How to cite this paper
Belloni, E., Cruz, D & Guilherme, C. (2025). Mechanical behavior evaluation and degradation mechanism for HMPE yarns under fatigue abrasion tests.Engineering Solid Mechanics, 13(1), 105-116.
Refrences
Al Christopher, C., da Silva, Í. G., Pangilinan, K. D., Chen, Q., Caldona, E. B., & Advincula, R. C. (2021). High performance polymers for oil and gas applications. Reactive and Functional Polymers, 162, 104878. https://doi.org/10.1016/j.reactfunctpolym.2021.104878
American Society for Testing and Materials. (2016). D6611 Standard Test Method for Wet and Dry Yarn-Yarn Abrasion Resistance. ASTM: West Conshohocken. https://doi.org/10.1520/D6611-16
American Society for Testing and Materials. (2018). D1577 Standard Test Methods for Linear Density of Textile Fibers. ASTM: West Conshohocken. https://doi.org/10.1520/D1577-07R18
American Society for Testing and Materials. (2020). E1131 Standard Test Method for Compositional Analysis by Thermogravimetry. ASTM: West Conshohocken. https://doi.org/10.1520/E1131-20
Arias, R. R., Ruiz, Á. R., & de Lena Alonso, V. G. (2016). Mooring and anchoring. Floating Offshore Wind Farms, 89-119. https://doi.org/10.1007/978-3-319-27972-5_6
Bain, C., Davies, P., Riou, L., Marco, Y., Bles, G., & Damblans, G. (2023). Experimental evaluation of the main parameters influencing friction between polyamide fibers and influence of friction on the abrasion resistance. The Journal of The Textile Institute, 114(7), 998-1006. https://doi.org/10.1080/00405000.2022.2105075
Barrois, W. (1979). Repeated plastic deformation as a cause of mechanical surface damage in fatigue, wear, fretting-fatigue, and rolling fatigue: a review. International Journal of Fatigue, 1(4), 167-189. https://doi.org/10.1016/0142-1123(79)90022-7
Bastos, M. B., Fernandes, E. B., & da Silva, A. L. N. (2016). Performance fibers for deep water offshore mooring ropes: Evaluation and analysis. In OCEANS 2016-Shanghai (pp. 1-7). IEEE. https://doi.org/10.1109/OCEANSAP.2016.7485612
Beltrao, R. L. C., Sombra, C. L., Lage, A. C. V., Netto, J. R. F., & Henriques, C. C. D. (2009). SS: pre-salt Santos basin-challenges and new technologies for the development of the pre-salt cluster, Santos basin, Brazil. In Offshore Technology Conference (pp. OTC-19880). OTC. https://doi.org/10.4043/19880-MS
Chevillotte, Y., Marco, Y., Bles, G., Devos, K., Keryer, M., Arhant, M., & Davies, P. (2020). Fatigue of improved polyamide mooring ropes for floating wind turbines. Ocean Engineering, 199, 107011. https://doi.org/10.1016/j.oceaneng.2020.107011
Civier, L., Chevillotte, Y., Bles, G., Montel, F., Davies, P., & Marco, Y. (2022). Short and long term creep behaviour of polyamide ropes for mooring applications. Ocean Engineering, 259, 111800. https://doi.org/10.1016/j.oceaneng.2022.111800
Cordage Institute. (2009). 1503 Test Method for Yarn-on-Yarn Abrasion. CI: Wayne.
Costa Fraga, C. T., Lara, A. Q., Capeleiro Pinto, A. C., & Moreira Branco, C. C. (2014, June). Challenges and solutions to develop Brazilian pre-salt deepwater fields. In World Petroleum Congress (p. D033S003R004). WPC.
Cruz, D. M., Barreto, M. A., Zangalli, L. B., Cruz Júnior, A. J., Melito, I., Clain, F. M., & Guilherme, C. E. M. (2024). Mechanical characterization procedure of HMPE fiber for offshore mooring in deep waters. Engineering Solid Mechanics, 12(3), 311-322. https://doi.org/10.5267/j.esm.2024.1.003
Cruz, D. M., Silva, A. H. M. F. T., Clain, F. M., & Guilherme, C. E. M. (2023). Experimental study on the behavior of polyamide multifilament subject to impact loads under different soaking conditions. Engineering Solid Mechanics, 11(1), 23-34. https://doi.org/10.5267/j.esm.2022.11.001
da Cruz, D. M., Barreto, M. A., Zangalli, L. B., Popiolek Júnior, T. L., & Guilherme, C. E. M. (2023b). Experimental Study of Creep Behavior at High Temperature in Different HMPE Fibers Used for Offshore Mooring. In Offshore Technology Conference Brasil (p. D021S026R002). OTC. https://doi.org/10.4043/32760-MS
da Cruz, D. M., Clain, F. M., & Guilherme, C. E. M. (2022). Experimental study of the torsional effect for yarn break load test of polymeric multifilaments. Acta Polytechnica, 62(5), 538–548. https://doi.org/10.14311/AP.2022.62.0538
da Cruz, D. M., Penaquioni, A., Zangalli, L. B., Bastos, M. B., Bastos, I. N., & da Silva, A. L. N. (2023a). Non-destructive testing of high-tenacity polyester sub-ropes for mooring systems. Applied Ocean Research, 134, 103513. https://doi.org/10.1016/j.apor.2023.103513
Davies, P., & Arhant, M. (2019). Fatigue behaviour of acrylic matrix composites: influence of seawater. Applied Composite Materials, 26(2), 507-518. https://doi.org/10.1007/s10443-018-9713-1
Davies, P., & Verbouwe, W. (2018). Evaluation of basalt fibre composites for marine applications. Applied Composite Materials, 25(2), 299-308. https://doi.org/10.1007/s10443-017-9619-3
Davies, P., Reaud, Y., Dussud, L., & Woerther, P. (2011). Mechanical behaviour of HMPE and aramid fibre ropes for deep sea handling operations. Ocean Engineering, 38(17-18), 2208-2214. https://doi.org/10.1016/j.oceaneng.2011.10.010
Del Vecchio, C. J. M. (1992). Light weight materials for deep water moorings (Doctoral dissertation, University of Reading).
Demircan, G., Ozen, M., Kisa, M., Acikgoz, A., & Işıker, Y. (2023). The effect of nano-gelcoat on freeze-thaw resistance of glass fiber-reinforced polymer composite for marine applications. Ocean Engineering, 269, 113589. https://doi.org/10.1016/j.oceaneng.2022.113589
Galinski, H., Leutenegger, D., Amberg, M., Krogh, F., Schnabel, V., Heuberger, M., ... & Hegemann, D. (2020). Functional coatings on high‐performance polymer fibers for smart sensing. Advanced Functional Materials, 30(14), 1910555. https://doi.org/10.1002/adfm.201910555
Han, G., Tao, X., Li, X., Jiang, W., & Zuo, W. (2016). Study of the mechanical properties of ultra-high molecular weight polyethylene fiber rope. Journal of Engineered Fibers and Fabrics, 11(1), 155892501601100103. https://doi.org/10.1177/155892501601100103
He, W., Shi, B., Fan, G., Wang, W., Wang, H., Wang., J., Zuo, G., Wang, C., & Yang, L. (2023). Theoretical and technical progress in exploration practice of the deep-water large oil fields, Santos Basin, Brazil. Petroleum Exploration and Development, 50(2), 255-267. https://doi.org/10.1016/S1876-3804(22)60385-9
Huang, W., Li, B., & Kim, D. K. (2023). An investigation on material diversity of synthetic fiber ropes in the course stability of towing under wind. Ocean Engineering, 279, 114410. https://doi.org/10.1016/j.oceaneng.2023.114410
Huang, W., Liu, H., Lian, Y., & Li, L. (2015). Modeling nonlinear time-dependent behaviors of synthetic fiber ropes under cyclic loading. Ocean Engineering, 109, 207-216. https://doi.org/10.1016/j.oceaneng.2015.09.009
Humeau, C., Davies, P., Smeets, P., Engels, T. A. P., Govaert, L. E., Vlasblom, M., & Jacquemin, F. (2018). Tension fatigue failure prediction for HMPE fibre ropes. Polymer Testing, 65, 497-504. https://doi.org/10.1016/j.polymertesting.2017.12.014
International Organization for Standardization. (2005). 139 Textiles — Standard atmospheres for conditioning and testing. ISO: Geneva.
International Organization for Standardization. (2009). 2062 Textiles — Yarns from packages — Determination of singleend breaking force and elongation at break using constant rate of extension (CRE) tester. ISO: Geneva.
International Organization for Standardization. (2020). 18692-3 Fibre ropes for offshore stationkeeping — Part 3: High modulus polyethylene (HMPE). ISO: Geneva.
Jariwala, H., & Jain, P. (2019). A review on mechanical behavior of natural fiber reinforced polymer composites and its applications. Journal of Reinforced Plastics and Composites, 38(10), 441-453. https://doi.org/10.1177/0731684419828524
Jassal, M., Agrawal, A. K., Gupta, D., & Panwar, K. (2020). Aramid fibers. Handbook of fibrous materials, 207-231. https://doi.org/10.1002/9783527342587.ch8
Jesthi, D. K., & Nayak, R. K. (2019). Evaluation of mechanical properties and morphology of seawater aged carbon and glass fiber reinforced polymer hybrid composites. Composites Part B: Engineering, 174, 106980. https://doi.org/10.1016/j.compositesb.2019.106980
Karayaka, M., Srinivasan, S., & Wang, S. S. (1999). Advanced design methodology for synthetic moorings. In Offshore Technology Conference (pp. OTC-10912). OTC. https://doi.org/10.4043/10912-MS
Kim, K., Kim, T., Kim, N., Kim, D., Kang, Y., & Kim, S. (2021). Evaluating the mechanical properties of fiber yarns for developing synthetic fiber chains. Journal of Ocean Engineering and Technology, 35(6), 426-433. https://doi.org/10.26748/KSOE.2021.072
Lemstra, P. J. (2022). High-performance polyethylene fibers. Advanced Industrial and Engineering Polymer Research, 5(2), 49-59. https://doi.org/10.1016/j.aiepr.2022.03.001
Lian, Y., Liu, H., Zhang, Y., & Li, L. (2017). An experimental investigation on fatigue behaviors of HMPE ropes. Ocean Engineering, 139, 237-249. https://doi.org/10.1016/j.oceaneng.2017.05.007
Lian, Y., Zheng, J., Liu, H., Xu, P., & Gan, L. (2018). A study of the creep-rupture behavior of HMPE ropes using viscoelastic-viscoplastic-viscodamage modeling. Ocean Engineering, 162, 43-54. https://doi.org/10.1016/j.oceaneng.2018.05.003
Marissen, R. (2011). Design with ultra strong polyethylene fibers. Materials Sciences and Applications, 2(05), 319. https://doi.org/10.4236/msa.2011.25042
Marôco, J. (2018). Análise Estatística com o SPSS Statistics.: 7ª edição. ReportNumber, Lda.
McKenna, H. A., Hearle, J. W. S., & O'Hear, N. (2004). Handbook of fibre rope technology (Vol. 34). Woodhead publishing.
Melito, I., Cruz, D. M., Belloni, E. S., Clain, F. M., & Guilherme, C. E. M. (2023). The effects of mechanical degradation on the quasi static and dynamic stiffness of polyester yarns. Engineering Solid Mechanics, 11(3), 243-252. https://doi.org/10.5267/j.esm.2023.4.001
Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons.
Nguyen, N., & Thiagarajan, K. (2022). Nonlinear viscoelastic modeling of synthetic mooring lines. Marine Structures, 85, 103257. https://doi.org/10.1016/j.marstruc.2022.103257
Sheng, C., He, G., Hu, Z., Chou, C., Shi, J., Li, J., Meng, Q., Ning, X., Wang, L. & Ning, F. (2021). Yarn on yarn abrasion failure mechanism of ultrahigh molecular weight polyethylene fiber. Journal of engineered fibers and fabrics, 16, 15589250211052766. https://doi.org/10.1177/15589250211052766
Umana, E. C., Tamunodukobipi, D. T. I., & Inegiyemiema, M. (2022). Comparative analysis of fibre rope (polyester) and steel (wire) rope for a Floating Production Storage and Offloading (FPSO) terminal. Ocean Engineering, 243, 110081. https://doi.org/10.1016/j.oceaneng.2021.110081
Vannucchi de Camargo, F., Marcos Guilherme, C. E., Fragassa, C., & Pavlovic, A. (2016). Cyclic stress analysis of polyester, aramid, polyethylene and liquid crystal polymer yarns. Acta Polytechnica, 56(5), 402–408. https://doi.org/10.14311/AP.2016.56.0402
Vlasblom, M., Boesten, J., Leite, S., & Davies, P. (2012). Development of HMPE fiber for permanent deepwater offshore mooring. In Offshore Technology Conference (pp. OTC-23333). OTC. https://doi.org/10.4043/23333-MS
Vlasblom, M., Engels, T., & Humeau, C. (2017). Tension endurance of HMPE fiber ropes. In Oceans 2017-Aberdeen (pp. 1-8). IEEE. https://doi.org/10.1109/OCEANSE.2017.8084939
Weller, S. D., Johanning, L., Davies, P., & Banfield, S. J. (2015). Synthetic mooring ropes for marine renewable energy applications. Renewable energy, 83, 1268-1278. https://doi.org/10.1016/j.renene.2015.03.058
Xu, S., Wang, S., Liu, H., Zhang, Y., Li, L., & Soares, C. G. (2021). Experimental evaluation of the dynamic stiffness of synthetic fibre mooring ropes. Applied Ocean Research, 112, 102709. https://doi.org/10.1016/j.apor.2021.102709
Zhao, L., Xu, L., Han, Y., Jing, H., & Gao, Z. (2019). Modelling creep-fatigue behaviours using a modified combined kinematic and isotropic hardening model considering the damage accumulation. International Journal of Mechanical Sciences, 161, 105016. https://doi.org/10.1016/j.ijmecsci.2019.105016
American Society for Testing and Materials. (2016). D6611 Standard Test Method for Wet and Dry Yarn-Yarn Abrasion Resistance. ASTM: West Conshohocken. https://doi.org/10.1520/D6611-16
American Society for Testing and Materials. (2018). D1577 Standard Test Methods for Linear Density of Textile Fibers. ASTM: West Conshohocken. https://doi.org/10.1520/D1577-07R18
American Society for Testing and Materials. (2020). E1131 Standard Test Method for Compositional Analysis by Thermogravimetry. ASTM: West Conshohocken. https://doi.org/10.1520/E1131-20
Arias, R. R., Ruiz, Á. R., & de Lena Alonso, V. G. (2016). Mooring and anchoring. Floating Offshore Wind Farms, 89-119. https://doi.org/10.1007/978-3-319-27972-5_6
Bain, C., Davies, P., Riou, L., Marco, Y., Bles, G., & Damblans, G. (2023). Experimental evaluation of the main parameters influencing friction between polyamide fibers and influence of friction on the abrasion resistance. The Journal of The Textile Institute, 114(7), 998-1006. https://doi.org/10.1080/00405000.2022.2105075
Barrois, W. (1979). Repeated plastic deformation as a cause of mechanical surface damage in fatigue, wear, fretting-fatigue, and rolling fatigue: a review. International Journal of Fatigue, 1(4), 167-189. https://doi.org/10.1016/0142-1123(79)90022-7
Bastos, M. B., Fernandes, E. B., & da Silva, A. L. N. (2016). Performance fibers for deep water offshore mooring ropes: Evaluation and analysis. In OCEANS 2016-Shanghai (pp. 1-7). IEEE. https://doi.org/10.1109/OCEANSAP.2016.7485612
Beltrao, R. L. C., Sombra, C. L., Lage, A. C. V., Netto, J. R. F., & Henriques, C. C. D. (2009). SS: pre-salt Santos basin-challenges and new technologies for the development of the pre-salt cluster, Santos basin, Brazil. In Offshore Technology Conference (pp. OTC-19880). OTC. https://doi.org/10.4043/19880-MS
Chevillotte, Y., Marco, Y., Bles, G., Devos, K., Keryer, M., Arhant, M., & Davies, P. (2020). Fatigue of improved polyamide mooring ropes for floating wind turbines. Ocean Engineering, 199, 107011. https://doi.org/10.1016/j.oceaneng.2020.107011
Civier, L., Chevillotte, Y., Bles, G., Montel, F., Davies, P., & Marco, Y. (2022). Short and long term creep behaviour of polyamide ropes for mooring applications. Ocean Engineering, 259, 111800. https://doi.org/10.1016/j.oceaneng.2022.111800
Cordage Institute. (2009). 1503 Test Method for Yarn-on-Yarn Abrasion. CI: Wayne.
Costa Fraga, C. T., Lara, A. Q., Capeleiro Pinto, A. C., & Moreira Branco, C. C. (2014, June). Challenges and solutions to develop Brazilian pre-salt deepwater fields. In World Petroleum Congress (p. D033S003R004). WPC.
Cruz, D. M., Barreto, M. A., Zangalli, L. B., Cruz Júnior, A. J., Melito, I., Clain, F. M., & Guilherme, C. E. M. (2024). Mechanical characterization procedure of HMPE fiber for offshore mooring in deep waters. Engineering Solid Mechanics, 12(3), 311-322. https://doi.org/10.5267/j.esm.2024.1.003
Cruz, D. M., Silva, A. H. M. F. T., Clain, F. M., & Guilherme, C. E. M. (2023). Experimental study on the behavior of polyamide multifilament subject to impact loads under different soaking conditions. Engineering Solid Mechanics, 11(1), 23-34. https://doi.org/10.5267/j.esm.2022.11.001
da Cruz, D. M., Barreto, M. A., Zangalli, L. B., Popiolek Júnior, T. L., & Guilherme, C. E. M. (2023b). Experimental Study of Creep Behavior at High Temperature in Different HMPE Fibers Used for Offshore Mooring. In Offshore Technology Conference Brasil (p. D021S026R002). OTC. https://doi.org/10.4043/32760-MS
da Cruz, D. M., Clain, F. M., & Guilherme, C. E. M. (2022). Experimental study of the torsional effect for yarn break load test of polymeric multifilaments. Acta Polytechnica, 62(5), 538–548. https://doi.org/10.14311/AP.2022.62.0538
da Cruz, D. M., Penaquioni, A., Zangalli, L. B., Bastos, M. B., Bastos, I. N., & da Silva, A. L. N. (2023a). Non-destructive testing of high-tenacity polyester sub-ropes for mooring systems. Applied Ocean Research, 134, 103513. https://doi.org/10.1016/j.apor.2023.103513
Davies, P., & Arhant, M. (2019). Fatigue behaviour of acrylic matrix composites: influence of seawater. Applied Composite Materials, 26(2), 507-518. https://doi.org/10.1007/s10443-018-9713-1
Davies, P., & Verbouwe, W. (2018). Evaluation of basalt fibre composites for marine applications. Applied Composite Materials, 25(2), 299-308. https://doi.org/10.1007/s10443-017-9619-3
Davies, P., Reaud, Y., Dussud, L., & Woerther, P. (2011). Mechanical behaviour of HMPE and aramid fibre ropes for deep sea handling operations. Ocean Engineering, 38(17-18), 2208-2214. https://doi.org/10.1016/j.oceaneng.2011.10.010
Del Vecchio, C. J. M. (1992). Light weight materials for deep water moorings (Doctoral dissertation, University of Reading).
Demircan, G., Ozen, M., Kisa, M., Acikgoz, A., & Işıker, Y. (2023). The effect of nano-gelcoat on freeze-thaw resistance of glass fiber-reinforced polymer composite for marine applications. Ocean Engineering, 269, 113589. https://doi.org/10.1016/j.oceaneng.2022.113589
Galinski, H., Leutenegger, D., Amberg, M., Krogh, F., Schnabel, V., Heuberger, M., ... & Hegemann, D. (2020). Functional coatings on high‐performance polymer fibers for smart sensing. Advanced Functional Materials, 30(14), 1910555. https://doi.org/10.1002/adfm.201910555
Han, G., Tao, X., Li, X., Jiang, W., & Zuo, W. (2016). Study of the mechanical properties of ultra-high molecular weight polyethylene fiber rope. Journal of Engineered Fibers and Fabrics, 11(1), 155892501601100103. https://doi.org/10.1177/155892501601100103
He, W., Shi, B., Fan, G., Wang, W., Wang, H., Wang., J., Zuo, G., Wang, C., & Yang, L. (2023). Theoretical and technical progress in exploration practice of the deep-water large oil fields, Santos Basin, Brazil. Petroleum Exploration and Development, 50(2), 255-267. https://doi.org/10.1016/S1876-3804(22)60385-9
Huang, W., Li, B., & Kim, D. K. (2023). An investigation on material diversity of synthetic fiber ropes in the course stability of towing under wind. Ocean Engineering, 279, 114410. https://doi.org/10.1016/j.oceaneng.2023.114410
Huang, W., Liu, H., Lian, Y., & Li, L. (2015). Modeling nonlinear time-dependent behaviors of synthetic fiber ropes under cyclic loading. Ocean Engineering, 109, 207-216. https://doi.org/10.1016/j.oceaneng.2015.09.009
Humeau, C., Davies, P., Smeets, P., Engels, T. A. P., Govaert, L. E., Vlasblom, M., & Jacquemin, F. (2018). Tension fatigue failure prediction for HMPE fibre ropes. Polymer Testing, 65, 497-504. https://doi.org/10.1016/j.polymertesting.2017.12.014
International Organization for Standardization. (2005). 139 Textiles — Standard atmospheres for conditioning and testing. ISO: Geneva.
International Organization for Standardization. (2009). 2062 Textiles — Yarns from packages — Determination of singleend breaking force and elongation at break using constant rate of extension (CRE) tester. ISO: Geneva.
International Organization for Standardization. (2020). 18692-3 Fibre ropes for offshore stationkeeping — Part 3: High modulus polyethylene (HMPE). ISO: Geneva.
Jariwala, H., & Jain, P. (2019). A review on mechanical behavior of natural fiber reinforced polymer composites and its applications. Journal of Reinforced Plastics and Composites, 38(10), 441-453. https://doi.org/10.1177/0731684419828524
Jassal, M., Agrawal, A. K., Gupta, D., & Panwar, K. (2020). Aramid fibers. Handbook of fibrous materials, 207-231. https://doi.org/10.1002/9783527342587.ch8
Jesthi, D. K., & Nayak, R. K. (2019). Evaluation of mechanical properties and morphology of seawater aged carbon and glass fiber reinforced polymer hybrid composites. Composites Part B: Engineering, 174, 106980. https://doi.org/10.1016/j.compositesb.2019.106980
Karayaka, M., Srinivasan, S., & Wang, S. S. (1999). Advanced design methodology for synthetic moorings. In Offshore Technology Conference (pp. OTC-10912). OTC. https://doi.org/10.4043/10912-MS
Kim, K., Kim, T., Kim, N., Kim, D., Kang, Y., & Kim, S. (2021). Evaluating the mechanical properties of fiber yarns for developing synthetic fiber chains. Journal of Ocean Engineering and Technology, 35(6), 426-433. https://doi.org/10.26748/KSOE.2021.072
Lemstra, P. J. (2022). High-performance polyethylene fibers. Advanced Industrial and Engineering Polymer Research, 5(2), 49-59. https://doi.org/10.1016/j.aiepr.2022.03.001
Lian, Y., Liu, H., Zhang, Y., & Li, L. (2017). An experimental investigation on fatigue behaviors of HMPE ropes. Ocean Engineering, 139, 237-249. https://doi.org/10.1016/j.oceaneng.2017.05.007
Lian, Y., Zheng, J., Liu, H., Xu, P., & Gan, L. (2018). A study of the creep-rupture behavior of HMPE ropes using viscoelastic-viscoplastic-viscodamage modeling. Ocean Engineering, 162, 43-54. https://doi.org/10.1016/j.oceaneng.2018.05.003
Marissen, R. (2011). Design with ultra strong polyethylene fibers. Materials Sciences and Applications, 2(05), 319. https://doi.org/10.4236/msa.2011.25042
Marôco, J. (2018). Análise Estatística com o SPSS Statistics.: 7ª edição. ReportNumber, Lda.
McKenna, H. A., Hearle, J. W. S., & O'Hear, N. (2004). Handbook of fibre rope technology (Vol. 34). Woodhead publishing.
Melito, I., Cruz, D. M., Belloni, E. S., Clain, F. M., & Guilherme, C. E. M. (2023). The effects of mechanical degradation on the quasi static and dynamic stiffness of polyester yarns. Engineering Solid Mechanics, 11(3), 243-252. https://doi.org/10.5267/j.esm.2023.4.001
Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons.
Nguyen, N., & Thiagarajan, K. (2022). Nonlinear viscoelastic modeling of synthetic mooring lines. Marine Structures, 85, 103257. https://doi.org/10.1016/j.marstruc.2022.103257
Sheng, C., He, G., Hu, Z., Chou, C., Shi, J., Li, J., Meng, Q., Ning, X., Wang, L. & Ning, F. (2021). Yarn on yarn abrasion failure mechanism of ultrahigh molecular weight polyethylene fiber. Journal of engineered fibers and fabrics, 16, 15589250211052766. https://doi.org/10.1177/15589250211052766
Umana, E. C., Tamunodukobipi, D. T. I., & Inegiyemiema, M. (2022). Comparative analysis of fibre rope (polyester) and steel (wire) rope for a Floating Production Storage and Offloading (FPSO) terminal. Ocean Engineering, 243, 110081. https://doi.org/10.1016/j.oceaneng.2021.110081
Vannucchi de Camargo, F., Marcos Guilherme, C. E., Fragassa, C., & Pavlovic, A. (2016). Cyclic stress analysis of polyester, aramid, polyethylene and liquid crystal polymer yarns. Acta Polytechnica, 56(5), 402–408. https://doi.org/10.14311/AP.2016.56.0402
Vlasblom, M., Boesten, J., Leite, S., & Davies, P. (2012). Development of HMPE fiber for permanent deepwater offshore mooring. In Offshore Technology Conference (pp. OTC-23333). OTC. https://doi.org/10.4043/23333-MS
Vlasblom, M., Engels, T., & Humeau, C. (2017). Tension endurance of HMPE fiber ropes. In Oceans 2017-Aberdeen (pp. 1-8). IEEE. https://doi.org/10.1109/OCEANSE.2017.8084939
Weller, S. D., Johanning, L., Davies, P., & Banfield, S. J. (2015). Synthetic mooring ropes for marine renewable energy applications. Renewable energy, 83, 1268-1278. https://doi.org/10.1016/j.renene.2015.03.058
Xu, S., Wang, S., Liu, H., Zhang, Y., Li, L., & Soares, C. G. (2021). Experimental evaluation of the dynamic stiffness of synthetic fibre mooring ropes. Applied Ocean Research, 112, 102709. https://doi.org/10.1016/j.apor.2021.102709
Zhao, L., Xu, L., Han, Y., Jing, H., & Gao, Z. (2019). Modelling creep-fatigue behaviours using a modified combined kinematic and isotropic hardening model considering the damage accumulation. International Journal of Mechanical Sciences, 161, 105016. https://doi.org/10.1016/j.ijmecsci.2019.105016