How to cite this paper
Mousavi, A., Aliha, M., Khoramishad, H., Karimi, H., Choupani, N & Sadowski, T. (2025). Opening-tearing mixed-mode fracture behavior of rock using ENDB, ENDC, DNDC, SCB, TPB-IC, SENB, and ATPB specimens.Engineering Solid Mechanics, 13(1), 1-14.
Refrences
Abdollahipour, A., Fatehi Marji, M., Yarahmadi Bafghi, A., & Gholamnejad, J. (2016). DEM simulation of confining pressure effects on crack opening displacement in hydraulic fracturing. International Journal of Mining Science and Technology, 26(4), 557-561. https://doi.org/https://doi.org/10.1016/j.ijmst.2016.05.004
Ahmadi, M., Shafabakhsh, G. A., Di Mascio, P., & Hassani, A. (2021). Failure behavior of functionally graded roller compacted concrete pavement under mode I and III fracture. Construction and Building Materials, 307, 124942.
Ahmadi-Moghadam, B., Taheri, F. (2013). An effective means for evaluating mixed-mode I/III stress intensity factors using single-edge notch beam specimen. The Journal of Strain Analysis for Engineering Design, 48(4), 245-257. doi:10.1177/0309324713480767
Aliha, M. R. M., & Ayatollahi, M. R. (2014). Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading – A statistical approach. Theoretical and Applied Fracture Mechanics, 69, 17-25. https://doi.org/https://doi.org/10.1016/j.tafmec.2013.11.008
Aliha, M. R. M., & Bahmani, A. (2017). Rock Fracture Toughness Study Under Mixed Mode I/III Loading. Rock Mechanics and Rock Engineering, 50(7), 1739-1751. https://doi.org/10.1007/s00603-017-1201-7
Aliha, M. R. M., Ayatollahi, M., Smith, D., & Pavier, M. (2010). Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Engineering Fracture Mechanics, 77(11), 2200-2212.
Aliha, M. R. M., G. Kouchaki, H., & Jafari Haghighatpour, P. (2023). Designing a simple and suitable laboratory test specimen for investigating the general mixed mode I/II/III fracture problem. Materials & Design, 236, 112477. https://doi.org/https://doi.org/10.1016/j.matdes.2023.112477
Aliha, M. R. M., Mahdavi, E., & Ayatollahi, M. R. (2017a). The Influence of Specimen Type on Tensile Fracture Toughness of Rock Materials. Pure and Applied Geophysics, 174(3), 1237-1253. https://doi.org/10.1007/s00024-016-1458-x
Aliha, M. R. M., Berto, F., Bahmani, A., & Gallo, P. (2017b). Mixed mode I/II fracture investigation of Perspex based on the averaged strain energy density criterion. Physical Mesomechanics, 20(2), 149-156. https://doi.org/10.1134/S1029959917020059.
Aliha, M. R. M., Sarbijan, M., & Bahmani, A. (2017c). Fracture toughness determination of modified HMA mixtures with two novel disc shape configurations. Construction and Building Materials, 155, 789-799.
Aliha, M. R. M., Mahdavi, E., & Ayatollahi, M. R. (2018). Statistical Analysis of Rock Fracture Toughness Data Obtained from Different Chevron Notched and Straight Cracked Mode I Specimens. Rock Mechanics and Rock Engineering, 51(7), 2095-2114. https://doi.org/10.1007/s00603-018-1454-9
Aliha, M. R. M., Sistaninia, M., Smith, D. J., Pavier, M. J., & Ayatollahi, M. R. (2012). Geometry effects and statistical analysis of mode I fracture in guiting limestone. International Journal of Rock Mechanics and Mining Sciences, 51, 128-135. https://doi.org/https://doi.org/10.1016/j.ijrmms.2012.01.017
Aliha, M. R. M., & Ayatollahi, M. (2010). Geometry effects on fracture behaviour of polymethyl methacrylate. Materials Science and Engineering: A, 527(3), 526-530.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2015). Numerical analysis of a new mixed mode I/III fracture test specimen. Engineering Fracture Mechanics, 134, 95-110.
Aliha, M. R. M., Ghesmati Kucheki, H., & Asadi, M. M. (2021). On the use of different diametral compression cracked disc shape specimens for introducing mode III deformation. Fatigue & Fracture of Engineering Materials & Structures, 44(11), 3135-3151.
Aliha, M. R. M., Karimi, H., & Ghoreishi, S. (2022). Design and validation of simple bend beam specimen for covering the full range of I+ II fracture modes. European Journal of Mechanics-A/Solids, 91, 104425.
Awaji, H., & Sato, S. (1978). Combined mode fracture toughness measurement by the disk test.
Ayatollahi, M. R., & Saboori, B. (2015). A new fixture for fracture tests under mixed mode I/III loading. European Journal of Mechanics - A/Solids, 51, 67-76. https://doi.org/https://doi.org/10.1016/j.euromechsol.2014.09.012
Ayatollahi, M. R., Pavier, M. J., & Smith, D. J. (1998). Determination of T-stress from finite element analysis for mode I and mixed mode I/II loading. International Journal of Fracture, 91(3), 283-298. https://doi.org/10.1023/A:1007581125618
Ayatollahi, M. R., & Aliha, M. R. M., (2008). On the use of Brazilian disc specimen for calculating mixed mode I–II fracture toughness of rock materials. Engineering Fracture Mechanics, 75(16), 4631-4641.
Ayatollahi, M. R., Aliha, M. R. M., & Saghafi, H. (2011). An improved semi-circular bend specimen for investigating mixed mode brittle fracture. Engineering Fracture Mechanics, 78(1), 110-123.
Bahmani, A., & Nemati, S. (2021). Fracture resistance of railway ballast rock under tensile and tear loads. Engineering Solid Mechanics, 9(3), 271-280.
Bahmani, A., Farahmand, F., Ataei, F., & Aliha, M. R. M. (2019). Mixed mode I/III fracture parameters for edge-notched diametrically compressed disc specimen. Material Design & Processing Communications, 1(6), e86. https://doi.org/https://doi.org/10.1002/mdp2.86
Bahmani, A., Farahmand, F., Janbaz, M. R., Darbandi, A. H., Ghesmati-Kucheki, H., & Aliha, M. R. M. (2021). On the comparison of two mixed-mode I+ III fracture test specimens. Engineering Fracture Mechanics, 241, 107434.
Bakhshizadeh, M., Hartford, S., Karimi, H. R., & Aliha, M. R. M. (2024). Effect of support friction on pure mode I, II, and III fracture toughness of cement concrete tested with edge-notched disc bend specimen. Theoretical and Applied Fracture Mechanics, 129, 104247. https://doi.org/https://doi.org/10.1016/j.tafmec.2023.104247
Bazoobandi, P., Mousavi, S. R., Karimi, F., Karimi, H. R., Ghasri, M., & Aliha, M. (2024). Cracking resistance of crumb rubber modified green asphalt mixtures, using calcium carbonate nanoparticles and two by-product wax-based warm mix additives. Construction and Building Materials, 424, 135848. https://doi.org/10.1016/j.conbuildmat.2024.135848
Bidadi, J., Aliha, M. R. M., & Akbardoost, J. (2022). Development of maximum tangential strain (MTSN) criterion for prediction of mixed-mode I/III brittle fracture. International Journal of Solids and Structures, 256, 111979.
Cambonie, T., Klinger, Y., & Lazarus, V. (2019). Similarities between mode III crack growth patterns and strike-slip faults. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377(2136), 20170392. https://doi.org/doi:10.1098/rsta.2017.0392
Cao, P., Zhou, T., & Zhu, J. (2023). Strain rate effect on mixed mode I/II fracture toughness of sandstone and its micromechanism. International Journal of Rock Mechanics and Mining Sciences, 165, 105379. https://doi.org/https://doi.org/10.1016/j.ijrmms.2023.105379
Chao, Y. J., Liu, S., & Broviak, B. J. (2001). Brittle fracture: Variation of fracture toughness with constraint and crack curving under mode I conditions. Experimental Mechanics, 41(3), 232-241. https://doi.org/10.1007/BF02323139
Cui, L., & McAdie, A. (2023). Experimental study on evolutive fracture behavior and properties of sulfate-rich fiber-reinforced cemented paste backfill under pure mode-I, mode-II, and mode-III loadings. International Journal of Rock Mechanics and Mining Sciences, 169, 105434.
Fan, Y., Zhu, Z., Zhao, Y., Zhou, L., Qiu, H., & Niu, C. (2021). Analytical solution of T-stresses for an inclined crack in compression. International Journal of Rock Mechanics and Mining Sciences, 138, 104433. https://doi.org/https://doi.org/10.1016/j.ijrmms.2020.104433
Gan, Z., Hua, W., Wang, A., Fan, Z., Huang, J., Dong, S., & Wu, H. (2024). Experimental investigation on mixed mode I-III fracture behaviors and degradation mechanism of sandstone under thermal-chemical stimulation. Theoretical and Applied Fracture Mechanics, 129, 104188.
Gan, Z., Pan, X., Tang, H., Huang, J., Dong, S., & Hua, W. (2021). Experimental investigation on mixed mode I-III fracture characteristics of sandstone corroded by periodic acid solution. Theoretical and Applied Fracture Mechanics, 114, 103034.
Gao, M., Zhang, C., & Oh, J. (2023). Assessments of the effects of various fracture surface morphology on single fracture flow: A review. International Journal of Mining Science and Technology, 33(1), 1-29. https://doi.org/https://doi.org/10.1016/j.ijmst.2022.07.005
Guan, J., Zhang, Y., Meng, J., Yao, X., Li, L., & He, S. (2022). A simple method for determining independent fracture toughness and tensile strength of rock. International Journal of Mining Science and Technology, 32(4), 707-726. https://doi.org/https://doi.org/10.1016/j.ijmst.2022.05.004
Hasanpour, R., & Choupani, N. (2009). Rock fracture characterization using the modified Arcan test specimen. International Journal of Rock Mechanics and Mining Sciences, 46(2), 346-354.
Hoseini, S. O., Mousavi, S. R., Sohrabi, M. R., & Ghasemi, M. (2023). Using beam and ENDB specimens to evaluate fracture characteristics of wavy steel fiber-reinforced self-compacting concrete containing different coarse aggregate volumes. Fatigue & Fracture of Engineering Materials & Structures, 46(5), 1669-1686. https://doi.org/https://doi.org/10.1111/ffe.13942
Hoseini, S. O., Sohrabi, M. R., Mousavi, S. R., & Ghasemi, M. (2022). Effects of coarse aggregate and wavy steel fiber volumes on the critical stress intensity factors of modes I and III cracks in self-compacting concrete using ENDB specimens. Theoretical and Applied Fracture Mechanics, 121, 103421. https://doi.org/https://doi.org/10.1016/j.tafmec.2022.103421
Hoseini, S. O., Sohrabi, M. R., Mousavi, S. R., Ghasemi, M., & Aliha, M. R. M. (2024). Comparing Different Procedures for Calculating Flexural Cracking Toughness Using Edge‐Notched Disc Bend Specimen Under Modes I and III. Fatigue & Fracture of Engineering Materials & Structures. https://doi.org/10.1111/ffe.14530
Karimi, H. R., Aliha, M. R. M., Khedri, E., Mousavi, A., Salehi, S. M., Haghighatpour, P. J., & Ebneabbasi, P. (2023). Strength and cracking resistance of concrete containing different percentages and sizes of recycled tire rubber granules. Journal of Building Engineering, 67, 106033. https://doi.org/https://doi.org/10.1016/j.jobe.2023.106033
Karimi, H. r., Khedri, E., Aliha, M. R. M., & Mousavi, A. (2022). A comprehensive study on ring shape specimens under compressive and tensile loadings for covering the full range of I+II fracture modes of gypsum material. International Journal of Rock Mechanics and Mining Sciences, 160, 105265. https://doi.org/https://doi.org/10.1016/j.ijrmms.2022.105265
Karimi, H. R., Khedri, E., Mousavi, A., Taherifar, A., Abdoli, Z., & Mohamadi, R. (2024). Mode I/II cracking behavior of additively manufactured interpenetrating phase composites (IPC), an experimental and theoretical study. Theoretical and Applied Fracture Mechanics, 131, 104396. https://doi.org/10.1016/j.tafmec.2024.104396
Khanghahi, S. H., Hadidi, M. R., & Mohammadi, Y. (2024). Laboratory Investigations on Fracture Toughness of Self-compacting Concrete Containing Recycled Materials. Jordan Journal of Civil Engineering, 18(2).
Lazarus, V., Leblond, J.-B., & Mouchrif, S.-E. (2001). Crack front rotation and segmentation in mixed mode I+III or I+II+III. Part II: Comparison with experiments. Journal of the Mechanics and Physics of Solids, 49(7), 1421-1443. https://doi.org/https://doi.org/10.1016/S0022-5096(01)00008-4
Li, C., Yang, D., Xie, H., Ren, L., & Wang, J. (2023). Size effect of fracture characteristics for anisotropic quasi-brittle geomaterials. International Journal of Mining Science and Technology, 33(2), 201-213. https://doi.org/https://doi.org/10.1016/j.ijmst.2022.11.004
Liu, S., & Chao, Y. J. (2003). Variation of fracture toughness with constraint. International Journal of Fracture, 124(3), 113-117. https://doi.org/10.1023/B:FRAC.0000018230.97560.ae
Liu, Z., & Ma, C. (2023). Study on fracture behavior of layered limestone under mixed mode I/III loading. Theoretical and Applied Fracture Mechanics, 128, 104102.
Li-yun, L., Zhi-qiang, X., Ming-xiu, L., Yi, L., Chen, F., Tie-Wu, T., & Da-an, L. (2013). A experimental study of I-II-III mixed mode crack fracture of rock under different temperature In 13th International Conference on Fracture, Beijing, China
Maccagno, T., & Knott, J. (1989). The fracture behaviour of PMMA in mixed modes I and II. Engineering Fracture Mechanics, 34(1), 65-86.
Mahajan, R., & Ravi-Chandar, K. (1989). An experimental investigation of mixed-mode fracture. International Journal of fracture, 41(4), 235-252.
Marat-Mendes, R., & De Freitas, M. (2009). Characterisation of the edge crack torsion (ECT) test for the measurement of the mode III interlaminar fracture toughness. Engineering Fracture Mechanics, 76(18), 2799–2809. https://doi.org/10.1016/j.engfracmech.2009.06.016
Mirsayar, M.M., Aliha, M.R.M., & Samaei, A.T. (2014). On fracture initiation angle near bi-material notches- Effects of first non-singular stress term. Engineering Fracture Mechanics, 119, 124-131.
Mousavi, S. R., Afshoon, I., Bayatpour, M. A., TQ, A. D., & Miri, M. (2021). Effect of waste glass and curing aging on fracture toughness of self-compacting mortars using ENDB specimen. Construction and Building Materials, 282, 122711.
Mousavi, S., Ghasemi, M., & Dehghani, M. (2024). Investigating the fracture toughness of the self compacting concrete using ENDB samples by changing the aggregate size and percent of steel fiber. Engineering Solid Mechanics, 12(1), 17-26.
Muñoz-Ibáñez, A., Delgado-Martín, J., & Juncosa-Rivera, R. (2021). Size effect and other effects on mode I fracture toughness using two testing methods. International Journal of Rock Mechanics and Mining Sciences, 143, 104785. https://doi.org/https://doi.org/10.1016/j.ijrmms.2021.104785
Najjar, S., Moghaddam, A. M., Sahaf, A., & Aliha, M. R. M. (2020). Low temperature fracture resistance of cement emulsified asphalt mortar under mixed mode I/III loading. Theoretical and Applied Fracture Mechanics, 110, 102800.
Najjar, S., Moghaddam, A. M., Sahaf, A., & Aliha, M. R. M. (2022). Aging effect on the mixed-mode (I/III) fracture toughness of cement emulsified asphalt composite: Experimental and statistical investigation. Engineering Fracture Mechanics, 264, 108292.
Pan, X., Huang, J., Gan, Z., Dong, S., & Hua, W. (2021). Analysis of Mixed-Mode I/II/III Fracture Toughness Based on a Three-Point Bending Sandstone Specimen with an Inclined Crack. Applied Sciences, 11(4), 1652.
Pham, K. H., & Ravi-Chandar, K. (2016). On the growth of cracks under mixed-mode I + III loading. International Journal of Fracture, 199(1), 105-134. https://doi.org/10.1007/s10704-016-0098-6
Pietras, D., Aliha, M. R. M., & Sadowski, T. (2021). Mode III fracture toughness testing and numerical modeling for aerated autoclaved concrete using notch cylinder specimen subjected to torsion. Materials Today: Proceedings, 45, 4326-4329.
Pietras, D., Aliha, M. R. M., Kucheki, H. G., & Sadowski, T. (2023). Tensile and tear-type fracture toughness of gypsum material: Direct and indirect testing methods. Journal of Rock Mechanics and Geotechnical Engineering, 15(7), 1777-1796. https://doi.org/https://doi.org/10.1016/j.jrmge.2022.11.016
Pirmohammad, S., & Bayat, A. (2016). Characterizing mixed mode I/III fracture toughness of asphalt concrete using asymmetric disc bend (ADB) specimen. Construction and Building Materials, 120, 571-580.
Pirmohammad, S., & Kiani, A. (2016). Study on fracture behavior of HMA mixtures under mixed mode I/III loading. Engineering Fracture Mechanics, 153, 80-90.
Pournoori, P., Davarpanah TQ, A., Rajaee, A., Ghodratnama, M., Abrishami, S., & Masoodi, A. R. (2024). Experimental exploration of fracture behavior (pure mode III) in eco-friendly steel fiber-reinforced self-compacting concrete with waste tempered glass as coarse aggregates. Scientific Reports, 14(1), 9043.
Qiu, J., Luo, L., Li, X., Li, D., Chen, Y., & Luo, Y. (2020). Numerical investigation on the tensile fracturing behavior of rock-shotcrete interface based on discrete element method. International Journal of Mining Science and Technology, 30(3), 293-301. https://doi.org/https://doi.org/10.1016/j.ijmst.2020.03.007
Raeisi, R., Rezaie, F., & Aliha, M. R. M. (2024). Mixed mode I/II and I/III fracture toughness investigation for preplaced aggregate concrete mixtures: Experimental study and theoretical prediction. Fatigue & Fracture of Engineering Materials & Structures, 47(8), 2873-2887.
Shabakhty, N., Karimi, H. R., & Bakhtiary, A. Y. (2024). Cementitious composites in aquatic environments, evaluation of fracture and mechanical behavior in long-term submerging in fresh and saltwater, and simulated splash zone conditions. Case Studies in Construction Materials, 20, e03035. https://doi.org/10.1016/j.cscm.2024.e03035
Shahryari, N., Keymanesh, M. R., & Aliha, M. R. M. (2021). Specimen type effect on measured low-temperature fracture toughness of asphalt concrete. Fatigue & Fracture of Engineering Materials & Structures, 44(2), 551-567. https://doi.org/https://doi.org/10.1111/ffe.13379
Shi, Z., Li, J., Ranjith, P. G., Wang, M., Lin, H., Han, D., & Li, K. (2024). Acoustic emission and fracture morphology characteristics of thermal-damage granite under mixed mode I/III loading. Theoretical and Applied Fracture Mechanics, 104524.
Shui, X., Zhou, L., Zhu, Z., Nie, F., Wang, H., & Zhang, H. (2024). Investigation of the fracture characteristics of mixed-mode I/III crack by using two kinds of sandstone specimens. Engineering Fracture Mechanics, 310, 110488.
Smith, D. J., Ayatollahi, M. R., & Pavier, M. J. (2001). The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading. Fatigue & Fracture of Engineering Materials & Structures, 24(2), 137-150. https://doi.org/https://doi.org/10.1046/j.1460-2695.2001.00377.x
Smith, D. J., Ayatollahi, M. R., & Pavier, M. J. (2006). On the consequences of T-stress in elastic brittle fracture. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462(2072), 2415-2437. https://doi.org/doi:10.1098/rspa.2005.1639
Sreenath, S., Mohan, K. S. R., & Murali, G. (2022). Fracture toughness of reactive powder fibrous concrete composites under pure and mixed modes (I/III). Buildings, 12(5), 599.
Tang, W., Zhang, Y., Zhao, Y., Zheng, K., Wang, C., & Bi, J. (2024). Assessment of basalt fiber and gelling enhancement effects on mixed mode I/III fracture performance of the mortar composites. Theoretical and Applied Fracture Mechanics, 130, 104303.
Toshio, N., & Parks, D. M. (1992). Determination of elastic T-stress along three-dimensional crack fronts using an interaction integral. International Journal of Solids and Structures, 29, 1597-1611.
Wan, D., Wang, M., Zhu, Z., Wang, F., Zhou, L., Liu, R., Gao, W., Shu, Y., & Xiao, H. (2022). Coupled GIMP and CPDI material point method in modelling blast-induced three-dimensional rock fracture. International Journal of Mining Science and Technology, 32(5), 1097-1114. https://doi.org/https://doi.org/10.1016/j.ijmst.2022.08.012
Xeidakis, G., Samaras, I., Zacharopoulos, D., & Papakaliatakis, G. (1996). Crack growth in a mixed-mode loading on marble beams under three point bending. International journal of fracture, 79(2), 197-208.
Yang, Z., Yin, T., Zhuang, D., Wu, Y., Yin, J., & Chen, Y. (2022). Effect of temperature on mixed mode I/III fracture behavior of diorite: An experimental investigation. Theoretical and Applied Fracture Mechanics, 122, 103571.
Yao, W., Xu, Y., Wang, C., Xia, K., & Hokka, M. (2021). Dynamic Mode Ⅱ fracture behavior of rocks under hydrostatic pressure using the short core in compression (SCC) method. International Journal of Mining Science and Technology, 31(5), 927-937. https://doi.org/https://doi.org/10.1016/j.ijmst.2021.08.001
Yu, H., & Kuna, M. (2021). Interaction integral method for computation of crack parameters K–T – A review. Engineering Fracture Mechanics, 249, 107722. https://doi.org/10.1016/j.engfracmech.2021.107722
Zarei, M., Abdi Kordani, A., & Zahedi, M. (2022). Evaluating the fracture behaviour of modified asphalt concrete composites (ACC) at low and intermediate temperatures using edge notched disc bend (ENDB) specimen. Road Materials and Pavement Design, 23(8), 1917-1941.
Zarei, M., Kordani, A. A., Zahedi, M., Akbarinia, F., & Khanjari, M. (2021). Evaluation of low and intermediate temperatures fracture indices for modified Warm mix asphalt (WMA) using edge notched disc bend (ENDB) specimen. Theoretical and Applied Fracture Mechanics, 116, 103137.
Zhang, J., Miao, X., Huang, Y., & Li, M. (2014). Fracture mechanics model of fully mechanized top coal caving of shallow coal seams and its application. International Journal of Mining Science and Technology, 24(3), 349-352. https://doi.org/https://doi.org/10.1016/j.ijmst.2014.03.011
Zhao, Y., Tang, W., Zhang, Y., Du, C., Li, Y., Wang, C., & Bi, J. (2024). Evaluating fracture resistance of basalt fiber reinforced mortar to mode I/III load using edge notched disc bend (ENDB) specimen: Insights from acoustic emission and morphological analysis. Construction and Building Materials, 411, 134421.
Zheng, J., Guo, J., Wang, J., Sun, H., Deng, J., & Lv, Q. (2022). A universal elliptical disc (UED) model to represent natural rock fractures. International Journal of Mining Science and Technology, 32(2), 261-270. https://doi.org/https://doi.org/10.1016/j.ijmst.2021.12.001
Ahmadi, M., Shafabakhsh, G. A., Di Mascio, P., & Hassani, A. (2021). Failure behavior of functionally graded roller compacted concrete pavement under mode I and III fracture. Construction and Building Materials, 307, 124942.
Ahmadi-Moghadam, B., Taheri, F. (2013). An effective means for evaluating mixed-mode I/III stress intensity factors using single-edge notch beam specimen. The Journal of Strain Analysis for Engineering Design, 48(4), 245-257. doi:10.1177/0309324713480767
Aliha, M. R. M., & Ayatollahi, M. R. (2014). Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading – A statistical approach. Theoretical and Applied Fracture Mechanics, 69, 17-25. https://doi.org/https://doi.org/10.1016/j.tafmec.2013.11.008
Aliha, M. R. M., & Bahmani, A. (2017). Rock Fracture Toughness Study Under Mixed Mode I/III Loading. Rock Mechanics and Rock Engineering, 50(7), 1739-1751. https://doi.org/10.1007/s00603-017-1201-7
Aliha, M. R. M., Ayatollahi, M., Smith, D., & Pavier, M. (2010). Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Engineering Fracture Mechanics, 77(11), 2200-2212.
Aliha, M. R. M., G. Kouchaki, H., & Jafari Haghighatpour, P. (2023). Designing a simple and suitable laboratory test specimen for investigating the general mixed mode I/II/III fracture problem. Materials & Design, 236, 112477. https://doi.org/https://doi.org/10.1016/j.matdes.2023.112477
Aliha, M. R. M., Mahdavi, E., & Ayatollahi, M. R. (2017a). The Influence of Specimen Type on Tensile Fracture Toughness of Rock Materials. Pure and Applied Geophysics, 174(3), 1237-1253. https://doi.org/10.1007/s00024-016-1458-x
Aliha, M. R. M., Berto, F., Bahmani, A., & Gallo, P. (2017b). Mixed mode I/II fracture investigation of Perspex based on the averaged strain energy density criterion. Physical Mesomechanics, 20(2), 149-156. https://doi.org/10.1134/S1029959917020059.
Aliha, M. R. M., Sarbijan, M., & Bahmani, A. (2017c). Fracture toughness determination of modified HMA mixtures with two novel disc shape configurations. Construction and Building Materials, 155, 789-799.
Aliha, M. R. M., Mahdavi, E., & Ayatollahi, M. R. (2018). Statistical Analysis of Rock Fracture Toughness Data Obtained from Different Chevron Notched and Straight Cracked Mode I Specimens. Rock Mechanics and Rock Engineering, 51(7), 2095-2114. https://doi.org/10.1007/s00603-018-1454-9
Aliha, M. R. M., Sistaninia, M., Smith, D. J., Pavier, M. J., & Ayatollahi, M. R. (2012). Geometry effects and statistical analysis of mode I fracture in guiting limestone. International Journal of Rock Mechanics and Mining Sciences, 51, 128-135. https://doi.org/https://doi.org/10.1016/j.ijrmms.2012.01.017
Aliha, M. R. M., & Ayatollahi, M. (2010). Geometry effects on fracture behaviour of polymethyl methacrylate. Materials Science and Engineering: A, 527(3), 526-530.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2015). Numerical analysis of a new mixed mode I/III fracture test specimen. Engineering Fracture Mechanics, 134, 95-110.
Aliha, M. R. M., Ghesmati Kucheki, H., & Asadi, M. M. (2021). On the use of different diametral compression cracked disc shape specimens for introducing mode III deformation. Fatigue & Fracture of Engineering Materials & Structures, 44(11), 3135-3151.
Aliha, M. R. M., Karimi, H., & Ghoreishi, S. (2022). Design and validation of simple bend beam specimen for covering the full range of I+ II fracture modes. European Journal of Mechanics-A/Solids, 91, 104425.
Awaji, H., & Sato, S. (1978). Combined mode fracture toughness measurement by the disk test.
Ayatollahi, M. R., & Saboori, B. (2015). A new fixture for fracture tests under mixed mode I/III loading. European Journal of Mechanics - A/Solids, 51, 67-76. https://doi.org/https://doi.org/10.1016/j.euromechsol.2014.09.012
Ayatollahi, M. R., Pavier, M. J., & Smith, D. J. (1998). Determination of T-stress from finite element analysis for mode I and mixed mode I/II loading. International Journal of Fracture, 91(3), 283-298. https://doi.org/10.1023/A:1007581125618
Ayatollahi, M. R., & Aliha, M. R. M., (2008). On the use of Brazilian disc specimen for calculating mixed mode I–II fracture toughness of rock materials. Engineering Fracture Mechanics, 75(16), 4631-4641.
Ayatollahi, M. R., Aliha, M. R. M., & Saghafi, H. (2011). An improved semi-circular bend specimen for investigating mixed mode brittle fracture. Engineering Fracture Mechanics, 78(1), 110-123.
Bahmani, A., & Nemati, S. (2021). Fracture resistance of railway ballast rock under tensile and tear loads. Engineering Solid Mechanics, 9(3), 271-280.
Bahmani, A., Farahmand, F., Ataei, F., & Aliha, M. R. M. (2019). Mixed mode I/III fracture parameters for edge-notched diametrically compressed disc specimen. Material Design & Processing Communications, 1(6), e86. https://doi.org/https://doi.org/10.1002/mdp2.86
Bahmani, A., Farahmand, F., Janbaz, M. R., Darbandi, A. H., Ghesmati-Kucheki, H., & Aliha, M. R. M. (2021). On the comparison of two mixed-mode I+ III fracture test specimens. Engineering Fracture Mechanics, 241, 107434.
Bakhshizadeh, M., Hartford, S., Karimi, H. R., & Aliha, M. R. M. (2024). Effect of support friction on pure mode I, II, and III fracture toughness of cement concrete tested with edge-notched disc bend specimen. Theoretical and Applied Fracture Mechanics, 129, 104247. https://doi.org/https://doi.org/10.1016/j.tafmec.2023.104247
Bazoobandi, P., Mousavi, S. R., Karimi, F., Karimi, H. R., Ghasri, M., & Aliha, M. (2024). Cracking resistance of crumb rubber modified green asphalt mixtures, using calcium carbonate nanoparticles and two by-product wax-based warm mix additives. Construction and Building Materials, 424, 135848. https://doi.org/10.1016/j.conbuildmat.2024.135848
Bidadi, J., Aliha, M. R. M., & Akbardoost, J. (2022). Development of maximum tangential strain (MTSN) criterion for prediction of mixed-mode I/III brittle fracture. International Journal of Solids and Structures, 256, 111979.
Cambonie, T., Klinger, Y., & Lazarus, V. (2019). Similarities between mode III crack growth patterns and strike-slip faults. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377(2136), 20170392. https://doi.org/doi:10.1098/rsta.2017.0392
Cao, P., Zhou, T., & Zhu, J. (2023). Strain rate effect on mixed mode I/II fracture toughness of sandstone and its micromechanism. International Journal of Rock Mechanics and Mining Sciences, 165, 105379. https://doi.org/https://doi.org/10.1016/j.ijrmms.2023.105379
Chao, Y. J., Liu, S., & Broviak, B. J. (2001). Brittle fracture: Variation of fracture toughness with constraint and crack curving under mode I conditions. Experimental Mechanics, 41(3), 232-241. https://doi.org/10.1007/BF02323139
Cui, L., & McAdie, A. (2023). Experimental study on evolutive fracture behavior and properties of sulfate-rich fiber-reinforced cemented paste backfill under pure mode-I, mode-II, and mode-III loadings. International Journal of Rock Mechanics and Mining Sciences, 169, 105434.
Fan, Y., Zhu, Z., Zhao, Y., Zhou, L., Qiu, H., & Niu, C. (2021). Analytical solution of T-stresses for an inclined crack in compression. International Journal of Rock Mechanics and Mining Sciences, 138, 104433. https://doi.org/https://doi.org/10.1016/j.ijrmms.2020.104433
Gan, Z., Hua, W., Wang, A., Fan, Z., Huang, J., Dong, S., & Wu, H. (2024). Experimental investigation on mixed mode I-III fracture behaviors and degradation mechanism of sandstone under thermal-chemical stimulation. Theoretical and Applied Fracture Mechanics, 129, 104188.
Gan, Z., Pan, X., Tang, H., Huang, J., Dong, S., & Hua, W. (2021). Experimental investigation on mixed mode I-III fracture characteristics of sandstone corroded by periodic acid solution. Theoretical and Applied Fracture Mechanics, 114, 103034.
Gao, M., Zhang, C., & Oh, J. (2023). Assessments of the effects of various fracture surface morphology on single fracture flow: A review. International Journal of Mining Science and Technology, 33(1), 1-29. https://doi.org/https://doi.org/10.1016/j.ijmst.2022.07.005
Guan, J., Zhang, Y., Meng, J., Yao, X., Li, L., & He, S. (2022). A simple method for determining independent fracture toughness and tensile strength of rock. International Journal of Mining Science and Technology, 32(4), 707-726. https://doi.org/https://doi.org/10.1016/j.ijmst.2022.05.004
Hasanpour, R., & Choupani, N. (2009). Rock fracture characterization using the modified Arcan test specimen. International Journal of Rock Mechanics and Mining Sciences, 46(2), 346-354.
Hoseini, S. O., Mousavi, S. R., Sohrabi, M. R., & Ghasemi, M. (2023). Using beam and ENDB specimens to evaluate fracture characteristics of wavy steel fiber-reinforced self-compacting concrete containing different coarse aggregate volumes. Fatigue & Fracture of Engineering Materials & Structures, 46(5), 1669-1686. https://doi.org/https://doi.org/10.1111/ffe.13942
Hoseini, S. O., Sohrabi, M. R., Mousavi, S. R., & Ghasemi, M. (2022). Effects of coarse aggregate and wavy steel fiber volumes on the critical stress intensity factors of modes I and III cracks in self-compacting concrete using ENDB specimens. Theoretical and Applied Fracture Mechanics, 121, 103421. https://doi.org/https://doi.org/10.1016/j.tafmec.2022.103421
Hoseini, S. O., Sohrabi, M. R., Mousavi, S. R., Ghasemi, M., & Aliha, M. R. M. (2024). Comparing Different Procedures for Calculating Flexural Cracking Toughness Using Edge‐Notched Disc Bend Specimen Under Modes I and III. Fatigue & Fracture of Engineering Materials & Structures. https://doi.org/10.1111/ffe.14530
Karimi, H. R., Aliha, M. R. M., Khedri, E., Mousavi, A., Salehi, S. M., Haghighatpour, P. J., & Ebneabbasi, P. (2023). Strength and cracking resistance of concrete containing different percentages and sizes of recycled tire rubber granules. Journal of Building Engineering, 67, 106033. https://doi.org/https://doi.org/10.1016/j.jobe.2023.106033
Karimi, H. r., Khedri, E., Aliha, M. R. M., & Mousavi, A. (2022). A comprehensive study on ring shape specimens under compressive and tensile loadings for covering the full range of I+II fracture modes of gypsum material. International Journal of Rock Mechanics and Mining Sciences, 160, 105265. https://doi.org/https://doi.org/10.1016/j.ijrmms.2022.105265
Karimi, H. R., Khedri, E., Mousavi, A., Taherifar, A., Abdoli, Z., & Mohamadi, R. (2024). Mode I/II cracking behavior of additively manufactured interpenetrating phase composites (IPC), an experimental and theoretical study. Theoretical and Applied Fracture Mechanics, 131, 104396. https://doi.org/10.1016/j.tafmec.2024.104396
Khanghahi, S. H., Hadidi, M. R., & Mohammadi, Y. (2024). Laboratory Investigations on Fracture Toughness of Self-compacting Concrete Containing Recycled Materials. Jordan Journal of Civil Engineering, 18(2).
Lazarus, V., Leblond, J.-B., & Mouchrif, S.-E. (2001). Crack front rotation and segmentation in mixed mode I+III or I+II+III. Part II: Comparison with experiments. Journal of the Mechanics and Physics of Solids, 49(7), 1421-1443. https://doi.org/https://doi.org/10.1016/S0022-5096(01)00008-4
Li, C., Yang, D., Xie, H., Ren, L., & Wang, J. (2023). Size effect of fracture characteristics for anisotropic quasi-brittle geomaterials. International Journal of Mining Science and Technology, 33(2), 201-213. https://doi.org/https://doi.org/10.1016/j.ijmst.2022.11.004
Liu, S., & Chao, Y. J. (2003). Variation of fracture toughness with constraint. International Journal of Fracture, 124(3), 113-117. https://doi.org/10.1023/B:FRAC.0000018230.97560.ae
Liu, Z., & Ma, C. (2023). Study on fracture behavior of layered limestone under mixed mode I/III loading. Theoretical and Applied Fracture Mechanics, 128, 104102.
Li-yun, L., Zhi-qiang, X., Ming-xiu, L., Yi, L., Chen, F., Tie-Wu, T., & Da-an, L. (2013). A experimental study of I-II-III mixed mode crack fracture of rock under different temperature In 13th International Conference on Fracture, Beijing, China
Maccagno, T., & Knott, J. (1989). The fracture behaviour of PMMA in mixed modes I and II. Engineering Fracture Mechanics, 34(1), 65-86.
Mahajan, R., & Ravi-Chandar, K. (1989). An experimental investigation of mixed-mode fracture. International Journal of fracture, 41(4), 235-252.
Marat-Mendes, R., & De Freitas, M. (2009). Characterisation of the edge crack torsion (ECT) test for the measurement of the mode III interlaminar fracture toughness. Engineering Fracture Mechanics, 76(18), 2799–2809. https://doi.org/10.1016/j.engfracmech.2009.06.016
Mirsayar, M.M., Aliha, M.R.M., & Samaei, A.T. (2014). On fracture initiation angle near bi-material notches- Effects of first non-singular stress term. Engineering Fracture Mechanics, 119, 124-131.
Mousavi, S. R., Afshoon, I., Bayatpour, M. A., TQ, A. D., & Miri, M. (2021). Effect of waste glass and curing aging on fracture toughness of self-compacting mortars using ENDB specimen. Construction and Building Materials, 282, 122711.
Mousavi, S., Ghasemi, M., & Dehghani, M. (2024). Investigating the fracture toughness of the self compacting concrete using ENDB samples by changing the aggregate size and percent of steel fiber. Engineering Solid Mechanics, 12(1), 17-26.
Muñoz-Ibáñez, A., Delgado-Martín, J., & Juncosa-Rivera, R. (2021). Size effect and other effects on mode I fracture toughness using two testing methods. International Journal of Rock Mechanics and Mining Sciences, 143, 104785. https://doi.org/https://doi.org/10.1016/j.ijrmms.2021.104785
Najjar, S., Moghaddam, A. M., Sahaf, A., & Aliha, M. R. M. (2020). Low temperature fracture resistance of cement emulsified asphalt mortar under mixed mode I/III loading. Theoretical and Applied Fracture Mechanics, 110, 102800.
Najjar, S., Moghaddam, A. M., Sahaf, A., & Aliha, M. R. M. (2022). Aging effect on the mixed-mode (I/III) fracture toughness of cement emulsified asphalt composite: Experimental and statistical investigation. Engineering Fracture Mechanics, 264, 108292.
Pan, X., Huang, J., Gan, Z., Dong, S., & Hua, W. (2021). Analysis of Mixed-Mode I/II/III Fracture Toughness Based on a Three-Point Bending Sandstone Specimen with an Inclined Crack. Applied Sciences, 11(4), 1652.
Pham, K. H., & Ravi-Chandar, K. (2016). On the growth of cracks under mixed-mode I + III loading. International Journal of Fracture, 199(1), 105-134. https://doi.org/10.1007/s10704-016-0098-6
Pietras, D., Aliha, M. R. M., & Sadowski, T. (2021). Mode III fracture toughness testing and numerical modeling for aerated autoclaved concrete using notch cylinder specimen subjected to torsion. Materials Today: Proceedings, 45, 4326-4329.
Pietras, D., Aliha, M. R. M., Kucheki, H. G., & Sadowski, T. (2023). Tensile and tear-type fracture toughness of gypsum material: Direct and indirect testing methods. Journal of Rock Mechanics and Geotechnical Engineering, 15(7), 1777-1796. https://doi.org/https://doi.org/10.1016/j.jrmge.2022.11.016
Pirmohammad, S., & Bayat, A. (2016). Characterizing mixed mode I/III fracture toughness of asphalt concrete using asymmetric disc bend (ADB) specimen. Construction and Building Materials, 120, 571-580.
Pirmohammad, S., & Kiani, A. (2016). Study on fracture behavior of HMA mixtures under mixed mode I/III loading. Engineering Fracture Mechanics, 153, 80-90.
Pournoori, P., Davarpanah TQ, A., Rajaee, A., Ghodratnama, M., Abrishami, S., & Masoodi, A. R. (2024). Experimental exploration of fracture behavior (pure mode III) in eco-friendly steel fiber-reinforced self-compacting concrete with waste tempered glass as coarse aggregates. Scientific Reports, 14(1), 9043.
Qiu, J., Luo, L., Li, X., Li, D., Chen, Y., & Luo, Y. (2020). Numerical investigation on the tensile fracturing behavior of rock-shotcrete interface based on discrete element method. International Journal of Mining Science and Technology, 30(3), 293-301. https://doi.org/https://doi.org/10.1016/j.ijmst.2020.03.007
Raeisi, R., Rezaie, F., & Aliha, M. R. M. (2024). Mixed mode I/II and I/III fracture toughness investigation for preplaced aggregate concrete mixtures: Experimental study and theoretical prediction. Fatigue & Fracture of Engineering Materials & Structures, 47(8), 2873-2887.
Shabakhty, N., Karimi, H. R., & Bakhtiary, A. Y. (2024). Cementitious composites in aquatic environments, evaluation of fracture and mechanical behavior in long-term submerging in fresh and saltwater, and simulated splash zone conditions. Case Studies in Construction Materials, 20, e03035. https://doi.org/10.1016/j.cscm.2024.e03035
Shahryari, N., Keymanesh, M. R., & Aliha, M. R. M. (2021). Specimen type effect on measured low-temperature fracture toughness of asphalt concrete. Fatigue & Fracture of Engineering Materials & Structures, 44(2), 551-567. https://doi.org/https://doi.org/10.1111/ffe.13379
Shi, Z., Li, J., Ranjith, P. G., Wang, M., Lin, H., Han, D., & Li, K. (2024). Acoustic emission and fracture morphology characteristics of thermal-damage granite under mixed mode I/III loading. Theoretical and Applied Fracture Mechanics, 104524.
Shui, X., Zhou, L., Zhu, Z., Nie, F., Wang, H., & Zhang, H. (2024). Investigation of the fracture characteristics of mixed-mode I/III crack by using two kinds of sandstone specimens. Engineering Fracture Mechanics, 310, 110488.
Smith, D. J., Ayatollahi, M. R., & Pavier, M. J. (2001). The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading. Fatigue & Fracture of Engineering Materials & Structures, 24(2), 137-150. https://doi.org/https://doi.org/10.1046/j.1460-2695.2001.00377.x
Smith, D. J., Ayatollahi, M. R., & Pavier, M. J. (2006). On the consequences of T-stress in elastic brittle fracture. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462(2072), 2415-2437. https://doi.org/doi:10.1098/rspa.2005.1639
Sreenath, S., Mohan, K. S. R., & Murali, G. (2022). Fracture toughness of reactive powder fibrous concrete composites under pure and mixed modes (I/III). Buildings, 12(5), 599.
Tang, W., Zhang, Y., Zhao, Y., Zheng, K., Wang, C., & Bi, J. (2024). Assessment of basalt fiber and gelling enhancement effects on mixed mode I/III fracture performance of the mortar composites. Theoretical and Applied Fracture Mechanics, 130, 104303.
Toshio, N., & Parks, D. M. (1992). Determination of elastic T-stress along three-dimensional crack fronts using an interaction integral. International Journal of Solids and Structures, 29, 1597-1611.
Wan, D., Wang, M., Zhu, Z., Wang, F., Zhou, L., Liu, R., Gao, W., Shu, Y., & Xiao, H. (2022). Coupled GIMP and CPDI material point method in modelling blast-induced three-dimensional rock fracture. International Journal of Mining Science and Technology, 32(5), 1097-1114. https://doi.org/https://doi.org/10.1016/j.ijmst.2022.08.012
Xeidakis, G., Samaras, I., Zacharopoulos, D., & Papakaliatakis, G. (1996). Crack growth in a mixed-mode loading on marble beams under three point bending. International journal of fracture, 79(2), 197-208.
Yang, Z., Yin, T., Zhuang, D., Wu, Y., Yin, J., & Chen, Y. (2022). Effect of temperature on mixed mode I/III fracture behavior of diorite: An experimental investigation. Theoretical and Applied Fracture Mechanics, 122, 103571.
Yao, W., Xu, Y., Wang, C., Xia, K., & Hokka, M. (2021). Dynamic Mode Ⅱ fracture behavior of rocks under hydrostatic pressure using the short core in compression (SCC) method. International Journal of Mining Science and Technology, 31(5), 927-937. https://doi.org/https://doi.org/10.1016/j.ijmst.2021.08.001
Yu, H., & Kuna, M. (2021). Interaction integral method for computation of crack parameters K–T – A review. Engineering Fracture Mechanics, 249, 107722. https://doi.org/10.1016/j.engfracmech.2021.107722
Zarei, M., Abdi Kordani, A., & Zahedi, M. (2022). Evaluating the fracture behaviour of modified asphalt concrete composites (ACC) at low and intermediate temperatures using edge notched disc bend (ENDB) specimen. Road Materials and Pavement Design, 23(8), 1917-1941.
Zarei, M., Kordani, A. A., Zahedi, M., Akbarinia, F., & Khanjari, M. (2021). Evaluation of low and intermediate temperatures fracture indices for modified Warm mix asphalt (WMA) using edge notched disc bend (ENDB) specimen. Theoretical and Applied Fracture Mechanics, 116, 103137.
Zhang, J., Miao, X., Huang, Y., & Li, M. (2014). Fracture mechanics model of fully mechanized top coal caving of shallow coal seams and its application. International Journal of Mining Science and Technology, 24(3), 349-352. https://doi.org/https://doi.org/10.1016/j.ijmst.2014.03.011
Zhao, Y., Tang, W., Zhang, Y., Du, C., Li, Y., Wang, C., & Bi, J. (2024). Evaluating fracture resistance of basalt fiber reinforced mortar to mode I/III load using edge notched disc bend (ENDB) specimen: Insights from acoustic emission and morphological analysis. Construction and Building Materials, 411, 134421.
Zheng, J., Guo, J., Wang, J., Sun, H., Deng, J., & Lv, Q. (2022). A universal elliptical disc (UED) model to represent natural rock fractures. International Journal of Mining Science and Technology, 32(2), 261-270. https://doi.org/https://doi.org/10.1016/j.ijmst.2021.12.001