The 1,3,4-Oxadiazole is an aromatic heterocyclic moiety recognized in drug research for its low lipophilicity. The multiple functionalities, heterocyclic azinane, sulfonamide, 1,3,4-oxadiazole and ace... etamide, are combined collectively to enhance the bioactivity potential of synthesized molecules. All the compounds were acquired by following microwave assisted and conventional techniques in a comparative way. The synthesized derivatives were screened for their antibacterial and enzyme inhibition potential. Furthermore, BSA binding analysis was executed to infer about the interaction with serum albumin. The spectral data of IR, EI-MS, 1H-NMR and 13C-NMR were used to elucidate the final structures of compounds. The synthesized compounds had a modest antibacterial potential. Compound 8f bearing 2-methyl-4,5-dinitrophenyl group was the most active one against all the bacterial strains taken into account and α-glucosidase enzyme. Compound 8d bearing 4-nitrophenyl group was the best acetyl cholinesterase inhibitor and 8i bearing phenylethyl group was the best urease inhibitor more