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 Analysis of global electrophilicity and nucleophilicity power of the addends indicate polar 
character of [2+3] cycloaddition reactions between arylnitrones and trans-substituted 
nitroethenes. The regioselectivity of these reactions is determined by nucleophilic attack of 
oxygen atom from nitrone on activated β-position of nitroalkene. Interaction of this type leads 
to 4-nitroisoxazolidines, which are the only reaction products. 
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1. Introduction 
 

       [2+3] Cycloaddition reactions of nitrones with conjugated nitroalkenes are the most universal 
methods for preparation of nitroisoxazolidines, which are effective synthons in syntheses of 
aminoacids, alkaloids and β-lactams1,2. It is interesting, that these reactions exhibit extremely high 
regioselectivity. [2+3] Cycloaddition of nitrones with simple α,β−disubstituted ethenes almost always 
leads to mixtures of regioisomeric adducts. On the other hand, [2+3] cycloaddition of arylnitrones 
with trans-substituted nitroethenes usually proceeds in a regiospecific way (e.g., the reaction of 
arylnitrones with (E)-1-nitroprop-1-ene3-5, (E)-β-nitrostyrene6, (E)-2-chloro-1-nitroethene7 and (E)-
3,3,3-trichloro-1-nitroprop-1-ene4,7). All of these reactions occur with full regiocontrol and lead to the 
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corresponding 4-nitroisoxazolidines as the only reaction products (Scheme 1, Table 1), regardless of 
the nature of substituent in β-position of the nitroethenyl moiety (Table 2). In the present work we 
decided to explain this phenomenon on the grounds of electrophilicity and nucleophilicity indices 
theory. Recently, similar approach was used successfully to explain the regiochemical aspects of 
nitrones [2+3] cycloaddition with several dipolarophiles8,9. 
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Scheme 1. Regioselectivity of [2+3] cycloaddition reactions between nitroalkenes 1a-d and nitrones 2-4. 
 
Table 1. Experimental conditions and yields for model reactions. 

Addents Conditions Yields Regioisomer ratio Ref. 
Nitroalkene Nitrone  [%] [4-nitro]:[5-nitro]  
1a 2 80oC, benzene, 3h 94 1:0 3

1a 3 25oC, toluene, 24h 97 1:0 4

1a 4 25oC, solvent free, 0,25h 96 1:0 5

1b 3 80oC, toluene, 24h 92 1:0 6

1c 2 25oC, benzene, 24h 41 1:0 7

1d 3 25oC, toluene, 24h 94 1:0 4

1d 4 25oC, toluene, 12h 98 1:0 6

 

2. Results and Discussion 
 
     The global (electronic potential μ, electrophilicity power ω, nucleophilicity N) and local 
(electrophilicity ωk, nucleophilicity Nk) reactivity indices for example reactants (1-2) were estimated 
according to the equations recommended by Parr10 and Domingo8 (for details see next section). 
Electrophilicity scale was built and validated by Domingo group11 based on the B3LYP/6-31g(d) 
calculations. This model was adopted for most reaction systems9. Therefore, the quantum chemical 
calculations were performed using B3LYP/6-31g(d) theoretical level12. The results are collected in  
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Table 2. Global and local electronic properties of nitroalkenes 1a-d and nitrones 2-4 

 1 R σR 
Global properties Local properties 

μ  
(a.u.) 

ω 
(eV) 

N 
(eV) 

ωα 
(eV) 

ωβ 
(eV) 

NC 
(eV) 

NO 
(eV) 

1a Me -0.17 -0.1867 2.36  0.05 0.25   
1b Ph -0,01 -0.1760 2.66  0.10 0.23   
1c Cl 0.23 -0.2053 2.89  0.09 0.34   
1d CCl3 0.45 -0.2147 3.27  0.15 0.34   
2 2 - 3 - -0.1244 1.35 3.62   0.29 0.63 
3 - - -0.1312 1.67 3.64   0.28 0.57 
4 - - -0.1256 1.56 3.83   0.31 0.60 

 
     It has been found, that the nitrones 2-4 show weaker electrophilic character than the nitroethenes 
1a-d. Their electronic potential (μ) equals -0.1244÷-0.1256 a.u., whereas that of the nitroalkenes 1a-d 
is only -0.1867÷-0.2147. This indicates, that in the reactions studied, the charge should be transferred 
from nitrone to nitroalkene. Analysis of global electrophilicity indices (ω) leads to similar conclusion.  
 
     In particular, global electrophilicity (ω) of 1-nitroprop-1-ene (1a) is equal 2.36 eV. Replacement 
of methyl group with phenyl ring increases ω value to 2.66 eV. Further increase of the nitroalkene 
electrophilicity takes place after introduction electron withdrawing substituents (e.g., Cl, CCl3) into 
the β-position of nitrovinyl moiety. In consequence, 3,3,3-trichloro-1-nitroprop-1-ene (ω=3.27 eV) is 
the strongest electrophile in this study. 

 
Table 3. Electrophilicity difference (Δω) for the nitroalkene/nitrone pairs 

Addents Δω 
Nitroalkene Nitrone [eV] 
1a 2 1.01 
1a 3 0.69 
1a 4 0.80 
1b 3 0.99 
1c 2 1.54 
1d 3 1.60 
1d 4 1.71 

 
     For comparison, global electrophilicity (ω) of the nitrone (2) equals 1.35 eV. Hence in terms of the 
Domingo terminology8, 2 is a moderate electrophile. The ω values of the nitrones 3 and 4 are slightly 
higher (1.67 eV and 1.56 eV respectively), so they are stronger electrophiles. This is what we 
expected due to the nucleophilic character of >C=N(O)-  moiety, electrophilicity of the nitrones 2-4 
are lower than those of the nitroalkenes 1a-d. In the reactions studied they are nucleophiles (global 
nucleophilicty N>3.5 eV). 
 
    The electrophilicity difference (Δω) of the analysed reagent pairs (Scheme 1) is in the range from 
0.69 to 1.71 (Table 3). Therefore, the reactions can be considered as polar cycloadditions8. According 
to the Domingo concept8,13, the regioselectivity of such reactions may be forecasted using local 
electrophilicity (ωk) and nucleophilicity (Nk) indices. According to this approach, most favorable 
interaction takes place between most nucleophilic and most electrophilic centers. 
 
     The values of ωk obtained for the nitroalkenes 1a-d (Table 2) indicate, that β-position of the 
nitrovinyl moiety is the most electrophilic site, therefore, it should be the preferred position for 
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nucleophilic attack. In particular, for less electrophilic 1-nitroprop-1-ene (1a) ωβ=0.23 eV, whereas 
for more electrophilic 3,3,3-trichloro-1-nitroprop-1-ene (1d) ωβ=0.34 eV. On the other hand, the Nk 
indices indicate that in the nitrones 2-4, the oxygen atom of >C=N(O)-  moiety is the most 
nucleophilic site (NO=0.57÷0.63 eV).  Hence, the reaction course should be controlled by the attack 
of one of the nucleophilic sites in the nitrone on the electrophilic site localized on the atom Cβ in 
nitrovinyl group of the corresponding nitroalkene. (Scheme 1). Interactions of this type lead to 4-
nitroisoxazolidines.  

3. Conclusions  
 
     Analysis of global electronic properties of the addends indicate polar character of [2+3] 
cycloaddition reactions between arylnitrones and trans-substituted nitroethenes. This is consistent 
with the kinetic studies3,7. The regioselectivity of these reaction is determined by nucleophilic attack 
of the oxygen atom of >C=N(O)- nitrone moiety on activated β‐position of nitroalkene. Interaction of 
this type leads to 4-nitroisoxazolidines as the only reaction products3-7. 
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Computational details 
 
     The quantum-chemical calculations were performed on a SGI-Altix-3700 computer in the Cracow 
Computing Center "CYFRONET". Hybrid B3LYP functional and 6-31G(d) basis set included within 
GAUSSIAN 2009 software12 were applied.  For structure optimization of the reactants FOPT 
procedure was applied. Calculations of all critical structures were performed for the temperature 
T=298 K and pressure p=1 atm. The global reactivity indexes were estimated according to equations 
recommended by Parr and Yang10 and Domingo8. In particular, the electronic chemical potentials (μ) 
and chemical hardness (η) of the reactants 1 and 2 were evaluated in terms of the one electron 
energies of FMO: 
 
μ=(EHOMO+ELUMO)/2;  η=ELUMO-EHOMO 
 
     The values of μ and η were then used for calculation of the global electrophilicity (ω) according to 
the formula: 
 
ω=μ2/2η 
 
The global nucleophilicity (N) of nitrones 1a-d was calculated as the difference12: 
 
N=EHOMO(nitrone)-EHOMO(tetracyanoethene) 
 
The local electrophilicity (ωk)8 condensed to atom k was calculated by projecting the index ω onto 
reaction centre k in the molecule by using Fukui function f+

k, whereas the local nucleophilicity (Nk)13 
condensed to atom k was calculated using global nucleophilicity N and Fukui function f-

k according 
to the formulas: 
 
ωk=f+

kω; Nk=f-
kN 
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According to Contreras observations14, Fukui f+
k is represented by the square of the suitable LUMO 

coefficient (C), whereas f-
k by the square of the suitable HOMO coefficient: 

 
f+

k=CLUMO
2;  f-

k=CHOMO
2 

 
The results are collected in Table 2. 
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