucial and crucial component. Therefore, attention was made to ensure 
that all compounds in the test have biological activities that fall within the range of maximum and lowest values for the 
training set of compounds. The uni-Column Statistics of test and training sets also demonstrated proper test and training set 
selection in Table. 1. The optimal model was chosen using a combination of several statistical parameters q2 (cross verified 
r2) and pred r2 (the external cross validation regression coefficient) in three fields: steric, electrostatic, and hydrophobic. 
Table. 6 showed the statistical findings obtained using SW-kNN MFA techniques. Table. 7 listed the residuals of the 
training and test sets compounds as well as the actual/observed activities, anticipated activities by the 3D QSAR model. 
The propagation of residuals on both sides of the zero-line showed that the kNN-MFA model's evolution was error-free. It 
has become clear from Table. 7 that all of the compounds in the test set have predicted activities that are in good correlation 
with the related experimental activities, yielding the best match. Table. 8 summarised the descriptors chosen to describe 
the indazole derivatives for anticancer activity of Model A and Table. 9 presented the correlation matrix between the 
descriptors and the biological activity of Model A. The kNN-MFA QSAR model's cross-validation was aided by the plots 
of observed vs predicted activity of the compounds in the training and test sets, which are shown in Fig. 4(a). Fig. 4(b) and 
Fig. 4(c) show the radar plots of the observed vs. predicted data of pIC50. The value of q2, the model's internal predictive 
capacity, and pred r2, the model's capacity to forecast the behaviour of the external test set, served as the criteria for selecting 
a model. Different models were generated like Model A, Model B and Model C by different methods which were shown 
below: 
 

MODEL – A (kNN-SWF) 
pIC50 = S_1225 (-0.0061 -0.0030) + S_1185 (-0.3238 -0.2931) + S_846 (30.0000 30.0000) + S_1528( -0.3707 -0.2170) 
k Nearest Neighbor = 3, N = 76, Degree of freedom = 71, q2 = 0.9132, pred_r2 = 0.9447, External validation r2 = 0.8912, q2 
se = 0.2062, pred r2se = 0.1531, External validation r2 se = 0.3020, Selected Descriptors and range = S_1225 (-0.0061 -
0.0030), S_1185 (-0.3238 -0.2931), S_846 (30.0000 30.0000) and S_1528( -0.3707 -0.2170) 
 

   
Fig. 4 (a). Fitness plot of the expected 
vs. measured data of Model A 

Fig. 4 (b). Radar Plot of the expected 
vs. measured data of set of training 
(Model A) 

Fig. 4(c). Radar Plot of the expected 
vs. measured data of set of test 
(Model A) 
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   Table 6 showed the statistical findings obtained using SW-kNN MFA techniques. Table 7 listed the residuals of the 
training and test sets compounds as well as the actual/observed activities, and anticipated activities by the 3D QSAR model. 
The propagation of residuals on both sides of the zero-line showed that the kNN-MFA model's evolution was error-free. It 
has become clear from Table 7 that all of the compounds in the test set have predicted activities that are in good correlation 
with the related experimental activities, yielding the best match. To predict and optimize the structural requirements of the 
indazole pharmacophore as a potential TTK inhibitors several 3D-QSAR models have been created. The kNN-MFA QSAR 
model's cross-validation was aided by the plots of observed vs predicted activity of the compounds in the training and test 
sets, which are shown in Fig. 4(a). Fig. 4(b) and Fig. 4(c) show the radar plots of the observed vs. predicted data of pIC50. 
The value of q2, the model's internal predictive capacity, and pred r2, the model's capacity to forecast the behaviour of the 
external test set, served as the criteria for selecting a model. Table 8 summarised the descriptors chosen to describe the 
indazole derivatives for the anticancer activity of Model A and Table 9 presented the correlation matrix between the 
descriptors and the biological activity of Model A. 
 
Model A was observed to be significantly relevant for external and internal predictive ability, which were found to be 90% 
(q

2
= 0.9132) and 94% (pred r

2 
= 0.9447). In this model (Fig. 5), the steric descriptor with a negative coefficient (S_846) 

was observed to have a negative contribution to the anticancer activity which further highlighted the requirement of less 
bulky groups at the C5 position of Indazole-based TTK inhibitors. Another steric field parameter had a negative coefficient 
(S_1225), indicating that bulky substituents on the aryl ring present at C3 of the indazole scaffold are undesirable and their 
presence reduced the activity. The same observation was made at the C5 position of the indazole with negative steric field 
parameter (S_1185) which means the bulky substituents cannot be accommodated at this specific site and thus harmed on 
the activity profile of the indazole TTK inhibitors.  
 

 
 
Fig. 5. Stereo view of Model A's developed by SW kNN-MFA method on a molecular rectangular field grid around the 
superposed molecular units of the indazole series 
 
MODEL – B (kNN-SA) 
pIC50 = S_690 (-0.1328 -0.0728) + S_ (-0.0574 -0.0111) 
k Nearest Neighbor = 5, N = 76, Degree of freedom = 73, q2 =0.8866, pred_r2 =0.7339, External validation r2 =0.7961, q2 
se =0.2731, pred r2se =0.1805, External validation r2 se =0.3958, Selected Descriptors and range = S_690 (-0.1328 -0.0728) 
and S_ 393(-0.0574 -0.0111) 
 
Model B was generated by k Nearest neighbors simulated annealing method and only steric parameters have participated 
in correlating the biological activity with the independent variables. The negative steric coefficients (S_690) and (S_393) 
suggested that bulkier groups are not desirable for the anticancer activity of indazole derivatives.   
 
MODEL – C (kNN-GA) 
pIC50 = S_1199 (-0.0266 -0.0188) + S_1177 (-0.0106 -0.0081) + S_763( -0.0289 -0.0213) 
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k Nearest Neighbour = 4, N = 76, Degree of freedom = 72, q2 =0.8627, pred_r2 =0.7107, External validation r2 =0.7762, q2 
se =0.6903, pred r2se =0.6944, External validation r2 se =0.6157, Selected Descriptors and range = S_1199 (-0.0266 -
0.0188), S_1177 (-0.0106 -0.0081) and S_763( -0.0289 -0.0213) 
 
Model C has also been controlled by the negative steric descriptors; a major role plays in depicting the structural 
requirement for the anticancer activity. 
 
From the above discussion, it can be stated though all three models were ruled by steric parameters only the external and 
the internal predictive ability of Model A was statistically more relevant:  having q2 =0.9132, pred r2 = 0.9447, pred r2se = 
0.1531, external validation_r2 = 0.8912 values, hence it was chosen for NCE’s design.  
 
 
 
Table 6. The comparison of statistical findings of 3D QSAR produced by the kNN-MFA approaches 

S.No Statistical parameter Stepwise Forward 
Backward (SWFB) 
(Model A) 

Simulated 
Annealing (SA) 
(Model B) 

  Genetic 
Algorithm (GA) 
(Model C) 

1 q2 0.9132 0.8866 0.8627 
2 q2se 0.2062 0.2731 0.3603 
3 Pred r2 0.9447 0.7339  0.7107 
4 Pred r2se  0.1531 0.1805 0.2944 
5 ExternalValidation_r2 0.8912 0.7961 0.7762 
6  ExternalValidation_r2se 0.3020 0.3958 0.4157 
7 N 76 76 76 
8 K Nearest neighbor 3 5 4 
9 Degree of freedom 71 73 72 
10 Contributing descriptors S_1225 -0.0061 -0.0030 

S_1185 -0.3238 -0.2931 

S_846 30.0000 30.0000 

S_1528 -0.3707 -0.2170  

S_690 -0.1328 -0.0728 

S_393 -0.0574 -0.0111  

S_1199 -0.0266 -0.0188 

S_1177 -0.0106 -0.0081 

S_763 -0.0289 -0.0213 
 
 

 
     Fig. 5 showed the 3D data sets created around a rectangular area with the range of participation specified in parenthesis 
utilizing SW KNN-MFA. A grid was created to illustrate the data contained in the 3D-QSAR models and depicted the 
electrostatic, steric, and hydrophobic characteristics. The SW kNN–MFA 3D-QSAR model creates points. i.e., S_1225 -
0.0061 -0.0030, S_1185 -0.3238 -0.2931, S_846 30.0000 30.0000, S_1528 -0.3707 -0.2170 steric interaction at lattice points 
1225, 1185, 846, and 1528 respectively. The presence of negative steric descriptors indicated that sterically bulky aryl 
compounds were not considered for optimum activity.  
 
2.3. Layout Design of Indazole Pharmacophore 
 
     The pursuit of good target intensity must not be undertaken without consideration of its implications for accuracy and 
effectiveness. The method adopted in this research could help in the development of new and promising indazole compounds 
as anticancer medicines. The results of 2D and 3D QSAR investigations have been summarised. The developed scaffold 
will be used to synthesize designed analogues with remarkable biological activity in the future. The total substitution in the 
scheme which is needed around the indazole pharmacophore was presented in Fig. 6. 
 

 
 

Fig. 6. Structural Insights for the Design of Indazole Analogues 
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3. Conclusion 
 
      This study demonstrated how anticancer activities of several derivatives bearing indazole scaffold can be statistically 
analysed for the identification of different molecular traits required for high biological activity. 2D and 3D QSAR analyses 
of various indazole compounds with anticancer activity against TTK have been conducted. The physicochemical and 
alignment-independent descriptors were discovered to play a significant function in regulating the alteration in activities of 
2D QSAR investigations. Among the three 2D-QSAR models (MLR, PCR, and PLS), the results of MLR analysis showed 
significant predictive power and reliability as compared to the other two methods with an impressive correlation coefficient 
(r2) of 0.9512, along with the internal cross-validation regression coefficient (q2) and the external cross-validation regression 
coefficient (pred_r2) displayed good values of 0.8998 and 0.8661, respectively. Thus, demonstrated a high level of 
predictability and accuracy. The results of 2D QSAR studies were further supported by the 3D QSAR analysis. 3D-QSAR 
study adopted stepwise forward variable selection algorithms and the models were developed by the kNN–MFA method, 
which yielded an internal cross-validation regression coefficient (q2) of 0.9132, further suggesting a strong relationship 
between the variables in the model. For the dataset of 109 indazole derivatives, steric descriptors of the molecules appeared 
to be the governing factor for the anticancer activity, thus extending the structural insight. The current research will help 
synthetic medicinal chemists in creating new, strong TTK inhibitors with increased biological activity in comparison to the 
reported compounds.  
 
4. Future perspectives 
 
      Building upon our findings, future studies could focus on synthesizing and evaluating novel compounds with specific 
modifications that target the identified structural features associated with enhanced anticancer activity. Additionally, the 
integration of computational methods, such as molecular dynamics simulations and virtual screening, can aid in the design 
of novel indazole derivatives with improved potency, selectivity, and pharmacokinetic properties. These approaches can 
streamline the drug discovery process by providing valuable insights into the interactions between the inhibitors and their 
target, facilitating the identification of lead compounds for further experimental validation. Furthermore, in vivo studies 
and preclinical evaluations of the most promising compounds would be conducted to assess their efficacy, safety, and 
potential for clinical translation. Such studies would provide valuable information regarding the therapeutic potential of 
indazole-based TTK inhibitors and their applicability in cancer treatment. 
 
5. Experimental 
 
5.1. Materials and Methods 
 
      Numerous domains such as drug design, predicated toxicology, and threat assessment, benefited from the use of 
Quantitative structure-activity relationship (QSAR). The physiological, structural, and biological areas are all included in 
the Organization for Economic Co-operation and Development (OECD) definition of the utility area for QSAR models19. 
The two key goals for QSAR development are as follows: predicting the biological activity of untested molecules and 
developing a predictive and reliable QSAR model with a specific chemical domain. The QSAR can also be used as an 
informative tool by extracting significant patterns from descriptors related to the measured biological activity, which helps 
to understand the mechanisms underlying a given biological activity. Such details may aid in the suggestion of new lead 
molecule designs with enhanced activity profiles20. To carry out the computational investigation, (2D and 3D QSAR) a total 
of 109 Tyrosine Threonine Kinase (TTK) inhibitors reporting anticancer activity and having known IC50 values were 
selected from the literature 15,16. All the derivatives selected for the experiment followed the same assay technique and 
represented similar properties although their pharmacophore and efficacy differed significantly. The inhibition value of the 
molecules in the data set vary from 0.016 to 50 µm, which were then transformed to pIC50 by the following mathematical 
formula (Eq. 1): 
 

pIC50 = −log10(IC50) (1) 
 
      All the molecules in the data set have their structures which were drawn using the sketching capabilities of Marvin 
sketch saved in MDL Mol file format. The compound’s energy is minimized using the MMFF is Merck molecular force 
field21 and V life MDS 4.6 software was used, with a dielectric constant of 1.0 and (RMS) a root means square gradient of 
0.01 kcal/molÅ. It is necessary to reduce the energy of the molecules for the ligand to bind well to its target receptor22. The 
conformer was selected for each compound and was used for further study having low energy. The random selection method 
was used to divide the entire data set into training, test sets, and validation sets23. By doing QSAR research on a collection 
of data of indazole analogues, the current work seeks to examine the two-dimensional and three-dimensional structural 
requirements of QSAR. The models that result from these experiments will give the designer, a new insight into the possible 
requirements for the design of effective TTK inhibitors. 
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5.1.1. Dataset for 2D - QSAR Study 
 
     Data on anticancer activity, in the form of structure and percentage inhibition of the compounds (Table. 10) from the 
literature, was taken. The random selection (RS) method was used to divide a set of a total of one hundred nine analogs of 
indazole before the QSPR model development. By following the random selection method, the whole data was split into 
three sections i.e., Training set, test set, and validation set.  In this study, the inclusion of a separate validation set is an 
attempt to increase the external predictive ability of the QSAR model to be developed24. A training set comprising 76 
molecules, a test set of 21 molecules, and 10% molecules (12 molecules) for validation of created QSAR model which was 
used for the QSAR study. The development process of the test and training set after the compound’s selection was very 
important in the generation of QSAR models. A uni-column statistics for training and test set were created to examine the 
accuracy of selection basis of training and test set compounds 25, 26 given in Table. 1. Furthermore, the training set was 
subjected to a leave-one-out strategy for autonomous internal validation of the models created.  
 
5.1.2. Descriptor Analyses 
 
      The Minimum energy form is the most stable form for the drug's ability to attach to the receptor in its efficient sites. 
The numerical depiction of molecules is called theoretical molecular descriptors. It represents the chemical information 
included within molecular structures. In the field of theoretical molecular design and advanced research, these descriptors 
are quite useful. Physiochemical metrics such as polar surface area, estate contributions, element count, hydrophobicity, 
estate numbers, dipole-moment, logPA; topological, XlogPA, Element Count Chi, Estate number, Path-cluster, and 
alignment-independent topological descriptors and hydrophobicity have been computed27,28. Taking the physiochemical 
descriptor acting as an independent variable and pIC50 (biological activity data) as the dependent variable, a total of 240 
descriptors was calculated with the help of the molecular design suite of Vlife Sciences in the QSAR module tool. 
Descriptors with the same or nearly identical values or that are significantly connected with other descriptors were initially 
excluded using invariable column selection since they do not play any part in the QSAR evaluation. To further exclude non-
significant descriptors, the stepwise forward and backward variable selection method (SWFB) along with other statistical 
techniques such as (MLR) Multiple Linear Regression, (PLS) Partial Least Squares regression, and (PCR) Principal 
Component regression29 was utilized and the number of descriptors was reduced to a total number of 160 descriptors. 
 
5.1.3. Validation and Statistical Techniques 
 
      Numerous two-dimensional QSAR models were created by MLR, PLS, and PCR-based regression/algorithms by using 
variable selection methods such as Stepwise (SW), Genetic Algorithm (GA), Simulated Annealing (SA) having descriptors 
with the highest correlation with biological activity. The variables were positioned in such a way that the regression equation 
produced five times fewer autonomous variables than derivatives to produce an effective result. The program evaluates the 
right model based on the coefficient of determination (r2), which represents the variability in the experimental action values; 
(q2) the internal cross-validation regression coefficient, which is a relative criterion of quality of fit; (pred_r2) the external 
cross- validation regression coefficient, which represents the external explanatory power; External Validation_r2;  the F-
ratio, which represents the variance of calculated and observed activity and the calculated value of the F-test has a higher 
degree of statistical significance (99.99 percent) than the tabulated value of the F-test; standard error (r2_se) representing 
an absolute measure of the quality of fit; standard error of cross-validated square correlation co-efficient (q2_se); standard 
error of predicted squared regression (pred_r2se) to estimate the predictive potential of the models respectively. The absolute 
robustness of the model is represented by a low standard error of pred_r2, q2, and r2. For the assessment of predictive ability 
within the model, the validation of QSPR models was carried out which was further ensured by pred_r2 (internal validation) 
and q2 (cross-validation) parameters30. The fitness plot backs up the statistical significance of the two-dimensional QSPR 
model. It gives information that how much the predicted activity of the external set was performed and how successfully 
the model was trained. The contribution chart indicated the percentage contribution of the descriptors and the value of the 
descriptors used for model development 31. 
 
5.1.4. Cross-Validation 
 
      Leave-one-out (LOO) was used to perform internal validation. In this method, a molecule from the training set was 
removed and Eq. (2) was used to predict the activity by considering the average of the activities of the k most similar 
molecules.  
 ŷ௜=∑𝑤௜ 𝑦௜                                                    (2) 
 
  
The elimination step was repeated until each molecule had been removed, predicting its activity. 
Further Eq. (3) was used to calculate r2 and q2 where 𝑦௜ and  ŷ௜ refers to the actual and the predicted activities of the ith 
molecule and 𝑦௠௘௔௡ is the mean of observed activity of all the molecules in the training set 32. 
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q2 = 1 ─  ∑(௬೔  ─  ŷ೔)మ∑(௬೔  ─  ௬೘೐ೌ೙)మ 
(3) 

 
The value 0.9132 of q2 indicated the internal stability of the developed model which represented the effectiveness of kNN- 
SWF method and 3 was found to be the optimum value of k.  
 
5.1.5. External Validation 
 
      For carrying out the external validation, the Eq. (4) was followed: 
 

pred_r2 = 1 ─  ∑(௬೔  ─  ŷ೔)మ∑(௬೔  ─  ௬೘೐ೌ೙)మ   (4) 

 
wherein,  𝑦௜ and  ŷ௜ represents the actual and the predicted activities of the ith molecule in the test set and 𝑦௠௘௔௡ represents 
the mean of observed activity of all the molecules in the training set 33. 
 
5.1.6. Randomization Test  
 
     Y-scrambling or the randomization test is a common method of statistical validation. One-tail hypothesis testing is 
frequently used to assess the statistical significance of the QSAR model for an actual dataset. The robustness of the models 
for training sets is examined by comparing these models to those derived for random datasets. Random sets are generated 
by rearranging the activities of the molecules in the training set. To create the statistical model, numerous randomly 
rearranged actions (random sets) with the chosen descriptors are used, and the related q2 is calculated. A determined Z score 
is used to determine the importance of the models that are accordingly obtained. 
 
A Z score value is calculated by the following formula:  
 

Z score = h-μ/σ (5) 
 
where h is the q2 value calculated for the actual dataset, μ the average q2 and s is its standard deviation calculated for various 
iterations using models built by different random datasets. The probability (a) of the significance of the randomization test 
is derived by comparing the Z score value with the critical Z score value as reported, if Z score value is less than 4.0; 
otherwise, it is calculated by the formula as given in the literature. For example, a Z score value greater than 3.10 indicates 
that there is a probability (a) of less than 0.001 that the QSAR model constructed for the real dataset is random. The 
randomization test suggests that all the developed models have a probability of less than 1% that the model is generated by 
chance 34-36. 
 
5.2. 3D QSAR Study   
 
5.2.1. Dataset of 3D QSAR 
 
      To estimate and analyse the anticancer activity of indazole derivatives, three-dimensional QSAR models by SW kNN 
MFA techniques were generated. For developing predictive QSAR models in kNN QSAR investigations the data set is 
commonly divided into training, test, and external validation sets. A set of training having 76 analogues, a set of tests having 
21 derivatives, and 10% molecules (12 molecules) for the validation set have been used to build the models. The optimal 
model was chosen using a collection of several statistical parameters q2 (cross- validated r2) and pred_r2 in three fields: 
steric, electrostatic, and hydrophobic. Table. 6 displays the statistical results of the SW-kNN MFA techniques. A total of 
109 molecules were chosen from the literature and divided into subsets such as training: test: validation set: 76:21:12 which 
were selected by random selection method and accuracy of which was ensured by uni-column statistics as mentioned in the 
development of 2D QSAR models. The various conformations of each compound were created and used by the Monte Carlo 
conformation search process. The random selection approach, which used the metropolis condition to delete or accept 
created conformers, was used to search for conformations of the compound's structure. Four thousand nine hundred and 
fourteen (4914) descriptors were created, and any descriptors with a similar value or zero value were eliminated before the 
model generation, resulting in 4863 descriptors for all chemicals being utilized in subsequent investigations. In the 3D-
QSPR approach, the descriptors were defined by computing the molecular characteristics at the point of intersection of a 
3D frame. The ligand-based 3D-QSPR modelling approach relies on molecular alignment to get accurate results. Generally, 
there should be geometric alignment between the bioactive conformations and modeled structures of the selected molecules. 
 
5.2.2. Generation of three-Dimensional‑QSAR Models 
 
     The k-Nearest Neighbour Molecular Field Analysis approach is used to create 3D QSAR models for the above-given 
dataset. The results of the 3D variables such as Electrostatic and Steric parameters are calculated by adjusting the dielectric 
constant to 1.0, the charge type to Gasteiger-Marsili,37-39 and sp3 carbon sensor atom with charge 1.0. For electrostatic and 
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steric energies, the default cut-off energies are 10.0 kcal/mol and 30 kcal/mol. A cross-correlation limit of 0.5, the number 
of variables in the equation, term selection criterion of q2, and F-test are used to create 3D QSAR models. Three selection 
methods used for developing models are Step Wise Variable Selection Method (SW-kNN MFA), Simulated Annealing 
Variable Selection Method (SA-kNN MFA), and Genetic Algorithm Variable Selection Method (GA-kNN MFA). 
 
5.2.3.  k Nearest Neighbour (kNN) Method  
 
     Three-dimensional QSAR research was done by the kNN method by following Forward Stepwise Variable Selection as 
a variable selection technique. The kNN method simply works on a simple distance learning technique in which an 
unspecified member is selected among the majority of k nearest neighbours in the training set. The standard kNN-MFA 
method was used in the following manner: 
a. The distances here between the unidentified (u) object and the training sets of other objects were estimated. 
b. According to the calculated distances, the number of nearest neighbors (k) was selected.  
c. Sort the k objects into the group whereby most of them belong. By using the leave-one-out (LOO) cross-validation 
method, an optimal k value was selected.  
Using the Stepwise Variable Selection method, the variables, and optimal k values were selected. This is to improve  
(i) the number of nearest neighbours (k) and  
(ii) the selection of parameters from the initial pool, the selection approach is combined with the kNN method.  
 
     A trial model was developed in the initial stage with one independent parameter, adding another independent variable 
one step at a time and observing the fit of the model at each step till no more significant variables left outside the model to 
generate a best 3D-QSPR model. Descriptors were generated over grid, after generating the test and training sets by applied 
kNN method. Using a charge +1 methyl probe, all energies (steric, electrostatic, and hydrophobic) were estimated at grid 
lattice locations 40. 
 
5.2.4. Alignment Procedure  
 
     The alignment of molecular structures plays a critical role in 3D-QSAR modelling as it strongly determines the predictive 
accuracy and statistical quality of any given 3D-QSAR model41,42. Template-based alignment method in Vlife MDS 4.6 
software was used to align the data set of optimized and energy-minimized molecules43. The process of aligning a group of 
compounds using a template structure, this method requires a moving structure in 3D space, by which the conformational 
flexibility of the molecules was correlated. A common sub-structure from the series has been used as a template as illustrated 
in Fig. 7. The reference structure was a bioactive and stable conformation of the series on which other molecules were 
aligned which is shown in Fig. 8. The investigation included all the aligned structures and the alignment was utilized to 
determine the putative pharmacophore for the ligand series44. 
 
 

 
 
 
 

 

 
Fig. 7. Structure of Template Fig. 8. Stereo view of template-based alignment of indazole derivative on the 

base template 
 

 
     
5.2.5. Model Analysis and Descriptor Estimations 
 
     The Vlife MDS 4.6 software was used to count physicochemical parameters of the aligned conformation, after the 
optimization and energy minimization of the set of molecules. The probe, grid size, and grid interval were chosen to create 
different descriptors. The distance-dependent dielectric constant is given a value of 1.0, which leads to the calculation of 
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multiple electrostatic, steric, and hydrophobic descriptors for each compound in separate columns. In 3D-QSPR all 
invariable columns were removed because they were not playing any role in the 3D-QSAR model creation. The steric and 
hydrophobic field descriptors had been derived using the Tripos force field and Gasteiger and Marsili charge type 
electrostatics. Given the distance-dependent dielectric function, the dielectric constant was adjusted to 1.0. A carbon atom 
with charge 1.0 was the probe set. As a result, descriptors for each electrostatic, steric, and hydrophobic property of each 
chemical were calculated. The number of data points (molecules) in the training set was used for calculating different 
parameters such as internal cross-validation regression coefficient (q2), pred r2, number of k-nearest neighbours, cross-
validated r2, pred r2_se, q2_se, standard error of cross-validation. The model's absolute quality of fitness is demonstrated by 
the low standard error of pred r2_se and q2_se. Finally, the values of q2 and pred r2 were utilized to determine which models 
were the best 44, 45. 
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