How to cite this paper
Wu, C., Chen, J., Lin, W., Zhang, X., Ren, T., Wu, Z & Chung, Y. (2025). A robust single-machine scheduling problem with scenario-dependent processing times and release dates.International Journal of Industrial Engineering Computations , 16(1), 37-50.
Refrences
Aissi, H., Aloulou, M.A., & Kovalyov, M. Y. (2011). Minimizing the number of late jobs on a single machine under due date uncertainty, Journal of Scheduling, 14(4), 351-360.
Alon, N., Azar, N.Y., Weginger, G.J., & Yadid, T. (1998). Approximation schemes for scheduling on parallel machines, Journal of scheduling, 1, 55-66.
Aloulou, M.A., & Della Croce, F. (2008). Complexity of single machine scheduling problems under scenario-based uncertainty, Operations Research Letters, 36(3), 338-342.
Bouamama, S., Blum, C., & Boukerram, A. (2012). A population-based iterated greedy algorithm for the minimum weight vertex cover problem. Applied Soft Computing, 12(6), 1632-1639.
Chekuri, C., Motwani, R., Natarajan, B., & Stein, C. (1997). Approximation Techniques for average completion time scheduling, Proceedings of the annual ACM-SIAM symposium on discrete algorithm (SODA), pp 609-617.
Chen, B., Potts, C.N., & Weginger, J.G. (1998). A review of machine scheduling, complexity and approximability, Handbook of combinatorial optimization, D-Z Du and P. Paradalos (eds.), pp 21-169, Kluwer Academic Press, Boston.
Cheng, S.-R., Yin, Y., Wen, C.-H., Lin, W.-C., & Wu, C.-C. (2017). A two-machine flowshop scheduling problem with precedence constraint on two jobs. Soft Computing, 21(8), 2091-2103.
Dessouky, M.M. (1998). Scheduling identical jobs with unequal ready times on uniform parallel machines to minimize the maxmun total lateness, Computer & Industrial Engineering, 34(4), 793-806.
de Farias, I. R., Zhao, H., & Zhao, M. (2010). A family of inequalities valid for the robust single machine scheduling polyhedron. Computers and Operations Research, 37(9), 1610-1614.
French, S. (1982). Sequencing and Scheduling, An Introduction to the Mathematics of the Job Shop. Ellis Horwood Limited.
Gilenson, M., Naseraldin, H., & Yedidsion, L. (2018). An approximation scheme for the bi-scenario sum of completion times trade-off problem, Journal of Scheduling, 22(3), 289-304.
Gilenson, M., & Shabtay, D. (2021). Multi-scenario scheduling to maximise the weighted number of just-in-time jobs. Journal of the Operational Research Society, 72(8), 1762-1779.
Hardy, G.H., Littlewood, J. E., & Polya, G. (1967). Inequalities (p. 261). London, Cambridge University Press.
Hermelin, D., Manoussakis, G., Pinedo, M., Shabtay, D., & Yedidsion, L. (2020). Parameterized multi-scenario single-machine scheduling problems, Algorithmica, 82, 2644-2667.
Hochbaum, D.S., & Shmoys, D.B. (1987). Using dual approximation algorithms for scheduling problems, theoretical and practical results, Journal of the ACM, 34, 144-162.
Hollander, M. D., Wolfe, A., & Chicken, E. (2014). Nonparametric Statistical Methods, third edition, John Wiley & Sons, Inc., Hoboken, New Jersey.
Johnson, D. (2001). A theoretician's guide to the experimental analysis of algorithms. Conference, Data Structures, Near Neighbor Searches, and Methodology, Fifth and Sixth DIMACS Implementation Challenges.
Kasperski, A., & Zieliński, P. (2016). Robust discrete optimization under discrete and interval uncertainty, A survey. In Robustness analysis in decision aiding, optimization, and analytics (pp.113-143), Springer, Cham.
Kouvelis, P., & Yu, G. (1996). Robust Discrete Optimization and It Application (Vol.14). Springer Science & Business Media.
Kouvelis, P., Daniels, R. L., & Vairaktarakis, G. (2000). Robust scheduling of a two-machine flow shop with uncertain processing times. Iie Transactions, 32(5), 421-432.
Lenstra, J.K., Rinnooy Kan, A.H.G., & Brucker, P. (1977). Complexity of machine scheduling problems, Annals of Discrete Mathematics, 1, 343-362.
Lin, W.-C., Xu, J., Bai, D., Chung, I-H., Liu, S.-C., & Wu, C.-C (2019). Artificial bee colony algorithms for the order scheduling with release dates, Soft Computing, 23(18), 8677-8688.
Lin, B.M.T., & Wu, J.M. (2006). Bicriteria scheduling in a two-machine permutation flowshop. International journal of production research, 44(12), 2299-2312
Mastrolilli, M., Mutsanas, N., & Svensson, O. (2013). Single machine scheduling with scenarios. Theoretical Computer Science, 477, 57-66.
Nawaz, M., Enscore Jr, E.E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem, Omega, 11(1), 91-95.
Pinedo, M. (2008). Scheduling, theory, algorithms and systems. NJ, Prentice-Hall, Upper Saddle River. Third version.
Reever, C. (1995). Heuristics for scheduling a single machine subject to unequal job release times, European Journal of Operational Research, 80, 397-403.
Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem, European Journal of Operational Research, 177(3), 2033-2049.
Ruiz, R., & Stützle, T. (2008). An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives, European Journal of Operational Research, 187(3),1143-1159.
Schuurman, P., & Woeginger, G.J. (1999). Polynomial time approximation algorithms for machine scheduling, ten open problems, Journal of scheduling, 2, 203-214.
Sevastianov, S.V., & Woeginger, G.J. (1998). Makespan minimization in open shops, a polynomial time approximation scheme, Mathematical Programming, 82, 191-198.
Smith, W.E. (1956). Various optimizers for single stage production, Naval Research Logistics Quarterly, 3(1), 56-66.
Sotskov, I. N., & Werner, F. (2014). Sequencing and scheduling with inaccurate data. Hauppauge, NY, Nova Science Publishers.
Wang, J. B., Lv, D. Y., Wang, S. Y., & Jiang, C. (2023). Resource allocation scheduling with deteriorating jobs and position-dependent workloads. Journal of Industrial and Management Optimization, 19(3), 1658-1669.
Wang, F., & Wu, B. (2024). The k-Sombor Index of Trees. Asia-Pacific Journal of Operational Research, 41(1). DOI, 10.1142/S0217595923500264.
Wu, C.-C., Wu, W.-H., Chen, J.-C., Yin, Y., & Wu, W.-H. (2013). A study of the single-machine two-agent scheduling problem with release times, Applied Soft Computing, 13, 998-1006.
Wu, C.-C., Gupta, J.N.D., Cheng, S.R., Lin, B.M.T., Yip, S.H., & Lin, W.C. (2021). Robust scheduling of a two-stage assembly shop with scenario-dependent processing times. International Journal of Production Research, 59(17), 5372-5387.
Yang, J., & Yu, G. (2002). On the robust single machine scheduling problem, Journal of Combinatorial Optimization, 6(1), 17-33.
Yin, Y., Wu, W.-H., Cheng, S.-R., & Wu C.-C. (2012). An investigation on a two-agent single-machine scheduling problem with unequal release dates. Computers & Operations Research, 39, 3062-3073.
Alon, N., Azar, N.Y., Weginger, G.J., & Yadid, T. (1998). Approximation schemes for scheduling on parallel machines, Journal of scheduling, 1, 55-66.
Aloulou, M.A., & Della Croce, F. (2008). Complexity of single machine scheduling problems under scenario-based uncertainty, Operations Research Letters, 36(3), 338-342.
Bouamama, S., Blum, C., & Boukerram, A. (2012). A population-based iterated greedy algorithm for the minimum weight vertex cover problem. Applied Soft Computing, 12(6), 1632-1639.
Chekuri, C., Motwani, R., Natarajan, B., & Stein, C. (1997). Approximation Techniques for average completion time scheduling, Proceedings of the annual ACM-SIAM symposium on discrete algorithm (SODA), pp 609-617.
Chen, B., Potts, C.N., & Weginger, J.G. (1998). A review of machine scheduling, complexity and approximability, Handbook of combinatorial optimization, D-Z Du and P. Paradalos (eds.), pp 21-169, Kluwer Academic Press, Boston.
Cheng, S.-R., Yin, Y., Wen, C.-H., Lin, W.-C., & Wu, C.-C. (2017). A two-machine flowshop scheduling problem with precedence constraint on two jobs. Soft Computing, 21(8), 2091-2103.
Dessouky, M.M. (1998). Scheduling identical jobs with unequal ready times on uniform parallel machines to minimize the maxmun total lateness, Computer & Industrial Engineering, 34(4), 793-806.
de Farias, I. R., Zhao, H., & Zhao, M. (2010). A family of inequalities valid for the robust single machine scheduling polyhedron. Computers and Operations Research, 37(9), 1610-1614.
French, S. (1982). Sequencing and Scheduling, An Introduction to the Mathematics of the Job Shop. Ellis Horwood Limited.
Gilenson, M., Naseraldin, H., & Yedidsion, L. (2018). An approximation scheme for the bi-scenario sum of completion times trade-off problem, Journal of Scheduling, 22(3), 289-304.
Gilenson, M., & Shabtay, D. (2021). Multi-scenario scheduling to maximise the weighted number of just-in-time jobs. Journal of the Operational Research Society, 72(8), 1762-1779.
Hardy, G.H., Littlewood, J. E., & Polya, G. (1967). Inequalities (p. 261). London, Cambridge University Press.
Hermelin, D., Manoussakis, G., Pinedo, M., Shabtay, D., & Yedidsion, L. (2020). Parameterized multi-scenario single-machine scheduling problems, Algorithmica, 82, 2644-2667.
Hochbaum, D.S., & Shmoys, D.B. (1987). Using dual approximation algorithms for scheduling problems, theoretical and practical results, Journal of the ACM, 34, 144-162.
Hollander, M. D., Wolfe, A., & Chicken, E. (2014). Nonparametric Statistical Methods, third edition, John Wiley & Sons, Inc., Hoboken, New Jersey.
Johnson, D. (2001). A theoretician's guide to the experimental analysis of algorithms. Conference, Data Structures, Near Neighbor Searches, and Methodology, Fifth and Sixth DIMACS Implementation Challenges.
Kasperski, A., & Zieliński, P. (2016). Robust discrete optimization under discrete and interval uncertainty, A survey. In Robustness analysis in decision aiding, optimization, and analytics (pp.113-143), Springer, Cham.
Kouvelis, P., & Yu, G. (1996). Robust Discrete Optimization and It Application (Vol.14). Springer Science & Business Media.
Kouvelis, P., Daniels, R. L., & Vairaktarakis, G. (2000). Robust scheduling of a two-machine flow shop with uncertain processing times. Iie Transactions, 32(5), 421-432.
Lenstra, J.K., Rinnooy Kan, A.H.G., & Brucker, P. (1977). Complexity of machine scheduling problems, Annals of Discrete Mathematics, 1, 343-362.
Lin, W.-C., Xu, J., Bai, D., Chung, I-H., Liu, S.-C., & Wu, C.-C (2019). Artificial bee colony algorithms for the order scheduling with release dates, Soft Computing, 23(18), 8677-8688.
Lin, B.M.T., & Wu, J.M. (2006). Bicriteria scheduling in a two-machine permutation flowshop. International journal of production research, 44(12), 2299-2312
Mastrolilli, M., Mutsanas, N., & Svensson, O. (2013). Single machine scheduling with scenarios. Theoretical Computer Science, 477, 57-66.
Nawaz, M., Enscore Jr, E.E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem, Omega, 11(1), 91-95.
Pinedo, M. (2008). Scheduling, theory, algorithms and systems. NJ, Prentice-Hall, Upper Saddle River. Third version.
Reever, C. (1995). Heuristics for scheduling a single machine subject to unequal job release times, European Journal of Operational Research, 80, 397-403.
Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem, European Journal of Operational Research, 177(3), 2033-2049.
Ruiz, R., & Stützle, T. (2008). An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives, European Journal of Operational Research, 187(3),1143-1159.
Schuurman, P., & Woeginger, G.J. (1999). Polynomial time approximation algorithms for machine scheduling, ten open problems, Journal of scheduling, 2, 203-214.
Sevastianov, S.V., & Woeginger, G.J. (1998). Makespan minimization in open shops, a polynomial time approximation scheme, Mathematical Programming, 82, 191-198.
Smith, W.E. (1956). Various optimizers for single stage production, Naval Research Logistics Quarterly, 3(1), 56-66.
Sotskov, I. N., & Werner, F. (2014). Sequencing and scheduling with inaccurate data. Hauppauge, NY, Nova Science Publishers.
Wang, J. B., Lv, D. Y., Wang, S. Y., & Jiang, C. (2023). Resource allocation scheduling with deteriorating jobs and position-dependent workloads. Journal of Industrial and Management Optimization, 19(3), 1658-1669.
Wang, F., & Wu, B. (2024). The k-Sombor Index of Trees. Asia-Pacific Journal of Operational Research, 41(1). DOI, 10.1142/S0217595923500264.
Wu, C.-C., Wu, W.-H., Chen, J.-C., Yin, Y., & Wu, W.-H. (2013). A study of the single-machine two-agent scheduling problem with release times, Applied Soft Computing, 13, 998-1006.
Wu, C.-C., Gupta, J.N.D., Cheng, S.R., Lin, B.M.T., Yip, S.H., & Lin, W.C. (2021). Robust scheduling of a two-stage assembly shop with scenario-dependent processing times. International Journal of Production Research, 59(17), 5372-5387.
Yang, J., & Yu, G. (2002). On the robust single machine scheduling problem, Journal of Combinatorial Optimization, 6(1), 17-33.
Yin, Y., Wu, W.-H., Cheng, S.-R., & Wu C.-C. (2012). An investigation on a two-agent single-machine scheduling problem with unequal release dates. Computers & Operations Research, 39, 3062-3073.